linux/kernel/sched/debug.c
Mel Gorman cb2517653f sched/debug: Make schedstats a runtime tunable that is disabled by default
schedstats is very useful during debugging and performance tuning but it
incurs overhead to calculate the stats. As such, even though it can be
disabled at build time, it is often enabled as the information is useful.

This patch adds a kernel command-line and sysctl tunable to enable or
disable schedstats on demand (when it's built in). It is disabled
by default as someone who knows they need it can also learn to enable
it when necessary.

The benefits are dependent on how scheduler-intensive the workload is.
If it is then the patch reduces the number of cycles spent calculating
the stats with a small benefit from reducing the cache footprint of the
scheduler.

These measurements were taken from a 48-core 2-socket
machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a
single socket machine 8-core machine with Intel i7-3770 processors.

netperf-tcp
                           4.5.0-rc1             4.5.0-rc1
                             vanilla          nostats-v3r1
Hmean    64         560.45 (  0.00%)      575.98 (  2.77%)
Hmean    128        766.66 (  0.00%)      795.79 (  3.80%)
Hmean    256        950.51 (  0.00%)      981.50 (  3.26%)
Hmean    1024      1433.25 (  0.00%)     1466.51 (  2.32%)
Hmean    2048      2810.54 (  0.00%)     2879.75 (  2.46%)
Hmean    3312      4618.18 (  0.00%)     4682.09 (  1.38%)
Hmean    4096      5306.42 (  0.00%)     5346.39 (  0.75%)
Hmean    8192     10581.44 (  0.00%)    10698.15 (  1.10%)
Hmean    16384    18857.70 (  0.00%)    18937.61 (  0.42%)

Small gains here, UDP_STREAM showed nothing intresting and neither did
the TCP_RR tests. The gains on the 8-core machine were very similar.

tbench4
                                 4.5.0-rc1             4.5.0-rc1
                                   vanilla          nostats-v3r1
Hmean    mb/sec-1         500.85 (  0.00%)      522.43 (  4.31%)
Hmean    mb/sec-2         984.66 (  0.00%)     1018.19 (  3.41%)
Hmean    mb/sec-4        1827.91 (  0.00%)     1847.78 (  1.09%)
Hmean    mb/sec-8        3561.36 (  0.00%)     3611.28 (  1.40%)
Hmean    mb/sec-16       5824.52 (  0.00%)     5929.03 (  1.79%)
Hmean    mb/sec-32      10943.10 (  0.00%)    10802.83 ( -1.28%)
Hmean    mb/sec-64      15950.81 (  0.00%)    16211.31 (  1.63%)
Hmean    mb/sec-128     15302.17 (  0.00%)    15445.11 (  0.93%)
Hmean    mb/sec-256     14866.18 (  0.00%)    15088.73 (  1.50%)
Hmean    mb/sec-512     15223.31 (  0.00%)    15373.69 (  0.99%)
Hmean    mb/sec-1024    14574.25 (  0.00%)    14598.02 (  0.16%)
Hmean    mb/sec-2048    13569.02 (  0.00%)    13733.86 (  1.21%)
Hmean    mb/sec-3072    12865.98 (  0.00%)    13209.23 (  2.67%)

Small gains of 2-4% at low thread counts and otherwise flat.  The
gains on the 8-core machine were slightly different

tbench4 on 8-core i7-3770 single socket machine
Hmean    mb/sec-1        442.59 (  0.00%)      448.73 (  1.39%)
Hmean    mb/sec-2        796.68 (  0.00%)      794.39 ( -0.29%)
Hmean    mb/sec-4       1322.52 (  0.00%)     1343.66 (  1.60%)
Hmean    mb/sec-8       2611.65 (  0.00%)     2694.86 (  3.19%)
Hmean    mb/sec-16      2537.07 (  0.00%)     2609.34 (  2.85%)
Hmean    mb/sec-32      2506.02 (  0.00%)     2578.18 (  2.88%)
Hmean    mb/sec-64      2511.06 (  0.00%)     2569.16 (  2.31%)
Hmean    mb/sec-128     2313.38 (  0.00%)     2395.50 (  3.55%)
Hmean    mb/sec-256     2110.04 (  0.00%)     2177.45 (  3.19%)
Hmean    mb/sec-512     2072.51 (  0.00%)     2053.97 ( -0.89%)

In constract, this shows a relatively steady 2-3% gain at higher thread
counts. Due to the nature of the patch and the type of workload, it's
not a surprise that the result will depend on the CPU used.

hackbench-pipes
                         4.5.0-rc1             4.5.0-rc1
                           vanilla          nostats-v3r1
Amean    1        0.0637 (  0.00%)      0.0660 ( -3.59%)
Amean    4        0.1229 (  0.00%)      0.1181 (  3.84%)
Amean    7        0.1921 (  0.00%)      0.1911 (  0.52%)
Amean    12       0.3117 (  0.00%)      0.2923 (  6.23%)
Amean    21       0.4050 (  0.00%)      0.3899 (  3.74%)
Amean    30       0.4586 (  0.00%)      0.4433 (  3.33%)
Amean    48       0.5910 (  0.00%)      0.5694 (  3.65%)
Amean    79       0.8663 (  0.00%)      0.8626 (  0.43%)
Amean    110      1.1543 (  0.00%)      1.1517 (  0.22%)
Amean    141      1.4457 (  0.00%)      1.4290 (  1.16%)
Amean    172      1.7090 (  0.00%)      1.6924 (  0.97%)
Amean    192      1.9126 (  0.00%)      1.9089 (  0.19%)

Some small gains and losses and while the variance data is not included,
it's close to the noise. The UMA machine did not show anything particularly
different

pipetest
                             4.5.0-rc1             4.5.0-rc1
                               vanilla          nostats-v2r2
Min         Time        4.13 (  0.00%)        3.99 (  3.39%)
1st-qrtle   Time        4.38 (  0.00%)        4.27 (  2.51%)
2nd-qrtle   Time        4.46 (  0.00%)        4.39 (  1.57%)
3rd-qrtle   Time        4.56 (  0.00%)        4.51 (  1.10%)
Max-90%     Time        4.67 (  0.00%)        4.60 (  1.50%)
Max-93%     Time        4.71 (  0.00%)        4.65 (  1.27%)
Max-95%     Time        4.74 (  0.00%)        4.71 (  0.63%)
Max-99%     Time        4.88 (  0.00%)        4.79 (  1.84%)
Max         Time        4.93 (  0.00%)        4.83 (  2.03%)
Mean        Time        4.48 (  0.00%)        4.39 (  1.91%)
Best99%Mean Time        4.47 (  0.00%)        4.39 (  1.91%)
Best95%Mean Time        4.46 (  0.00%)        4.38 (  1.93%)
Best90%Mean Time        4.45 (  0.00%)        4.36 (  1.98%)
Best50%Mean Time        4.36 (  0.00%)        4.25 (  2.49%)
Best10%Mean Time        4.23 (  0.00%)        4.10 (  3.13%)
Best5%Mean  Time        4.19 (  0.00%)        4.06 (  3.20%)
Best1%Mean  Time        4.13 (  0.00%)        4.00 (  3.39%)

Small improvement and similar gains were seen on the UMA machine.

The gain is small but it stands to reason that doing less work in the
scheduler is a good thing. The downside is that the lack of schedstats and
tracepoints may be surprising to experts doing performance analysis until
they find the existence of the schedstats= parameter or schedstats sysctl.
It will be automatically activated for latencytop and sleep profiling to
alleviate the problem. For tracepoints, there is a simple warning as it's
not safe to activate schedstats in the context when it's known the tracepoint
may be wanted but is unavailable.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-09 11:54:23 +01:00

668 lines
15 KiB
C

/*
* kernel/sched/debug.c
*
* Print the CFS rbtree
*
* Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/kallsyms.h>
#include <linux/utsname.h>
#include <linux/mempolicy.h>
#include "sched.h"
static DEFINE_SPINLOCK(sched_debug_lock);
/*
* This allows printing both to /proc/sched_debug and
* to the console
*/
#define SEQ_printf(m, x...) \
do { \
if (m) \
seq_printf(m, x); \
else \
printk(x); \
} while (0)
/*
* Ease the printing of nsec fields:
*/
static long long nsec_high(unsigned long long nsec)
{
if ((long long)nsec < 0) {
nsec = -nsec;
do_div(nsec, 1000000);
return -nsec;
}
do_div(nsec, 1000000);
return nsec;
}
static unsigned long nsec_low(unsigned long long nsec)
{
if ((long long)nsec < 0)
nsec = -nsec;
return do_div(nsec, 1000000);
}
#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
#ifdef CONFIG_FAIR_GROUP_SCHED
static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
{
struct sched_entity *se = tg->se[cpu];
#define P(F) \
SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
#define PN(F) \
SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
if (!se)
return;
PN(se->exec_start);
PN(se->vruntime);
PN(se->sum_exec_runtime);
#ifdef CONFIG_SCHEDSTATS
if (schedstat_enabled()) {
PN(se->statistics.wait_start);
PN(se->statistics.sleep_start);
PN(se->statistics.block_start);
PN(se->statistics.sleep_max);
PN(se->statistics.block_max);
PN(se->statistics.exec_max);
PN(se->statistics.slice_max);
PN(se->statistics.wait_max);
PN(se->statistics.wait_sum);
P(se->statistics.wait_count);
}
#endif
P(se->load.weight);
#ifdef CONFIG_SMP
P(se->avg.load_avg);
P(se->avg.util_avg);
#endif
#undef PN
#undef P
}
#endif
#ifdef CONFIG_CGROUP_SCHED
static char group_path[PATH_MAX];
static char *task_group_path(struct task_group *tg)
{
if (autogroup_path(tg, group_path, PATH_MAX))
return group_path;
return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
}
#endif
static void
print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
{
if (rq->curr == p)
SEQ_printf(m, "R");
else
SEQ_printf(m, " ");
SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
p->comm, task_pid_nr(p),
SPLIT_NS(p->se.vruntime),
(long long)(p->nvcsw + p->nivcsw),
p->prio);
#ifdef CONFIG_SCHEDSTATS
if (schedstat_enabled()) {
SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
SPLIT_NS(p->se.statistics.wait_sum),
SPLIT_NS(p->se.sum_exec_runtime),
SPLIT_NS(p->se.statistics.sum_sleep_runtime));
}
#else
SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
0LL, 0L,
SPLIT_NS(p->se.sum_exec_runtime),
0LL, 0L);
#endif
#ifdef CONFIG_NUMA_BALANCING
SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
#endif
#ifdef CONFIG_CGROUP_SCHED
SEQ_printf(m, " %s", task_group_path(task_group(p)));
#endif
SEQ_printf(m, "\n");
}
static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
{
struct task_struct *g, *p;
SEQ_printf(m,
"\nrunnable tasks:\n"
" task PID tree-key switches prio"
" wait-time sum-exec sum-sleep\n"
"------------------------------------------------------"
"----------------------------------------------------\n");
rcu_read_lock();
for_each_process_thread(g, p) {
if (task_cpu(p) != rq_cpu)
continue;
print_task(m, rq, p);
}
rcu_read_unlock();
}
void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
spread, rq0_min_vruntime, spread0;
struct rq *rq = cpu_rq(cpu);
struct sched_entity *last;
unsigned long flags;
#ifdef CONFIG_FAIR_GROUP_SCHED
SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
#else
SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
#endif
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
SPLIT_NS(cfs_rq->exec_clock));
raw_spin_lock_irqsave(&rq->lock, flags);
if (cfs_rq->rb_leftmost)
MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
last = __pick_last_entity(cfs_rq);
if (last)
max_vruntime = last->vruntime;
min_vruntime = cfs_rq->min_vruntime;
rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
raw_spin_unlock_irqrestore(&rq->lock, flags);
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
SPLIT_NS(MIN_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
SPLIT_NS(min_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
SPLIT_NS(max_vruntime));
spread = max_vruntime - MIN_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
SPLIT_NS(spread));
spread0 = min_vruntime - rq0_min_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
SPLIT_NS(spread0));
SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
cfs_rq->nr_spread_over);
SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
#ifdef CONFIG_SMP
SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
cfs_rq->avg.load_avg);
SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
cfs_rq->runnable_load_avg);
SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
cfs_rq->avg.util_avg);
SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg",
atomic_long_read(&cfs_rq->removed_load_avg));
SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg",
atomic_long_read(&cfs_rq->removed_util_avg));
#ifdef CONFIG_FAIR_GROUP_SCHED
SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
cfs_rq->tg_load_avg_contrib);
SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
atomic_long_read(&cfs_rq->tg->load_avg));
#endif
#endif
#ifdef CONFIG_CFS_BANDWIDTH
SEQ_printf(m, " .%-30s: %d\n", "throttled",
cfs_rq->throttled);
SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
cfs_rq->throttle_count);
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(m, cpu, cfs_rq->tg);
#endif
}
void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
{
#ifdef CONFIG_RT_GROUP_SCHED
SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
#else
SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
#endif
#define P(x) \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
P(rt_nr_running);
P(rt_throttled);
PN(rt_time);
PN(rt_runtime);
#undef PN
#undef P
}
void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
{
SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running);
}
extern __read_mostly int sched_clock_running;
static void print_cpu(struct seq_file *m, int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
#ifdef CONFIG_X86
{
unsigned int freq = cpu_khz ? : 1;
SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
cpu, freq / 1000, (freq % 1000));
}
#else
SEQ_printf(m, "cpu#%d\n", cpu);
#endif
#define P(x) \
do { \
if (sizeof(rq->x) == 4) \
SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
else \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
} while (0)
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
P(nr_running);
SEQ_printf(m, " .%-30s: %lu\n", "load",
rq->load.weight);
P(nr_switches);
P(nr_load_updates);
P(nr_uninterruptible);
PN(next_balance);
SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
PN(clock);
PN(clock_task);
P(cpu_load[0]);
P(cpu_load[1]);
P(cpu_load[2]);
P(cpu_load[3]);
P(cpu_load[4]);
#undef P
#undef PN
#ifdef CONFIG_SCHEDSTATS
#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
#ifdef CONFIG_SMP
P64(avg_idle);
P64(max_idle_balance_cost);
#endif
if (schedstat_enabled()) {
P(yld_count);
P(sched_count);
P(sched_goidle);
P(ttwu_count);
P(ttwu_local);
}
#undef P
#undef P64
#endif
spin_lock_irqsave(&sched_debug_lock, flags);
print_cfs_stats(m, cpu);
print_rt_stats(m, cpu);
print_dl_stats(m, cpu);
print_rq(m, rq, cpu);
spin_unlock_irqrestore(&sched_debug_lock, flags);
SEQ_printf(m, "\n");
}
static const char *sched_tunable_scaling_names[] = {
"none",
"logaritmic",
"linear"
};
static void sched_debug_header(struct seq_file *m)
{
u64 ktime, sched_clk, cpu_clk;
unsigned long flags;
local_irq_save(flags);
ktime = ktime_to_ns(ktime_get());
sched_clk = sched_clock();
cpu_clk = local_clock();
local_irq_restore(flags);
SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
#define P(x) \
SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
#define PN(x) \
SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
PN(ktime);
PN(sched_clk);
PN(cpu_clk);
P(jiffies);
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
P(sched_clock_stable());
#endif
#undef PN
#undef P
SEQ_printf(m, "\n");
SEQ_printf(m, "sysctl_sched\n");
#define P(x) \
SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
#define PN(x) \
SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
PN(sysctl_sched_latency);
PN(sysctl_sched_min_granularity);
PN(sysctl_sched_wakeup_granularity);
P(sysctl_sched_child_runs_first);
P(sysctl_sched_features);
#undef PN
#undef P
SEQ_printf(m, " .%-40s: %d (%s)\n",
"sysctl_sched_tunable_scaling",
sysctl_sched_tunable_scaling,
sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
SEQ_printf(m, "\n");
}
static int sched_debug_show(struct seq_file *m, void *v)
{
int cpu = (unsigned long)(v - 2);
if (cpu != -1)
print_cpu(m, cpu);
else
sched_debug_header(m);
return 0;
}
void sysrq_sched_debug_show(void)
{
int cpu;
sched_debug_header(NULL);
for_each_online_cpu(cpu)
print_cpu(NULL, cpu);
}
/*
* This itererator needs some explanation.
* It returns 1 for the header position.
* This means 2 is cpu 0.
* In a hotplugged system some cpus, including cpu 0, may be missing so we have
* to use cpumask_* to iterate over the cpus.
*/
static void *sched_debug_start(struct seq_file *file, loff_t *offset)
{
unsigned long n = *offset;
if (n == 0)
return (void *) 1;
n--;
if (n > 0)
n = cpumask_next(n - 1, cpu_online_mask);
else
n = cpumask_first(cpu_online_mask);
*offset = n + 1;
if (n < nr_cpu_ids)
return (void *)(unsigned long)(n + 2);
return NULL;
}
static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
return sched_debug_start(file, offset);
}
static void sched_debug_stop(struct seq_file *file, void *data)
{
}
static const struct seq_operations sched_debug_sops = {
.start = sched_debug_start,
.next = sched_debug_next,
.stop = sched_debug_stop,
.show = sched_debug_show,
};
static int sched_debug_release(struct inode *inode, struct file *file)
{
seq_release(inode, file);
return 0;
}
static int sched_debug_open(struct inode *inode, struct file *filp)
{
int ret = 0;
ret = seq_open(filp, &sched_debug_sops);
return ret;
}
static const struct file_operations sched_debug_fops = {
.open = sched_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = sched_debug_release,
};
static int __init init_sched_debug_procfs(void)
{
struct proc_dir_entry *pe;
pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
if (!pe)
return -ENOMEM;
return 0;
}
__initcall(init_sched_debug_procfs);
#define __P(F) \
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
#define P(F) \
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
#define __PN(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
#define PN(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
#ifdef CONFIG_NUMA_BALANCING
void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
unsigned long tpf, unsigned long gsf, unsigned long gpf)
{
SEQ_printf(m, "numa_faults node=%d ", node);
SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
}
#endif
static void sched_show_numa(struct task_struct *p, struct seq_file *m)
{
#ifdef CONFIG_NUMA_BALANCING
struct mempolicy *pol;
if (p->mm)
P(mm->numa_scan_seq);
task_lock(p);
pol = p->mempolicy;
if (pol && !(pol->flags & MPOL_F_MORON))
pol = NULL;
mpol_get(pol);
task_unlock(p);
P(numa_pages_migrated);
P(numa_preferred_nid);
P(total_numa_faults);
SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
task_node(p), task_numa_group_id(p));
show_numa_stats(p, m);
mpol_put(pol);
#endif
}
void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
{
unsigned long nr_switches;
SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
get_nr_threads(p));
SEQ_printf(m,
"---------------------------------------------------------"
"----------\n");
#define __P(F) \
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
#define P(F) \
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
#define __PN(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
#define PN(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
PN(se.exec_start);
PN(se.vruntime);
PN(se.sum_exec_runtime);
nr_switches = p->nvcsw + p->nivcsw;
#ifdef CONFIG_SCHEDSTATS
P(se.nr_migrations);
if (schedstat_enabled()) {
u64 avg_atom, avg_per_cpu;
PN(se.statistics.sum_sleep_runtime);
PN(se.statistics.wait_start);
PN(se.statistics.sleep_start);
PN(se.statistics.block_start);
PN(se.statistics.sleep_max);
PN(se.statistics.block_max);
PN(se.statistics.exec_max);
PN(se.statistics.slice_max);
PN(se.statistics.wait_max);
PN(se.statistics.wait_sum);
P(se.statistics.wait_count);
PN(se.statistics.iowait_sum);
P(se.statistics.iowait_count);
P(se.statistics.nr_migrations_cold);
P(se.statistics.nr_failed_migrations_affine);
P(se.statistics.nr_failed_migrations_running);
P(se.statistics.nr_failed_migrations_hot);
P(se.statistics.nr_forced_migrations);
P(se.statistics.nr_wakeups);
P(se.statistics.nr_wakeups_sync);
P(se.statistics.nr_wakeups_migrate);
P(se.statistics.nr_wakeups_local);
P(se.statistics.nr_wakeups_remote);
P(se.statistics.nr_wakeups_affine);
P(se.statistics.nr_wakeups_affine_attempts);
P(se.statistics.nr_wakeups_passive);
P(se.statistics.nr_wakeups_idle);
avg_atom = p->se.sum_exec_runtime;
if (nr_switches)
avg_atom = div64_ul(avg_atom, nr_switches);
else
avg_atom = -1LL;
avg_per_cpu = p->se.sum_exec_runtime;
if (p->se.nr_migrations) {
avg_per_cpu = div64_u64(avg_per_cpu,
p->se.nr_migrations);
} else {
avg_per_cpu = -1LL;
}
__PN(avg_atom);
__PN(avg_per_cpu);
}
#endif
__P(nr_switches);
SEQ_printf(m, "%-45s:%21Ld\n",
"nr_voluntary_switches", (long long)p->nvcsw);
SEQ_printf(m, "%-45s:%21Ld\n",
"nr_involuntary_switches", (long long)p->nivcsw);
P(se.load.weight);
#ifdef CONFIG_SMP
P(se.avg.load_sum);
P(se.avg.util_sum);
P(se.avg.load_avg);
P(se.avg.util_avg);
P(se.avg.last_update_time);
#endif
P(policy);
P(prio);
#undef PN
#undef __PN
#undef P
#undef __P
{
unsigned int this_cpu = raw_smp_processor_id();
u64 t0, t1;
t0 = cpu_clock(this_cpu);
t1 = cpu_clock(this_cpu);
SEQ_printf(m, "%-45s:%21Ld\n",
"clock-delta", (long long)(t1-t0));
}
sched_show_numa(p, m);
}
void proc_sched_set_task(struct task_struct *p)
{
#ifdef CONFIG_SCHEDSTATS
memset(&p->se.statistics, 0, sizeof(p->se.statistics));
#endif
}