linux/include/crypto/algapi.h
Herbert Xu 4140139734 crypto: api - Optimise away crypto_yield when hard preemption is on
When hard preemption is enabled there is no need to explicitly
call crypto_yield.  This patch eliminates it if that is the case.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-07-18 17:35:49 +08:00

451 lines
13 KiB
C

/*
* Cryptographic API for algorithms (i.e., low-level API).
*
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#ifndef _CRYPTO_ALGAPI_H
#define _CRYPTO_ALGAPI_H
#include <linux/crypto.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/skbuff.h>
struct crypto_aead;
struct crypto_instance;
struct module;
struct rtattr;
struct seq_file;
struct crypto_type {
unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
unsigned int (*extsize)(struct crypto_alg *alg);
int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
int (*init_tfm)(struct crypto_tfm *tfm);
void (*show)(struct seq_file *m, struct crypto_alg *alg);
int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask);
void (*free)(struct crypto_instance *inst);
unsigned int type;
unsigned int maskclear;
unsigned int maskset;
unsigned int tfmsize;
};
struct crypto_instance {
struct crypto_alg alg;
struct crypto_template *tmpl;
struct hlist_node list;
void *__ctx[] CRYPTO_MINALIGN_ATTR;
};
struct crypto_template {
struct list_head list;
struct hlist_head instances;
struct module *module;
struct crypto_instance *(*alloc)(struct rtattr **tb);
void (*free)(struct crypto_instance *inst);
int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
char name[CRYPTO_MAX_ALG_NAME];
};
struct crypto_spawn {
struct list_head list;
struct crypto_alg *alg;
struct crypto_instance *inst;
const struct crypto_type *frontend;
u32 mask;
};
struct crypto_queue {
struct list_head list;
struct list_head *backlog;
unsigned int qlen;
unsigned int max_qlen;
};
struct scatter_walk {
struct scatterlist *sg;
unsigned int offset;
};
struct blkcipher_walk {
union {
struct {
struct page *page;
unsigned long offset;
} phys;
struct {
u8 *page;
u8 *addr;
} virt;
} src, dst;
struct scatter_walk in;
unsigned int nbytes;
struct scatter_walk out;
unsigned int total;
void *page;
u8 *buffer;
u8 *iv;
unsigned int ivsize;
int flags;
unsigned int walk_blocksize;
unsigned int cipher_blocksize;
unsigned int alignmask;
};
struct ablkcipher_walk {
struct {
struct page *page;
unsigned int offset;
} src, dst;
struct scatter_walk in;
unsigned int nbytes;
struct scatter_walk out;
unsigned int total;
struct list_head buffers;
u8 *iv_buffer;
u8 *iv;
int flags;
unsigned int blocksize;
};
#define ENGINE_NAME_LEN 30
/*
* struct crypto_engine - crypto hardware engine
* @name: the engine name
* @idling: the engine is entering idle state
* @busy: request pump is busy
* @running: the engine is on working
* @cur_req_prepared: current request is prepared
* @list: link with the global crypto engine list
* @queue_lock: spinlock to syncronise access to request queue
* @queue: the crypto queue of the engine
* @rt: whether this queue is set to run as a realtime task
* @prepare_crypt_hardware: a request will soon arrive from the queue
* so the subsystem requests the driver to prepare the hardware
* by issuing this call
* @unprepare_crypt_hardware: there are currently no more requests on the
* queue so the subsystem notifies the driver that it may relax the
* hardware by issuing this call
* @prepare_request: do some prepare if need before handle the current request
* @unprepare_request: undo any work done by prepare_message()
* @crypt_one_request: do encryption for current request
* @kworker: thread struct for request pump
* @kworker_task: pointer to task for request pump kworker thread
* @pump_requests: work struct for scheduling work to the request pump
* @priv_data: the engine private data
* @cur_req: the current request which is on processing
*/
struct crypto_engine {
char name[ENGINE_NAME_LEN];
bool idling;
bool busy;
bool running;
bool cur_req_prepared;
struct list_head list;
spinlock_t queue_lock;
struct crypto_queue queue;
bool rt;
int (*prepare_crypt_hardware)(struct crypto_engine *engine);
int (*unprepare_crypt_hardware)(struct crypto_engine *engine);
int (*prepare_request)(struct crypto_engine *engine,
struct ablkcipher_request *req);
int (*unprepare_request)(struct crypto_engine *engine,
struct ablkcipher_request *req);
int (*crypt_one_request)(struct crypto_engine *engine,
struct ablkcipher_request *req);
struct kthread_worker kworker;
struct task_struct *kworker_task;
struct kthread_work pump_requests;
void *priv_data;
struct ablkcipher_request *cur_req;
};
int crypto_transfer_request(struct crypto_engine *engine,
struct ablkcipher_request *req, bool need_pump);
int crypto_transfer_request_to_engine(struct crypto_engine *engine,
struct ablkcipher_request *req);
void crypto_finalize_request(struct crypto_engine *engine,
struct ablkcipher_request *req, int err);
int crypto_engine_start(struct crypto_engine *engine);
int crypto_engine_stop(struct crypto_engine *engine);
struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt);
int crypto_engine_exit(struct crypto_engine *engine);
extern const struct crypto_type crypto_ablkcipher_type;
extern const struct crypto_type crypto_blkcipher_type;
void crypto_mod_put(struct crypto_alg *alg);
int crypto_register_template(struct crypto_template *tmpl);
void crypto_unregister_template(struct crypto_template *tmpl);
struct crypto_template *crypto_lookup_template(const char *name);
int crypto_register_instance(struct crypto_template *tmpl,
struct crypto_instance *inst);
int crypto_unregister_instance(struct crypto_instance *inst);
int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
struct crypto_instance *inst, u32 mask);
int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
struct crypto_instance *inst,
const struct crypto_type *frontend);
int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name,
u32 type, u32 mask);
void crypto_drop_spawn(struct crypto_spawn *spawn);
struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
u32 mask);
void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
static inline void crypto_set_spawn(struct crypto_spawn *spawn,
struct crypto_instance *inst)
{
spawn->inst = inst;
}
struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
int crypto_check_attr_type(struct rtattr **tb, u32 type);
const char *crypto_attr_alg_name(struct rtattr *rta);
struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
const struct crypto_type *frontend,
u32 type, u32 mask);
static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta,
u32 type, u32 mask)
{
return crypto_attr_alg2(rta, NULL, type, mask);
}
int crypto_attr_u32(struct rtattr *rta, u32 *num);
int crypto_inst_setname(struct crypto_instance *inst, const char *name,
struct crypto_alg *alg);
void *crypto_alloc_instance2(const char *name, struct crypto_alg *alg,
unsigned int head);
struct crypto_instance *crypto_alloc_instance(const char *name,
struct crypto_alg *alg);
void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
int crypto_enqueue_request(struct crypto_queue *queue,
struct crypto_async_request *request);
struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm);
static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
{
return queue->qlen;
}
/* These functions require the input/output to be aligned as u32. */
void crypto_inc(u8 *a, unsigned int size);
void crypto_xor(u8 *dst, const u8 *src, unsigned int size);
int blkcipher_walk_done(struct blkcipher_desc *desc,
struct blkcipher_walk *walk, int err);
int blkcipher_walk_virt(struct blkcipher_desc *desc,
struct blkcipher_walk *walk);
int blkcipher_walk_phys(struct blkcipher_desc *desc,
struct blkcipher_walk *walk);
int blkcipher_walk_virt_block(struct blkcipher_desc *desc,
struct blkcipher_walk *walk,
unsigned int blocksize);
int blkcipher_aead_walk_virt_block(struct blkcipher_desc *desc,
struct blkcipher_walk *walk,
struct crypto_aead *tfm,
unsigned int blocksize);
int ablkcipher_walk_done(struct ablkcipher_request *req,
struct ablkcipher_walk *walk, int err);
int ablkcipher_walk_phys(struct ablkcipher_request *req,
struct ablkcipher_walk *walk);
void __ablkcipher_walk_complete(struct ablkcipher_walk *walk);
static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
{
return PTR_ALIGN(crypto_tfm_ctx(tfm),
crypto_tfm_alg_alignmask(tfm) + 1);
}
static inline struct crypto_instance *crypto_tfm_alg_instance(
struct crypto_tfm *tfm)
{
return container_of(tfm->__crt_alg, struct crypto_instance, alg);
}
static inline void *crypto_instance_ctx(struct crypto_instance *inst)
{
return inst->__ctx;
}
static inline struct ablkcipher_alg *crypto_ablkcipher_alg(
struct crypto_ablkcipher *tfm)
{
return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher;
}
static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm)
{
return crypto_tfm_ctx(&tfm->base);
}
static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm)
{
return crypto_tfm_ctx_aligned(&tfm->base);
}
static inline struct crypto_blkcipher *crypto_spawn_blkcipher(
struct crypto_spawn *spawn)
{
u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
u32 mask = CRYPTO_ALG_TYPE_MASK;
return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask));
}
static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm)
{
return crypto_tfm_ctx(&tfm->base);
}
static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm)
{
return crypto_tfm_ctx_aligned(&tfm->base);
}
static inline struct crypto_cipher *crypto_spawn_cipher(
struct crypto_spawn *spawn)
{
u32 type = CRYPTO_ALG_TYPE_CIPHER;
u32 mask = CRYPTO_ALG_TYPE_MASK;
return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask));
}
static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
{
return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
}
static inline void blkcipher_walk_init(struct blkcipher_walk *walk,
struct scatterlist *dst,
struct scatterlist *src,
unsigned int nbytes)
{
walk->in.sg = src;
walk->out.sg = dst;
walk->total = nbytes;
}
static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk,
struct scatterlist *dst,
struct scatterlist *src,
unsigned int nbytes)
{
walk->in.sg = src;
walk->out.sg = dst;
walk->total = nbytes;
INIT_LIST_HEAD(&walk->buffers);
}
static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk)
{
if (unlikely(!list_empty(&walk->buffers)))
__ablkcipher_walk_complete(walk);
}
static inline struct crypto_async_request *crypto_get_backlog(
struct crypto_queue *queue)
{
return queue->backlog == &queue->list ? NULL :
container_of(queue->backlog, struct crypto_async_request, list);
}
static inline int ablkcipher_enqueue_request(struct crypto_queue *queue,
struct ablkcipher_request *request)
{
return crypto_enqueue_request(queue, &request->base);
}
static inline struct ablkcipher_request *ablkcipher_dequeue_request(
struct crypto_queue *queue)
{
return ablkcipher_request_cast(crypto_dequeue_request(queue));
}
static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req)
{
return req->__ctx;
}
static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue,
struct crypto_ablkcipher *tfm)
{
return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm));
}
static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb,
u32 type, u32 mask)
{
return crypto_attr_alg(tb[1], type, mask);
}
/*
* Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms.
* Otherwise returns zero.
*/
static inline int crypto_requires_sync(u32 type, u32 mask)
{
return (type ^ CRYPTO_ALG_ASYNC) & mask & CRYPTO_ALG_ASYNC;
}
noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
/**
* crypto_memneq - Compare two areas of memory without leaking
* timing information.
*
* @a: One area of memory
* @b: Another area of memory
* @size: The size of the area.
*
* Returns 0 when data is equal, 1 otherwise.
*/
static inline int crypto_memneq(const void *a, const void *b, size_t size)
{
return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
}
static inline void crypto_yield(u32 flags)
{
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
if (flags & CRYPTO_TFM_REQ_MAY_SLEEP)
cond_resched();
#endif
}
#endif /* _CRYPTO_ALGAPI_H */