linux/drivers/iio/imu/adis_buffer.c
Nuno Sa dbf20809d6 iio: adis: add burst_max_speed_hz variable
Typically, in burst mode, the device cannot operate at it's full spi
speed. Hence, the spi transfers for burst mode have to take this into
account. With this change we avoid a potential race with the spi core as
drivers were 'hacking' the device 'max_speed_hz' directly in the
trigger handler.

Reviewed-by: Alexandru Ardelean <ardeleanalex@gmail.com>
Signed-off-by: Nuno Sa <nuno.sa@analog.com>
Link: https://lore.kernel.org/r/20210427085454.30616-5-nuno.sa@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-05-17 13:49:09 +01:00

217 lines
5.4 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Common library for ADIS16XXX devices
*
* Copyright 2012 Analog Devices Inc.
* Author: Lars-Peter Clausen <lars@metafoo.de>
*/
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/imu/adis.h>
static int adis_update_scan_mode_burst(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct adis *adis = iio_device_get_drvdata(indio_dev);
unsigned int burst_length, burst_max_length;
u8 *tx;
burst_length = adis->data->burst_len + adis->burst_extra_len;
if (adis->data->burst_max_len)
burst_max_length = adis->data->burst_max_len;
else
burst_max_length = burst_length;
adis->xfer = kcalloc(2, sizeof(*adis->xfer), GFP_KERNEL);
if (!adis->xfer)
return -ENOMEM;
adis->buffer = kzalloc(burst_max_length + sizeof(u16), GFP_KERNEL);
if (!adis->buffer) {
kfree(adis->xfer);
adis->xfer = NULL;
return -ENOMEM;
}
tx = adis->buffer + burst_max_length;
tx[0] = ADIS_READ_REG(adis->data->burst_reg_cmd);
tx[1] = 0;
adis->xfer[0].tx_buf = tx;
adis->xfer[0].bits_per_word = 8;
adis->xfer[0].len = 2;
if (adis->data->burst_max_speed_hz)
adis->xfer[0].speed_hz = adis->data->burst_max_speed_hz;
adis->xfer[1].rx_buf = adis->buffer;
adis->xfer[1].bits_per_word = 8;
adis->xfer[1].len = burst_length;
if (adis->data->burst_max_speed_hz)
adis->xfer[1].speed_hz = adis->data->burst_max_speed_hz;
spi_message_init(&adis->msg);
spi_message_add_tail(&adis->xfer[0], &adis->msg);
spi_message_add_tail(&adis->xfer[1], &adis->msg);
return 0;
}
int adis_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct adis *adis = iio_device_get_drvdata(indio_dev);
const struct iio_chan_spec *chan;
unsigned int scan_count;
unsigned int i, j;
__be16 *tx, *rx;
kfree(adis->xfer);
kfree(adis->buffer);
if (adis->data->burst_len)
return adis_update_scan_mode_burst(indio_dev, scan_mask);
scan_count = indio_dev->scan_bytes / 2;
adis->xfer = kcalloc(scan_count + 1, sizeof(*adis->xfer), GFP_KERNEL);
if (!adis->xfer)
return -ENOMEM;
adis->buffer = kcalloc(indio_dev->scan_bytes, 2, GFP_KERNEL);
if (!adis->buffer) {
kfree(adis->xfer);
adis->xfer = NULL;
return -ENOMEM;
}
rx = adis->buffer;
tx = rx + scan_count;
spi_message_init(&adis->msg);
for (j = 0; j <= scan_count; j++) {
adis->xfer[j].bits_per_word = 8;
if (j != scan_count)
adis->xfer[j].cs_change = 1;
adis->xfer[j].len = 2;
adis->xfer[j].delay.value = adis->data->read_delay;
adis->xfer[j].delay.unit = SPI_DELAY_UNIT_USECS;
if (j < scan_count)
adis->xfer[j].tx_buf = &tx[j];
if (j >= 1)
adis->xfer[j].rx_buf = &rx[j - 1];
spi_message_add_tail(&adis->xfer[j], &adis->msg);
}
chan = indio_dev->channels;
for (i = 0; i < indio_dev->num_channels; i++, chan++) {
if (!test_bit(chan->scan_index, scan_mask))
continue;
if (chan->scan_type.storagebits == 32)
*tx++ = cpu_to_be16((chan->address + 2) << 8);
*tx++ = cpu_to_be16(chan->address << 8);
}
return 0;
}
EXPORT_SYMBOL_GPL(adis_update_scan_mode);
static irqreturn_t adis_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct adis *adis = iio_device_get_drvdata(indio_dev);
int ret;
if (adis->data->has_paging) {
mutex_lock(&adis->state_lock);
if (adis->current_page != 0) {
adis->tx[0] = ADIS_WRITE_REG(ADIS_REG_PAGE_ID);
adis->tx[1] = 0;
ret = spi_write(adis->spi, adis->tx, 2);
if (ret) {
dev_err(&adis->spi->dev, "Failed to change device page: %d\n", ret);
mutex_unlock(&adis->state_lock);
goto irq_done;
}
adis->current_page = 0;
}
}
ret = spi_sync(adis->spi, &adis->msg);
if (adis->data->has_paging)
mutex_unlock(&adis->state_lock);
if (ret) {
dev_err(&adis->spi->dev, "Failed to read data: %d", ret);
goto irq_done;
}
iio_push_to_buffers_with_timestamp(indio_dev, adis->buffer,
pf->timestamp);
irq_done:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static void adis_buffer_cleanup(void *arg)
{
struct adis *adis = arg;
kfree(adis->buffer);
kfree(adis->xfer);
}
/**
* devm_adis_setup_buffer_and_trigger() - Sets up buffer and trigger for
* the managed adis device
* @adis: The adis device
* @indio_dev: The IIO device
* @trigger_handler: Optional trigger handler, may be NULL.
*
* Returns 0 on success, a negative error code otherwise.
*
* This function sets up the buffer and trigger for a adis devices. If
* 'trigger_handler' is NULL the default trigger handler will be used. The
* default trigger handler will simply read the registers assigned to the
* currently active channels.
*/
int
devm_adis_setup_buffer_and_trigger(struct adis *adis, struct iio_dev *indio_dev,
irq_handler_t trigger_handler)
{
int ret;
if (!trigger_handler)
trigger_handler = adis_trigger_handler;
ret = devm_iio_triggered_buffer_setup(&adis->spi->dev, indio_dev,
&iio_pollfunc_store_time,
trigger_handler, NULL);
if (ret)
return ret;
if (adis->spi->irq) {
ret = devm_adis_probe_trigger(adis, indio_dev);
if (ret)
return ret;
}
return devm_add_action_or_reset(&adis->spi->dev, adis_buffer_cleanup,
adis);
}
EXPORT_SYMBOL_GPL(devm_adis_setup_buffer_and_trigger);