linux/net/vmw_vsock/vmci_transport.c
Jorgen Hansen 4a5def7f6a VSOCK: Don't set sk_state to TCP_CLOSE before testing it
A recent commit (3b4477d2dc) converted the sk_state to use
TCP constants. In that change, vmci_transport_handle_detach
was changed such that sk->sk_state was set to TCP_CLOSE before
we test whether it is TCP_SYN_SENT. This change moves the
sk_state change back to the original locations in that function.

Signed-off-by: Jorgen Hansen <jhansen@vmware.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-28 16:01:50 -05:00

2154 lines
58 KiB
C

/*
* VMware vSockets Driver
*
* Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation version 2 and no later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/cred.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/net.h>
#include <linux/poll.h>
#include <linux/skbuff.h>
#include <linux/smp.h>
#include <linux/socket.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <net/sock.h>
#include <net/af_vsock.h>
#include "vmci_transport_notify.h"
static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
static void vmci_transport_peer_detach_cb(u32 sub_id,
const struct vmci_event_data *ed,
void *client_data);
static void vmci_transport_recv_pkt_work(struct work_struct *work);
static void vmci_transport_cleanup(struct work_struct *work);
static int vmci_transport_recv_listen(struct sock *sk,
struct vmci_transport_packet *pkt);
static int vmci_transport_recv_connecting_server(
struct sock *sk,
struct sock *pending,
struct vmci_transport_packet *pkt);
static int vmci_transport_recv_connecting_client(
struct sock *sk,
struct vmci_transport_packet *pkt);
static int vmci_transport_recv_connecting_client_negotiate(
struct sock *sk,
struct vmci_transport_packet *pkt);
static int vmci_transport_recv_connecting_client_invalid(
struct sock *sk,
struct vmci_transport_packet *pkt);
static int vmci_transport_recv_connected(struct sock *sk,
struct vmci_transport_packet *pkt);
static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
static u16 vmci_transport_new_proto_supported_versions(void);
static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
bool old_pkt_proto);
struct vmci_transport_recv_pkt_info {
struct work_struct work;
struct sock *sk;
struct vmci_transport_packet pkt;
};
static LIST_HEAD(vmci_transport_cleanup_list);
static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
VMCI_INVALID_ID };
static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
static int PROTOCOL_OVERRIDE = -1;
#define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128
#define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144
#define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144
/* The default peer timeout indicates how long we will wait for a peer response
* to a control message.
*/
#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
/* Helper function to convert from a VMCI error code to a VSock error code. */
static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
{
switch (vmci_error) {
case VMCI_ERROR_NO_MEM:
return -ENOMEM;
case VMCI_ERROR_DUPLICATE_ENTRY:
case VMCI_ERROR_ALREADY_EXISTS:
return -EADDRINUSE;
case VMCI_ERROR_NO_ACCESS:
return -EPERM;
case VMCI_ERROR_NO_RESOURCES:
return -ENOBUFS;
case VMCI_ERROR_INVALID_RESOURCE:
return -EHOSTUNREACH;
case VMCI_ERROR_INVALID_ARGS:
default:
break;
}
return -EINVAL;
}
static u32 vmci_transport_peer_rid(u32 peer_cid)
{
if (VMADDR_CID_HYPERVISOR == peer_cid)
return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
return VMCI_TRANSPORT_PACKET_RID;
}
static inline void
vmci_transport_packet_init(struct vmci_transport_packet *pkt,
struct sockaddr_vm *src,
struct sockaddr_vm *dst,
u8 type,
u64 size,
u64 mode,
struct vmci_transport_waiting_info *wait,
u16 proto,
struct vmci_handle handle)
{
/* We register the stream control handler as an any cid handle so we
* must always send from a source address of VMADDR_CID_ANY
*/
pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
VMCI_TRANSPORT_PACKET_RID);
pkt->dg.dst = vmci_make_handle(dst->svm_cid,
vmci_transport_peer_rid(dst->svm_cid));
pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
pkt->type = type;
pkt->src_port = src->svm_port;
pkt->dst_port = dst->svm_port;
memset(&pkt->proto, 0, sizeof(pkt->proto));
memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
switch (pkt->type) {
case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
pkt->u.size = 0;
break;
case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
pkt->u.size = size;
break;
case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
pkt->u.handle = handle;
break;
case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
case VMCI_TRANSPORT_PACKET_TYPE_READ:
case VMCI_TRANSPORT_PACKET_TYPE_RST:
pkt->u.size = 0;
break;
case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
pkt->u.mode = mode;
break;
case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
break;
case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
pkt->u.size = size;
pkt->proto = proto;
break;
}
}
static inline void
vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
struct sockaddr_vm *local,
struct sockaddr_vm *remote)
{
vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
}
static int
__vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
struct sockaddr_vm *src,
struct sockaddr_vm *dst,
enum vmci_transport_packet_type type,
u64 size,
u64 mode,
struct vmci_transport_waiting_info *wait,
u16 proto,
struct vmci_handle handle,
bool convert_error)
{
int err;
vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
proto, handle);
err = vmci_datagram_send(&pkt->dg);
if (convert_error && (err < 0))
return vmci_transport_error_to_vsock_error(err);
return err;
}
static int
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
enum vmci_transport_packet_type type,
u64 size,
u64 mode,
struct vmci_transport_waiting_info *wait,
struct vmci_handle handle)
{
struct vmci_transport_packet reply;
struct sockaddr_vm src, dst;
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
return 0;
} else {
vmci_transport_packet_get_addresses(pkt, &src, &dst);
return __vmci_transport_send_control_pkt(&reply, &src, &dst,
type,
size, mode, wait,
VSOCK_PROTO_INVALID,
handle, true);
}
}
static int
vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
struct sockaddr_vm *dst,
enum vmci_transport_packet_type type,
u64 size,
u64 mode,
struct vmci_transport_waiting_info *wait,
struct vmci_handle handle)
{
/* Note that it is safe to use a single packet across all CPUs since
* two tasklets of the same type are guaranteed to not ever run
* simultaneously. If that ever changes, or VMCI stops using tasklets,
* we can use per-cpu packets.
*/
static struct vmci_transport_packet pkt;
return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
size, mode, wait,
VSOCK_PROTO_INVALID, handle,
false);
}
static int
vmci_transport_send_control_pkt(struct sock *sk,
enum vmci_transport_packet_type type,
u64 size,
u64 mode,
struct vmci_transport_waiting_info *wait,
u16 proto,
struct vmci_handle handle)
{
struct vmci_transport_packet *pkt;
struct vsock_sock *vsk;
int err;
vsk = vsock_sk(sk);
if (!vsock_addr_bound(&vsk->local_addr))
return -EINVAL;
if (!vsock_addr_bound(&vsk->remote_addr))
return -EINVAL;
pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
if (!pkt)
return -ENOMEM;
err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
&vsk->remote_addr, type, size,
mode, wait, proto, handle,
true);
kfree(pkt);
return err;
}
static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
struct sockaddr_vm *src,
struct vmci_transport_packet *pkt)
{
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
return 0;
return vmci_transport_send_control_pkt_bh(
dst, src,
VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
0, NULL, VMCI_INVALID_HANDLE);
}
static int vmci_transport_send_reset(struct sock *sk,
struct vmci_transport_packet *pkt)
{
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
return 0;
return vmci_transport_send_control_pkt(sk,
VMCI_TRANSPORT_PACKET_TYPE_RST,
0, 0, NULL, VSOCK_PROTO_INVALID,
VMCI_INVALID_HANDLE);
}
static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
{
return vmci_transport_send_control_pkt(
sk,
VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
size, 0, NULL,
VSOCK_PROTO_INVALID,
VMCI_INVALID_HANDLE);
}
static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
u16 version)
{
return vmci_transport_send_control_pkt(
sk,
VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
size, 0, NULL, version,
VMCI_INVALID_HANDLE);
}
static int vmci_transport_send_qp_offer(struct sock *sk,
struct vmci_handle handle)
{
return vmci_transport_send_control_pkt(
sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
0, NULL,
VSOCK_PROTO_INVALID, handle);
}
static int vmci_transport_send_attach(struct sock *sk,
struct vmci_handle handle)
{
return vmci_transport_send_control_pkt(
sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
0, 0, NULL, VSOCK_PROTO_INVALID,
handle);
}
static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
{
return vmci_transport_reply_control_pkt_fast(
pkt,
VMCI_TRANSPORT_PACKET_TYPE_RST,
0, 0, NULL,
VMCI_INVALID_HANDLE);
}
static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
struct sockaddr_vm *src)
{
return vmci_transport_send_control_pkt_bh(
dst, src,
VMCI_TRANSPORT_PACKET_TYPE_INVALID,
0, 0, NULL, VMCI_INVALID_HANDLE);
}
int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
struct sockaddr_vm *src)
{
return vmci_transport_send_control_pkt_bh(
dst, src,
VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
0, NULL, VMCI_INVALID_HANDLE);
}
int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
struct sockaddr_vm *src)
{
return vmci_transport_send_control_pkt_bh(
dst, src,
VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
0, NULL, VMCI_INVALID_HANDLE);
}
int vmci_transport_send_wrote(struct sock *sk)
{
return vmci_transport_send_control_pkt(
sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
0, NULL, VSOCK_PROTO_INVALID,
VMCI_INVALID_HANDLE);
}
int vmci_transport_send_read(struct sock *sk)
{
return vmci_transport_send_control_pkt(
sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
0, NULL, VSOCK_PROTO_INVALID,
VMCI_INVALID_HANDLE);
}
int vmci_transport_send_waiting_write(struct sock *sk,
struct vmci_transport_waiting_info *wait)
{
return vmci_transport_send_control_pkt(
sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
0, 0, wait, VSOCK_PROTO_INVALID,
VMCI_INVALID_HANDLE);
}
int vmci_transport_send_waiting_read(struct sock *sk,
struct vmci_transport_waiting_info *wait)
{
return vmci_transport_send_control_pkt(
sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
0, 0, wait, VSOCK_PROTO_INVALID,
VMCI_INVALID_HANDLE);
}
static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
{
return vmci_transport_send_control_pkt(
&vsk->sk,
VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
0, mode, NULL,
VSOCK_PROTO_INVALID,
VMCI_INVALID_HANDLE);
}
static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
{
return vmci_transport_send_control_pkt(sk,
VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
size, 0, NULL,
VSOCK_PROTO_INVALID,
VMCI_INVALID_HANDLE);
}
static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
u16 version)
{
return vmci_transport_send_control_pkt(
sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
size, 0, NULL, version,
VMCI_INVALID_HANDLE);
}
static struct sock *vmci_transport_get_pending(
struct sock *listener,
struct vmci_transport_packet *pkt)
{
struct vsock_sock *vlistener;
struct vsock_sock *vpending;
struct sock *pending;
struct sockaddr_vm src;
vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
vlistener = vsock_sk(listener);
list_for_each_entry(vpending, &vlistener->pending_links,
pending_links) {
if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
pkt->dst_port == vpending->local_addr.svm_port) {
pending = sk_vsock(vpending);
sock_hold(pending);
goto found;
}
}
pending = NULL;
found:
return pending;
}
static void vmci_transport_release_pending(struct sock *pending)
{
sock_put(pending);
}
/* We allow two kinds of sockets to communicate with a restricted VM: 1)
* trusted sockets 2) sockets from applications running as the same user as the
* VM (this is only true for the host side and only when using hosted products)
*/
static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
{
return vsock->trusted ||
vmci_is_context_owner(peer_cid, vsock->owner->uid);
}
/* We allow sending datagrams to and receiving datagrams from a restricted VM
* only if it is trusted as described in vmci_transport_is_trusted.
*/
static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
{
if (VMADDR_CID_HYPERVISOR == peer_cid)
return true;
if (vsock->cached_peer != peer_cid) {
vsock->cached_peer = peer_cid;
if (!vmci_transport_is_trusted(vsock, peer_cid) &&
(vmci_context_get_priv_flags(peer_cid) &
VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
vsock->cached_peer_allow_dgram = false;
} else {
vsock->cached_peer_allow_dgram = true;
}
}
return vsock->cached_peer_allow_dgram;
}
static int
vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
struct vmci_handle *handle,
u64 produce_size,
u64 consume_size,
u32 peer, u32 flags, bool trusted)
{
int err = 0;
if (trusted) {
/* Try to allocate our queue pair as trusted. This will only
* work if vsock is running in the host.
*/
err = vmci_qpair_alloc(qpair, handle, produce_size,
consume_size,
peer, flags,
VMCI_PRIVILEGE_FLAG_TRUSTED);
if (err != VMCI_ERROR_NO_ACCESS)
goto out;
}
err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
out:
if (err < 0) {
pr_err("Could not attach to queue pair with %d\n",
err);
err = vmci_transport_error_to_vsock_error(err);
}
return err;
}
static int
vmci_transport_datagram_create_hnd(u32 resource_id,
u32 flags,
vmci_datagram_recv_cb recv_cb,
void *client_data,
struct vmci_handle *out_handle)
{
int err = 0;
/* Try to allocate our datagram handler as trusted. This will only work
* if vsock is running in the host.
*/
err = vmci_datagram_create_handle_priv(resource_id, flags,
VMCI_PRIVILEGE_FLAG_TRUSTED,
recv_cb,
client_data, out_handle);
if (err == VMCI_ERROR_NO_ACCESS)
err = vmci_datagram_create_handle(resource_id, flags,
recv_cb, client_data,
out_handle);
return err;
}
/* This is invoked as part of a tasklet that's scheduled when the VMCI
* interrupt fires. This is run in bottom-half context and if it ever needs to
* sleep it should defer that work to a work queue.
*/
static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
{
struct sock *sk;
size_t size;
struct sk_buff *skb;
struct vsock_sock *vsk;
sk = (struct sock *)data;
/* This handler is privileged when this module is running on the host.
* We will get datagrams from all endpoints (even VMs that are in a
* restricted context). If we get one from a restricted context then
* the destination socket must be trusted.
*
* NOTE: We access the socket struct without holding the lock here.
* This is ok because the field we are interested is never modified
* outside of the create and destruct socket functions.
*/
vsk = vsock_sk(sk);
if (!vmci_transport_allow_dgram(vsk, dg->src.context))
return VMCI_ERROR_NO_ACCESS;
size = VMCI_DG_SIZE(dg);
/* Attach the packet to the socket's receive queue as an sk_buff. */
skb = alloc_skb(size, GFP_ATOMIC);
if (!skb)
return VMCI_ERROR_NO_MEM;
/* sk_receive_skb() will do a sock_put(), so hold here. */
sock_hold(sk);
skb_put(skb, size);
memcpy(skb->data, dg, size);
sk_receive_skb(sk, skb, 0);
return VMCI_SUCCESS;
}
static bool vmci_transport_stream_allow(u32 cid, u32 port)
{
static const u32 non_socket_contexts[] = {
VMADDR_CID_RESERVED,
};
int i;
BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
if (cid == non_socket_contexts[i])
return false;
}
return true;
}
/* This is invoked as part of a tasklet that's scheduled when the VMCI
* interrupt fires. This is run in bottom-half context but it defers most of
* its work to the packet handling work queue.
*/
static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
{
struct sock *sk;
struct sockaddr_vm dst;
struct sockaddr_vm src;
struct vmci_transport_packet *pkt;
struct vsock_sock *vsk;
bool bh_process_pkt;
int err;
sk = NULL;
err = VMCI_SUCCESS;
bh_process_pkt = false;
/* Ignore incoming packets from contexts without sockets, or resources
* that aren't vsock implementations.
*/
if (!vmci_transport_stream_allow(dg->src.context, -1)
|| vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
return VMCI_ERROR_NO_ACCESS;
if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
/* Drop datagrams that do not contain full VSock packets. */
return VMCI_ERROR_INVALID_ARGS;
pkt = (struct vmci_transport_packet *)dg;
/* Find the socket that should handle this packet. First we look for a
* connected socket and if there is none we look for a socket bound to
* the destintation address.
*/
vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
sk = vsock_find_connected_socket(&src, &dst);
if (!sk) {
sk = vsock_find_bound_socket(&dst);
if (!sk) {
/* We could not find a socket for this specified
* address. If this packet is a RST, we just drop it.
* If it is another packet, we send a RST. Note that
* we do not send a RST reply to RSTs so that we do not
* continually send RSTs between two endpoints.
*
* Note that since this is a reply, dst is src and src
* is dst.
*/
if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
pr_err("unable to send reset\n");
err = VMCI_ERROR_NOT_FOUND;
goto out;
}
}
/* If the received packet type is beyond all types known to this
* implementation, reply with an invalid message. Hopefully this will
* help when implementing backwards compatibility in the future.
*/
if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
vmci_transport_send_invalid_bh(&dst, &src);
err = VMCI_ERROR_INVALID_ARGS;
goto out;
}
/* This handler is privileged when this module is running on the host.
* We will get datagram connect requests from all endpoints (even VMs
* that are in a restricted context). If we get one from a restricted
* context then the destination socket must be trusted.
*
* NOTE: We access the socket struct without holding the lock here.
* This is ok because the field we are interested is never modified
* outside of the create and destruct socket functions.
*/
vsk = vsock_sk(sk);
if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
err = VMCI_ERROR_NO_ACCESS;
goto out;
}
/* We do most everything in a work queue, but let's fast path the
* notification of reads and writes to help data transfer performance.
* We can only do this if there is no process context code executing
* for this socket since that may change the state.
*/
bh_lock_sock(sk);
if (!sock_owned_by_user(sk)) {
/* The local context ID may be out of date, update it. */
vsk->local_addr.svm_cid = dst.svm_cid;
if (sk->sk_state == TCP_ESTABLISHED)
vmci_trans(vsk)->notify_ops->handle_notify_pkt(
sk, pkt, true, &dst, &src,
&bh_process_pkt);
}
bh_unlock_sock(sk);
if (!bh_process_pkt) {
struct vmci_transport_recv_pkt_info *recv_pkt_info;
recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
if (!recv_pkt_info) {
if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
pr_err("unable to send reset\n");
err = VMCI_ERROR_NO_MEM;
goto out;
}
recv_pkt_info->sk = sk;
memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
schedule_work(&recv_pkt_info->work);
/* Clear sk so that the reference count incremented by one of
* the Find functions above is not decremented below. We need
* that reference count for the packet handler we've scheduled
* to run.
*/
sk = NULL;
}
out:
if (sk)
sock_put(sk);
return err;
}
static void vmci_transport_handle_detach(struct sock *sk)
{
struct vsock_sock *vsk;
vsk = vsock_sk(sk);
if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
sock_set_flag(sk, SOCK_DONE);
/* On a detach the peer will not be sending or receiving
* anymore.
*/
vsk->peer_shutdown = SHUTDOWN_MASK;
/* We should not be sending anymore since the peer won't be
* there to receive, but we can still receive if there is data
* left in our consume queue. If the local endpoint is a host,
* we can't call vsock_stream_has_data, since that may block,
* but a host endpoint can't read data once the VM has
* detached, so there is no available data in that case.
*/
if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
vsock_stream_has_data(vsk) <= 0) {
if (sk->sk_state == TCP_SYN_SENT) {
/* The peer may detach from a queue pair while
* we are still in the connecting state, i.e.,
* if the peer VM is killed after attaching to
* a queue pair, but before we complete the
* handshake. In that case, we treat the detach
* event like a reset.
*/
sk->sk_state = TCP_CLOSE;
sk->sk_err = ECONNRESET;
sk->sk_error_report(sk);
return;
}
sk->sk_state = TCP_CLOSE;
}
sk->sk_state_change(sk);
}
}
static void vmci_transport_peer_detach_cb(u32 sub_id,
const struct vmci_event_data *e_data,
void *client_data)
{
struct vmci_transport *trans = client_data;
const struct vmci_event_payload_qp *e_payload;
e_payload = vmci_event_data_const_payload(e_data);
/* XXX This is lame, we should provide a way to lookup sockets by
* qp_handle.
*/
if (vmci_handle_is_invalid(e_payload->handle) ||
!vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
return;
/* We don't ask for delayed CBs when we subscribe to this event (we
* pass 0 as flags to vmci_event_subscribe()). VMCI makes no
* guarantees in that case about what context we might be running in,
* so it could be BH or process, blockable or non-blockable. So we
* need to account for all possible contexts here.
*/
spin_lock_bh(&trans->lock);
if (!trans->sk)
goto out;
/* Apart from here, trans->lock is only grabbed as part of sk destruct,
* where trans->sk isn't locked.
*/
bh_lock_sock(trans->sk);
vmci_transport_handle_detach(trans->sk);
bh_unlock_sock(trans->sk);
out:
spin_unlock_bh(&trans->lock);
}
static void vmci_transport_qp_resumed_cb(u32 sub_id,
const struct vmci_event_data *e_data,
void *client_data)
{
vsock_for_each_connected_socket(vmci_transport_handle_detach);
}
static void vmci_transport_recv_pkt_work(struct work_struct *work)
{
struct vmci_transport_recv_pkt_info *recv_pkt_info;
struct vmci_transport_packet *pkt;
struct sock *sk;
recv_pkt_info =
container_of(work, struct vmci_transport_recv_pkt_info, work);
sk = recv_pkt_info->sk;
pkt = &recv_pkt_info->pkt;
lock_sock(sk);
/* The local context ID may be out of date. */
vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
switch (sk->sk_state) {
case TCP_LISTEN:
vmci_transport_recv_listen(sk, pkt);
break;
case TCP_SYN_SENT:
/* Processing of pending connections for servers goes through
* the listening socket, so see vmci_transport_recv_listen()
* for that path.
*/
vmci_transport_recv_connecting_client(sk, pkt);
break;
case TCP_ESTABLISHED:
vmci_transport_recv_connected(sk, pkt);
break;
default:
/* Because this function does not run in the same context as
* vmci_transport_recv_stream_cb it is possible that the
* socket has closed. We need to let the other side know or it
* could be sitting in a connect and hang forever. Send a
* reset to prevent that.
*/
vmci_transport_send_reset(sk, pkt);
break;
}
release_sock(sk);
kfree(recv_pkt_info);
/* Release reference obtained in the stream callback when we fetched
* this socket out of the bound or connected list.
*/
sock_put(sk);
}
static int vmci_transport_recv_listen(struct sock *sk,
struct vmci_transport_packet *pkt)
{
struct sock *pending;
struct vsock_sock *vpending;
int err;
u64 qp_size;
bool old_request = false;
bool old_pkt_proto = false;
err = 0;
/* Because we are in the listen state, we could be receiving a packet
* for ourself or any previous connection requests that we received.
* If it's the latter, we try to find a socket in our list of pending
* connections and, if we do, call the appropriate handler for the
* state that that socket is in. Otherwise we try to service the
* connection request.
*/
pending = vmci_transport_get_pending(sk, pkt);
if (pending) {
lock_sock(pending);
/* The local context ID may be out of date. */
vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
switch (pending->sk_state) {
case TCP_SYN_SENT:
err = vmci_transport_recv_connecting_server(sk,
pending,
pkt);
break;
default:
vmci_transport_send_reset(pending, pkt);
err = -EINVAL;
}
if (err < 0)
vsock_remove_pending(sk, pending);
release_sock(pending);
vmci_transport_release_pending(pending);
return err;
}
/* The listen state only accepts connection requests. Reply with a
* reset unless we received a reset.
*/
if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
vmci_transport_reply_reset(pkt);
return -EINVAL;
}
if (pkt->u.size == 0) {
vmci_transport_reply_reset(pkt);
return -EINVAL;
}
/* If this socket can't accommodate this connection request, we send a
* reset. Otherwise we create and initialize a child socket and reply
* with a connection negotiation.
*/
if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
vmci_transport_reply_reset(pkt);
return -ECONNREFUSED;
}
pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
sk->sk_type, 0);
if (!pending) {
vmci_transport_send_reset(sk, pkt);
return -ENOMEM;
}
vpending = vsock_sk(pending);
vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
pkt->dst_port);
vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
pkt->src_port);
/* If the proposed size fits within our min/max, accept it. Otherwise
* propose our own size.
*/
if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
qp_size = pkt->u.size;
} else {
qp_size = vmci_trans(vpending)->queue_pair_size;
}
/* Figure out if we are using old or new requests based on the
* overrides pkt types sent by our peer.
*/
if (vmci_transport_old_proto_override(&old_pkt_proto)) {
old_request = old_pkt_proto;
} else {
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
old_request = true;
else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
old_request = false;
}
if (old_request) {
/* Handle a REQUEST (or override) */
u16 version = VSOCK_PROTO_INVALID;
if (vmci_transport_proto_to_notify_struct(
pending, &version, true))
err = vmci_transport_send_negotiate(pending, qp_size);
else
err = -EINVAL;
} else {
/* Handle a REQUEST2 (or override) */
int proto_int = pkt->proto;
int pos;
u16 active_proto_version = 0;
/* The list of possible protocols is the intersection of all
* protocols the client supports ... plus all the protocols we
* support.
*/
proto_int &= vmci_transport_new_proto_supported_versions();
/* We choose the highest possible protocol version and use that
* one.
*/
pos = fls(proto_int);
if (pos) {
active_proto_version = (1 << (pos - 1));
if (vmci_transport_proto_to_notify_struct(
pending, &active_proto_version, false))
err = vmci_transport_send_negotiate2(pending,
qp_size,
active_proto_version);
else
err = -EINVAL;
} else {
err = -EINVAL;
}
}
if (err < 0) {
vmci_transport_send_reset(sk, pkt);
sock_put(pending);
err = vmci_transport_error_to_vsock_error(err);
goto out;
}
vsock_add_pending(sk, pending);
sk->sk_ack_backlog++;
pending->sk_state = TCP_SYN_SENT;
vmci_trans(vpending)->produce_size =
vmci_trans(vpending)->consume_size = qp_size;
vmci_trans(vpending)->queue_pair_size = qp_size;
vmci_trans(vpending)->notify_ops->process_request(pending);
/* We might never receive another message for this socket and it's not
* connected to any process, so we have to ensure it gets cleaned up
* ourself. Our delayed work function will take care of that. Note
* that we do not ever cancel this function since we have few
* guarantees about its state when calling cancel_delayed_work().
* Instead we hold a reference on the socket for that function and make
* it capable of handling cases where it needs to do nothing but
* release that reference.
*/
vpending->listener = sk;
sock_hold(sk);
sock_hold(pending);
INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
schedule_delayed_work(&vpending->dwork, HZ);
out:
return err;
}
static int
vmci_transport_recv_connecting_server(struct sock *listener,
struct sock *pending,
struct vmci_transport_packet *pkt)
{
struct vsock_sock *vpending;
struct vmci_handle handle;
struct vmci_qp *qpair;
bool is_local;
u32 flags;
u32 detach_sub_id;
int err;
int skerr;
vpending = vsock_sk(pending);
detach_sub_id = VMCI_INVALID_ID;
switch (pkt->type) {
case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
if (vmci_handle_is_invalid(pkt->u.handle)) {
vmci_transport_send_reset(pending, pkt);
skerr = EPROTO;
err = -EINVAL;
goto destroy;
}
break;
default:
/* Close and cleanup the connection. */
vmci_transport_send_reset(pending, pkt);
skerr = EPROTO;
err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
goto destroy;
}
/* In order to complete the connection we need to attach to the offered
* queue pair and send an attach notification. We also subscribe to the
* detach event so we know when our peer goes away, and we do that
* before attaching so we don't miss an event. If all this succeeds,
* we update our state and wakeup anything waiting in accept() for a
* connection.
*/
/* We don't care about attach since we ensure the other side has
* attached by specifying the ATTACH_ONLY flag below.
*/
err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
vmci_transport_peer_detach_cb,
vmci_trans(vpending), &detach_sub_id);
if (err < VMCI_SUCCESS) {
vmci_transport_send_reset(pending, pkt);
err = vmci_transport_error_to_vsock_error(err);
skerr = -err;
goto destroy;
}
vmci_trans(vpending)->detach_sub_id = detach_sub_id;
/* Now attach to the queue pair the client created. */
handle = pkt->u.handle;
/* vpending->local_addr always has a context id so we do not need to
* worry about VMADDR_CID_ANY in this case.
*/
is_local =
vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
flags = VMCI_QPFLAG_ATTACH_ONLY;
flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
err = vmci_transport_queue_pair_alloc(
&qpair,
&handle,
vmci_trans(vpending)->produce_size,
vmci_trans(vpending)->consume_size,
pkt->dg.src.context,
flags,
vmci_transport_is_trusted(
vpending,
vpending->remote_addr.svm_cid));
if (err < 0) {
vmci_transport_send_reset(pending, pkt);
skerr = -err;
goto destroy;
}
vmci_trans(vpending)->qp_handle = handle;
vmci_trans(vpending)->qpair = qpair;
/* When we send the attach message, we must be ready to handle incoming
* control messages on the newly connected socket. So we move the
* pending socket to the connected state before sending the attach
* message. Otherwise, an incoming packet triggered by the attach being
* received by the peer may be processed concurrently with what happens
* below after sending the attach message, and that incoming packet
* will find the listening socket instead of the (currently) pending
* socket. Note that enqueueing the socket increments the reference
* count, so even if a reset comes before the connection is accepted,
* the socket will be valid until it is removed from the queue.
*
* If we fail sending the attach below, we remove the socket from the
* connected list and move the socket to TCP_CLOSE before
* releasing the lock, so a pending slow path processing of an incoming
* packet will not see the socket in the connected state in that case.
*/
pending->sk_state = TCP_ESTABLISHED;
vsock_insert_connected(vpending);
/* Notify our peer of our attach. */
err = vmci_transport_send_attach(pending, handle);
if (err < 0) {
vsock_remove_connected(vpending);
pr_err("Could not send attach\n");
vmci_transport_send_reset(pending, pkt);
err = vmci_transport_error_to_vsock_error(err);
skerr = -err;
goto destroy;
}
/* We have a connection. Move the now connected socket from the
* listener's pending list to the accept queue so callers of accept()
* can find it.
*/
vsock_remove_pending(listener, pending);
vsock_enqueue_accept(listener, pending);
/* Callers of accept() will be be waiting on the listening socket, not
* the pending socket.
*/
listener->sk_data_ready(listener);
return 0;
destroy:
pending->sk_err = skerr;
pending->sk_state = TCP_CLOSE;
/* As long as we drop our reference, all necessary cleanup will handle
* when the cleanup function drops its reference and our destruct
* implementation is called. Note that since the listen handler will
* remove pending from the pending list upon our failure, the cleanup
* function won't drop the additional reference, which is why we do it
* here.
*/
sock_put(pending);
return err;
}
static int
vmci_transport_recv_connecting_client(struct sock *sk,
struct vmci_transport_packet *pkt)
{
struct vsock_sock *vsk;
int err;
int skerr;
vsk = vsock_sk(sk);
switch (pkt->type) {
case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
if (vmci_handle_is_invalid(pkt->u.handle) ||
!vmci_handle_is_equal(pkt->u.handle,
vmci_trans(vsk)->qp_handle)) {
skerr = EPROTO;
err = -EINVAL;
goto destroy;
}
/* Signify the socket is connected and wakeup the waiter in
* connect(). Also place the socket in the connected table for
* accounting (it can already be found since it's in the bound
* table).
*/
sk->sk_state = TCP_ESTABLISHED;
sk->sk_socket->state = SS_CONNECTED;
vsock_insert_connected(vsk);
sk->sk_state_change(sk);
break;
case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
if (pkt->u.size == 0
|| pkt->dg.src.context != vsk->remote_addr.svm_cid
|| pkt->src_port != vsk->remote_addr.svm_port
|| !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
|| vmci_trans(vsk)->qpair
|| vmci_trans(vsk)->produce_size != 0
|| vmci_trans(vsk)->consume_size != 0
|| vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
skerr = EPROTO;
err = -EINVAL;
goto destroy;
}
err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
if (err) {
skerr = -err;
goto destroy;
}
break;
case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
if (err) {
skerr = -err;
goto destroy;
}
break;
case VMCI_TRANSPORT_PACKET_TYPE_RST:
/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
* continue processing here after they sent an INVALID packet.
* This meant that we got a RST after the INVALID. We ignore a
* RST after an INVALID. The common code doesn't send the RST
* ... so we can hang if an old version of the common code
* fails between getting a REQUEST and sending an OFFER back.
* Not much we can do about it... except hope that it doesn't
* happen.
*/
if (vsk->ignore_connecting_rst) {
vsk->ignore_connecting_rst = false;
} else {
skerr = ECONNRESET;
err = 0;
goto destroy;
}
break;
default:
/* Close and cleanup the connection. */
skerr = EPROTO;
err = -EINVAL;
goto destroy;
}
return 0;
destroy:
vmci_transport_send_reset(sk, pkt);
sk->sk_state = TCP_CLOSE;
sk->sk_err = skerr;
sk->sk_error_report(sk);
return err;
}
static int vmci_transport_recv_connecting_client_negotiate(
struct sock *sk,
struct vmci_transport_packet *pkt)
{
int err;
struct vsock_sock *vsk;
struct vmci_handle handle;
struct vmci_qp *qpair;
u32 detach_sub_id;
bool is_local;
u32 flags;
bool old_proto = true;
bool old_pkt_proto;
u16 version;
vsk = vsock_sk(sk);
handle = VMCI_INVALID_HANDLE;
detach_sub_id = VMCI_INVALID_ID;
/* If we have gotten here then we should be past the point where old
* linux vsock could have sent the bogus rst.
*/
vsk->sent_request = false;
vsk->ignore_connecting_rst = false;
/* Verify that we're OK with the proposed queue pair size */
if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
err = -EINVAL;
goto destroy;
}
/* At this point we know the CID the peer is using to talk to us. */
if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
vsk->local_addr.svm_cid = pkt->dg.dst.context;
/* Setup the notify ops to be the highest supported version that both
* the server and the client support.
*/
if (vmci_transport_old_proto_override(&old_pkt_proto)) {
old_proto = old_pkt_proto;
} else {
if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
old_proto = true;
else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
old_proto = false;
}
if (old_proto)
version = VSOCK_PROTO_INVALID;
else
version = pkt->proto;
if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
err = -EINVAL;
goto destroy;
}
/* Subscribe to detach events first.
*
* XXX We attach once for each queue pair created for now so it is easy
* to find the socket (it's provided), but later we should only
* subscribe once and add a way to lookup sockets by queue pair handle.
*/
err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
vmci_transport_peer_detach_cb,
vmci_trans(vsk), &detach_sub_id);
if (err < VMCI_SUCCESS) {
err = vmci_transport_error_to_vsock_error(err);
goto destroy;
}
/* Make VMCI select the handle for us. */
handle = VMCI_INVALID_HANDLE;
is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
err = vmci_transport_queue_pair_alloc(&qpair,
&handle,
pkt->u.size,
pkt->u.size,
vsk->remote_addr.svm_cid,
flags,
vmci_transport_is_trusted(
vsk,
vsk->
remote_addr.svm_cid));
if (err < 0)
goto destroy;
err = vmci_transport_send_qp_offer(sk, handle);
if (err < 0) {
err = vmci_transport_error_to_vsock_error(err);
goto destroy;
}
vmci_trans(vsk)->qp_handle = handle;
vmci_trans(vsk)->qpair = qpair;
vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
pkt->u.size;
vmci_trans(vsk)->detach_sub_id = detach_sub_id;
vmci_trans(vsk)->notify_ops->process_negotiate(sk);
return 0;
destroy:
if (detach_sub_id != VMCI_INVALID_ID)
vmci_event_unsubscribe(detach_sub_id);
if (!vmci_handle_is_invalid(handle))
vmci_qpair_detach(&qpair);
return err;
}
static int
vmci_transport_recv_connecting_client_invalid(struct sock *sk,
struct vmci_transport_packet *pkt)
{
int err = 0;
struct vsock_sock *vsk = vsock_sk(sk);
if (vsk->sent_request) {
vsk->sent_request = false;
vsk->ignore_connecting_rst = true;
err = vmci_transport_send_conn_request(
sk, vmci_trans(vsk)->queue_pair_size);
if (err < 0)
err = vmci_transport_error_to_vsock_error(err);
else
err = 0;
}
return err;
}
static int vmci_transport_recv_connected(struct sock *sk,
struct vmci_transport_packet *pkt)
{
struct vsock_sock *vsk;
bool pkt_processed = false;
/* In cases where we are closing the connection, it's sufficient to
* mark the state change (and maybe error) and wake up any waiting
* threads. Since this is a connected socket, it's owned by a user
* process and will be cleaned up when the failure is passed back on
* the current or next system call. Our system call implementations
* must therefore check for error and state changes on entry and when
* being awoken.
*/
switch (pkt->type) {
case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
if (pkt->u.mode) {
vsk = vsock_sk(sk);
vsk->peer_shutdown |= pkt->u.mode;
sk->sk_state_change(sk);
}
break;
case VMCI_TRANSPORT_PACKET_TYPE_RST:
vsk = vsock_sk(sk);
/* It is possible that we sent our peer a message (e.g a
* WAITING_READ) right before we got notified that the peer had
* detached. If that happens then we can get a RST pkt back
* from our peer even though there is data available for us to
* read. In that case, don't shutdown the socket completely but
* instead allow the local client to finish reading data off
* the queuepair. Always treat a RST pkt in connected mode like
* a clean shutdown.
*/
sock_set_flag(sk, SOCK_DONE);
vsk->peer_shutdown = SHUTDOWN_MASK;
if (vsock_stream_has_data(vsk) <= 0)
sk->sk_state = TCP_CLOSING;
sk->sk_state_change(sk);
break;
default:
vsk = vsock_sk(sk);
vmci_trans(vsk)->notify_ops->handle_notify_pkt(
sk, pkt, false, NULL, NULL,
&pkt_processed);
if (!pkt_processed)
return -EINVAL;
break;
}
return 0;
}
static int vmci_transport_socket_init(struct vsock_sock *vsk,
struct vsock_sock *psk)
{
vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
if (!vsk->trans)
return -ENOMEM;
vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
vmci_trans(vsk)->qpair = NULL;
vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
vmci_trans(vsk)->notify_ops = NULL;
INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
vmci_trans(vsk)->sk = &vsk->sk;
spin_lock_init(&vmci_trans(vsk)->lock);
if (psk) {
vmci_trans(vsk)->queue_pair_size =
vmci_trans(psk)->queue_pair_size;
vmci_trans(vsk)->queue_pair_min_size =
vmci_trans(psk)->queue_pair_min_size;
vmci_trans(vsk)->queue_pair_max_size =
vmci_trans(psk)->queue_pair_max_size;
} else {
vmci_trans(vsk)->queue_pair_size =
VMCI_TRANSPORT_DEFAULT_QP_SIZE;
vmci_trans(vsk)->queue_pair_min_size =
VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
vmci_trans(vsk)->queue_pair_max_size =
VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
}
return 0;
}
static void vmci_transport_free_resources(struct list_head *transport_list)
{
while (!list_empty(transport_list)) {
struct vmci_transport *transport =
list_first_entry(transport_list, struct vmci_transport,
elem);
list_del(&transport->elem);
if (transport->detach_sub_id != VMCI_INVALID_ID) {
vmci_event_unsubscribe(transport->detach_sub_id);
transport->detach_sub_id = VMCI_INVALID_ID;
}
if (!vmci_handle_is_invalid(transport->qp_handle)) {
vmci_qpair_detach(&transport->qpair);
transport->qp_handle = VMCI_INVALID_HANDLE;
transport->produce_size = 0;
transport->consume_size = 0;
}
kfree(transport);
}
}
static void vmci_transport_cleanup(struct work_struct *work)
{
LIST_HEAD(pending);
spin_lock_bh(&vmci_transport_cleanup_lock);
list_replace_init(&vmci_transport_cleanup_list, &pending);
spin_unlock_bh(&vmci_transport_cleanup_lock);
vmci_transport_free_resources(&pending);
}
static void vmci_transport_destruct(struct vsock_sock *vsk)
{
/* Ensure that the detach callback doesn't use the sk/vsk
* we are about to destruct.
*/
spin_lock_bh(&vmci_trans(vsk)->lock);
vmci_trans(vsk)->sk = NULL;
spin_unlock_bh(&vmci_trans(vsk)->lock);
if (vmci_trans(vsk)->notify_ops)
vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
spin_lock_bh(&vmci_transport_cleanup_lock);
list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
spin_unlock_bh(&vmci_transport_cleanup_lock);
schedule_work(&vmci_transport_cleanup_work);
vsk->trans = NULL;
}
static void vmci_transport_release(struct vsock_sock *vsk)
{
vsock_remove_sock(vsk);
if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
}
}
static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
struct sockaddr_vm *addr)
{
u32 port;
u32 flags;
int err;
/* VMCI will select a resource ID for us if we provide
* VMCI_INVALID_ID.
*/
port = addr->svm_port == VMADDR_PORT_ANY ?
VMCI_INVALID_ID : addr->svm_port;
if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
flags = addr->svm_cid == VMADDR_CID_ANY ?
VMCI_FLAG_ANYCID_DG_HND : 0;
err = vmci_transport_datagram_create_hnd(port, flags,
vmci_transport_recv_dgram_cb,
&vsk->sk,
&vmci_trans(vsk)->dg_handle);
if (err < VMCI_SUCCESS)
return vmci_transport_error_to_vsock_error(err);
vsock_addr_init(&vsk->local_addr, addr->svm_cid,
vmci_trans(vsk)->dg_handle.resource);
return 0;
}
static int vmci_transport_dgram_enqueue(
struct vsock_sock *vsk,
struct sockaddr_vm *remote_addr,
struct msghdr *msg,
size_t len)
{
int err;
struct vmci_datagram *dg;
if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
return -EMSGSIZE;
if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
return -EPERM;
/* Allocate a buffer for the user's message and our packet header. */
dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
if (!dg)
return -ENOMEM;
memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
dg->dst = vmci_make_handle(remote_addr->svm_cid,
remote_addr->svm_port);
dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
vsk->local_addr.svm_port);
dg->payload_size = len;
err = vmci_datagram_send(dg);
kfree(dg);
if (err < 0)
return vmci_transport_error_to_vsock_error(err);
return err - sizeof(*dg);
}
static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
struct msghdr *msg, size_t len,
int flags)
{
int err;
int noblock;
struct vmci_datagram *dg;
size_t payload_len;
struct sk_buff *skb;
noblock = flags & MSG_DONTWAIT;
if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
return -EOPNOTSUPP;
/* Retrieve the head sk_buff from the socket's receive queue. */
err = 0;
skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
if (!skb)
return err;
dg = (struct vmci_datagram *)skb->data;
if (!dg)
/* err is 0, meaning we read zero bytes. */
goto out;
payload_len = dg->payload_size;
/* Ensure the sk_buff matches the payload size claimed in the packet. */
if (payload_len != skb->len - sizeof(*dg)) {
err = -EINVAL;
goto out;
}
if (payload_len > len) {
payload_len = len;
msg->msg_flags |= MSG_TRUNC;
}
/* Place the datagram payload in the user's iovec. */
err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
if (err)
goto out;
if (msg->msg_name) {
/* Provide the address of the sender. */
DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
msg->msg_namelen = sizeof(*vm_addr);
}
err = payload_len;
out:
skb_free_datagram(&vsk->sk, skb);
return err;
}
static bool vmci_transport_dgram_allow(u32 cid, u32 port)
{
if (cid == VMADDR_CID_HYPERVISOR) {
/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
* state and are allowed.
*/
return port == VMCI_UNITY_PBRPC_REGISTER;
}
return true;
}
static int vmci_transport_connect(struct vsock_sock *vsk)
{
int err;
bool old_pkt_proto = false;
struct sock *sk = &vsk->sk;
if (vmci_transport_old_proto_override(&old_pkt_proto) &&
old_pkt_proto) {
err = vmci_transport_send_conn_request(
sk, vmci_trans(vsk)->queue_pair_size);
if (err < 0) {
sk->sk_state = TCP_CLOSE;
return err;
}
} else {
int supported_proto_versions =
vmci_transport_new_proto_supported_versions();
err = vmci_transport_send_conn_request2(
sk, vmci_trans(vsk)->queue_pair_size,
supported_proto_versions);
if (err < 0) {
sk->sk_state = TCP_CLOSE;
return err;
}
vsk->sent_request = true;
}
return err;
}
static ssize_t vmci_transport_stream_dequeue(
struct vsock_sock *vsk,
struct msghdr *msg,
size_t len,
int flags)
{
if (flags & MSG_PEEK)
return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
else
return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
}
static ssize_t vmci_transport_stream_enqueue(
struct vsock_sock *vsk,
struct msghdr *msg,
size_t len)
{
return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
}
static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
{
return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
}
static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
{
return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
}
static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
{
return vmci_trans(vsk)->consume_size;
}
static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
{
return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
}
static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
{
return vmci_trans(vsk)->queue_pair_size;
}
static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
{
return vmci_trans(vsk)->queue_pair_min_size;
}
static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
{
return vmci_trans(vsk)->queue_pair_max_size;
}
static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
{
if (val < vmci_trans(vsk)->queue_pair_min_size)
vmci_trans(vsk)->queue_pair_min_size = val;
if (val > vmci_trans(vsk)->queue_pair_max_size)
vmci_trans(vsk)->queue_pair_max_size = val;
vmci_trans(vsk)->queue_pair_size = val;
}
static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
u64 val)
{
if (val > vmci_trans(vsk)->queue_pair_size)
vmci_trans(vsk)->queue_pair_size = val;
vmci_trans(vsk)->queue_pair_min_size = val;
}
static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
u64 val)
{
if (val < vmci_trans(vsk)->queue_pair_size)
vmci_trans(vsk)->queue_pair_size = val;
vmci_trans(vsk)->queue_pair_max_size = val;
}
static int vmci_transport_notify_poll_in(
struct vsock_sock *vsk,
size_t target,
bool *data_ready_now)
{
return vmci_trans(vsk)->notify_ops->poll_in(
&vsk->sk, target, data_ready_now);
}
static int vmci_transport_notify_poll_out(
struct vsock_sock *vsk,
size_t target,
bool *space_available_now)
{
return vmci_trans(vsk)->notify_ops->poll_out(
&vsk->sk, target, space_available_now);
}
static int vmci_transport_notify_recv_init(
struct vsock_sock *vsk,
size_t target,
struct vsock_transport_recv_notify_data *data)
{
return vmci_trans(vsk)->notify_ops->recv_init(
&vsk->sk, target,
(struct vmci_transport_recv_notify_data *)data);
}
static int vmci_transport_notify_recv_pre_block(
struct vsock_sock *vsk,
size_t target,
struct vsock_transport_recv_notify_data *data)
{
return vmci_trans(vsk)->notify_ops->recv_pre_block(
&vsk->sk, target,
(struct vmci_transport_recv_notify_data *)data);
}
static int vmci_transport_notify_recv_pre_dequeue(
struct vsock_sock *vsk,
size_t target,
struct vsock_transport_recv_notify_data *data)
{
return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
&vsk->sk, target,
(struct vmci_transport_recv_notify_data *)data);
}
static int vmci_transport_notify_recv_post_dequeue(
struct vsock_sock *vsk,
size_t target,
ssize_t copied,
bool data_read,
struct vsock_transport_recv_notify_data *data)
{
return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
&vsk->sk, target, copied, data_read,
(struct vmci_transport_recv_notify_data *)data);
}
static int vmci_transport_notify_send_init(
struct vsock_sock *vsk,
struct vsock_transport_send_notify_data *data)
{
return vmci_trans(vsk)->notify_ops->send_init(
&vsk->sk,
(struct vmci_transport_send_notify_data *)data);
}
static int vmci_transport_notify_send_pre_block(
struct vsock_sock *vsk,
struct vsock_transport_send_notify_data *data)
{
return vmci_trans(vsk)->notify_ops->send_pre_block(
&vsk->sk,
(struct vmci_transport_send_notify_data *)data);
}
static int vmci_transport_notify_send_pre_enqueue(
struct vsock_sock *vsk,
struct vsock_transport_send_notify_data *data)
{
return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
&vsk->sk,
(struct vmci_transport_send_notify_data *)data);
}
static int vmci_transport_notify_send_post_enqueue(
struct vsock_sock *vsk,
ssize_t written,
struct vsock_transport_send_notify_data *data)
{
return vmci_trans(vsk)->notify_ops->send_post_enqueue(
&vsk->sk, written,
(struct vmci_transport_send_notify_data *)data);
}
static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
{
if (PROTOCOL_OVERRIDE != -1) {
if (PROTOCOL_OVERRIDE == 0)
*old_pkt_proto = true;
else
*old_pkt_proto = false;
pr_info("Proto override in use\n");
return true;
}
return false;
}
static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
u16 *proto,
bool old_pkt_proto)
{
struct vsock_sock *vsk = vsock_sk(sk);
if (old_pkt_proto) {
if (*proto != VSOCK_PROTO_INVALID) {
pr_err("Can't set both an old and new protocol\n");
return false;
}
vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
goto exit;
}
switch (*proto) {
case VSOCK_PROTO_PKT_ON_NOTIFY:
vmci_trans(vsk)->notify_ops =
&vmci_transport_notify_pkt_q_state_ops;
break;
default:
pr_err("Unknown notify protocol version\n");
return false;
}
exit:
vmci_trans(vsk)->notify_ops->socket_init(sk);
return true;
}
static u16 vmci_transport_new_proto_supported_versions(void)
{
if (PROTOCOL_OVERRIDE != -1)
return PROTOCOL_OVERRIDE;
return VSOCK_PROTO_ALL_SUPPORTED;
}
static u32 vmci_transport_get_local_cid(void)
{
return vmci_get_context_id();
}
static const struct vsock_transport vmci_transport = {
.init = vmci_transport_socket_init,
.destruct = vmci_transport_destruct,
.release = vmci_transport_release,
.connect = vmci_transport_connect,
.dgram_bind = vmci_transport_dgram_bind,
.dgram_dequeue = vmci_transport_dgram_dequeue,
.dgram_enqueue = vmci_transport_dgram_enqueue,
.dgram_allow = vmci_transport_dgram_allow,
.stream_dequeue = vmci_transport_stream_dequeue,
.stream_enqueue = vmci_transport_stream_enqueue,
.stream_has_data = vmci_transport_stream_has_data,
.stream_has_space = vmci_transport_stream_has_space,
.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
.stream_is_active = vmci_transport_stream_is_active,
.stream_allow = vmci_transport_stream_allow,
.notify_poll_in = vmci_transport_notify_poll_in,
.notify_poll_out = vmci_transport_notify_poll_out,
.notify_recv_init = vmci_transport_notify_recv_init,
.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
.notify_send_init = vmci_transport_notify_send_init,
.notify_send_pre_block = vmci_transport_notify_send_pre_block,
.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
.shutdown = vmci_transport_shutdown,
.set_buffer_size = vmci_transport_set_buffer_size,
.set_min_buffer_size = vmci_transport_set_min_buffer_size,
.set_max_buffer_size = vmci_transport_set_max_buffer_size,
.get_buffer_size = vmci_transport_get_buffer_size,
.get_min_buffer_size = vmci_transport_get_min_buffer_size,
.get_max_buffer_size = vmci_transport_get_max_buffer_size,
.get_local_cid = vmci_transport_get_local_cid,
};
static int __init vmci_transport_init(void)
{
int err;
/* Create the datagram handle that we will use to send and receive all
* VSocket control messages for this context.
*/
err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
VMCI_FLAG_ANYCID_DG_HND,
vmci_transport_recv_stream_cb,
NULL,
&vmci_transport_stream_handle);
if (err < VMCI_SUCCESS) {
pr_err("Unable to create datagram handle. (%d)\n", err);
return vmci_transport_error_to_vsock_error(err);
}
err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
vmci_transport_qp_resumed_cb,
NULL, &vmci_transport_qp_resumed_sub_id);
if (err < VMCI_SUCCESS) {
pr_err("Unable to subscribe to resumed event. (%d)\n", err);
err = vmci_transport_error_to_vsock_error(err);
vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
goto err_destroy_stream_handle;
}
err = vsock_core_init(&vmci_transport);
if (err < 0)
goto err_unsubscribe;
return 0;
err_unsubscribe:
vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
err_destroy_stream_handle:
vmci_datagram_destroy_handle(vmci_transport_stream_handle);
return err;
}
module_init(vmci_transport_init);
static void __exit vmci_transport_exit(void)
{
cancel_work_sync(&vmci_transport_cleanup_work);
vmci_transport_free_resources(&vmci_transport_cleanup_list);
if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
if (vmci_datagram_destroy_handle(
vmci_transport_stream_handle) != VMCI_SUCCESS)
pr_err("Couldn't destroy datagram handle\n");
vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
}
if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
}
vsock_core_exit();
}
module_exit(vmci_transport_exit);
MODULE_AUTHOR("VMware, Inc.");
MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
MODULE_VERSION("1.0.5.0-k");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("vmware_vsock");
MODULE_ALIAS_NETPROTO(PF_VSOCK);