linux/drivers/phy/socionext/phy-uniphier-ahci.c
Kunihiko Hayashi b1f9f4541e phy: uniphier-ahci: Add support for Pro4 SoC
Add support for PHY interface built into ahci controller implemented
in UniPhier Pro4 SoC.

Pro4 SoC distinguishes it from other SoCs as "legacy" SoC, which has GIO
clock line. And Pro4 AHCI-PHY needs to control additional reset lines
("pm", "tx", and "rx").

Signed-off-by: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
Link: https://lore.kernel.org/r/1635503947-18250-9-git-send-email-hayashi.kunihiko@socionext.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2021-11-23 11:21:53 +05:30

515 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* phy-uniphier-ahci.c - PHY driver for UniPhier AHCI controller
* Copyright 2016-2020, Socionext Inc.
* Author: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
struct uniphier_ahciphy_priv {
struct device *dev;
void __iomem *base;
struct clk *clk, *clk_parent, *clk_parent_gio;
struct reset_control *rst, *rst_parent, *rst_parent_gio;
struct reset_control *rst_pm, *rst_tx, *rst_rx;
const struct uniphier_ahciphy_soc_data *data;
};
struct uniphier_ahciphy_soc_data {
int (*init)(struct uniphier_ahciphy_priv *priv);
int (*power_on)(struct uniphier_ahciphy_priv *priv);
int (*power_off)(struct uniphier_ahciphy_priv *priv);
bool is_legacy;
bool is_ready_high;
bool is_phy_clk;
};
/* for Pro4 */
#define CKCTRL0 0x0
#define CKCTRL0_CK_OFF BIT(9)
#define CKCTRL0_NCY_MASK GENMASK(8, 4)
#define CKCTRL0_NCY5_MASK GENMASK(3, 2)
#define CKCTRL0_PRESCALE_MASK GENMASK(1, 0)
#define CKCTRL1 0x4
#define CKCTRL1_LOS_LVL_MASK GENMASK(20, 16)
#define CKCTRL1_TX_LVL_MASK GENMASK(12, 8)
#define RXTXCTRL 0x8
#define RXTXCTRL_RX_EQ_VALL_MASK GENMASK(31, 29)
#define RXTXCTRL_RX_DPLL_MODE_MASK GENMASK(28, 26)
#define RXTXCTRL_TX_ATTEN_MASK GENMASK(14, 12)
#define RXTXCTRL_TX_BOOST_MASK GENMASK(11, 8)
#define RXTXCTRL_TX_EDGERATE_MASK GENMASK(3, 2)
#define RXTXCTRL_TX_CKO_EN BIT(0)
#define RSTPWR 0x30
#define RSTPWR_RX_EN_VAL BIT(18)
/* for PXs2/PXs3 */
#define CKCTRL 0x0
#define CKCTRL_P0_READY BIT(15)
#define CKCTRL_P0_RESET BIT(10)
#define CKCTRL_REF_SSP_EN BIT(9)
#define TXCTRL0 0x4
#define TXCTRL0_AMP_G3_MASK GENMASK(22, 16)
#define TXCTRL0_AMP_G2_MASK GENMASK(14, 8)
#define TXCTRL0_AMP_G1_MASK GENMASK(6, 0)
#define TXCTRL1 0x8
#define TXCTRL1_DEEMPH_G3_MASK GENMASK(21, 16)
#define TXCTRL1_DEEMPH_G2_MASK GENMASK(13, 8)
#define TXCTRL1_DEEMPH_G1_MASK GENMASK(5, 0)
#define RXCTRL 0xc
#define RXCTRL_LOS_LVL_MASK GENMASK(20, 16)
#define RXCTRL_LOS_BIAS_MASK GENMASK(10, 8)
#define RXCTRL_RX_EQ_MASK GENMASK(2, 0)
static int uniphier_ahciphy_pro4_init(struct uniphier_ahciphy_priv *priv)
{
u32 val;
/* set phy MPLL parameters */
val = readl(priv->base + CKCTRL0);
val &= ~CKCTRL0_NCY_MASK;
val |= FIELD_PREP(CKCTRL0_NCY_MASK, 0x6);
val &= ~CKCTRL0_NCY5_MASK;
val |= FIELD_PREP(CKCTRL0_NCY5_MASK, 0x2);
val &= ~CKCTRL0_PRESCALE_MASK;
val |= FIELD_PREP(CKCTRL0_PRESCALE_MASK, 0x1);
writel(val, priv->base + CKCTRL0);
/* setup phy control parameters */
val = readl(priv->base + CKCTRL1);
val &= ~CKCTRL1_LOS_LVL_MASK;
val |= FIELD_PREP(CKCTRL1_LOS_LVL_MASK, 0x10);
val &= ~CKCTRL1_TX_LVL_MASK;
val |= FIELD_PREP(CKCTRL1_TX_LVL_MASK, 0x06);
writel(val, priv->base + CKCTRL1);
val = readl(priv->base + RXTXCTRL);
val &= ~RXTXCTRL_RX_EQ_VALL_MASK;
val |= FIELD_PREP(RXTXCTRL_RX_EQ_VALL_MASK, 0x6);
val &= ~RXTXCTRL_RX_DPLL_MODE_MASK;
val |= FIELD_PREP(RXTXCTRL_RX_DPLL_MODE_MASK, 0x3);
val &= ~RXTXCTRL_TX_ATTEN_MASK;
val |= FIELD_PREP(RXTXCTRL_TX_ATTEN_MASK, 0x3);
val &= ~RXTXCTRL_TX_BOOST_MASK;
val |= FIELD_PREP(RXTXCTRL_TX_BOOST_MASK, 0x5);
val &= ~RXTXCTRL_TX_EDGERATE_MASK;
val |= FIELD_PREP(RXTXCTRL_TX_EDGERATE_MASK, 0x0);
writel(val, priv->base + RXTXCTRL);
return 0;
}
static int uniphier_ahciphy_pro4_power_on(struct uniphier_ahciphy_priv *priv)
{
u32 val;
int ret;
/* enable reference clock for phy */
val = readl(priv->base + CKCTRL0);
val &= ~CKCTRL0_CK_OFF;
writel(val, priv->base + CKCTRL0);
/* enable TX clock */
val = readl(priv->base + RXTXCTRL);
val |= RXTXCTRL_TX_CKO_EN;
writel(val, priv->base + RXTXCTRL);
/* wait until RX is ready */
ret = readl_poll_timeout(priv->base + RSTPWR, val,
!(val & RSTPWR_RX_EN_VAL), 200, 2000);
if (ret) {
dev_err(priv->dev, "Failed to check whether Rx is ready\n");
goto out_disable_clock;
}
/* release all reset */
ret = reset_control_deassert(priv->rst_pm);
if (ret) {
dev_err(priv->dev, "Failed to release PM reset\n");
goto out_disable_clock;
}
ret = reset_control_deassert(priv->rst_tx);
if (ret) {
dev_err(priv->dev, "Failed to release Tx reset\n");
goto out_reset_pm_assert;
}
ret = reset_control_deassert(priv->rst_rx);
if (ret) {
dev_err(priv->dev, "Failed to release Rx reset\n");
goto out_reset_tx_assert;
}
return 0;
out_reset_tx_assert:
reset_control_assert(priv->rst_tx);
out_reset_pm_assert:
reset_control_assert(priv->rst_pm);
out_disable_clock:
/* disable TX clock */
val = readl(priv->base + RXTXCTRL);
val &= ~RXTXCTRL_TX_CKO_EN;
writel(val, priv->base + RXTXCTRL);
/* disable reference clock for phy */
val = readl(priv->base + CKCTRL0);
val |= CKCTRL0_CK_OFF;
writel(val, priv->base + CKCTRL0);
return ret;
}
static int uniphier_ahciphy_pro4_power_off(struct uniphier_ahciphy_priv *priv)
{
u32 val;
reset_control_assert(priv->rst_rx);
reset_control_assert(priv->rst_tx);
reset_control_assert(priv->rst_pm);
/* disable TX clock */
val = readl(priv->base + RXTXCTRL);
val &= ~RXTXCTRL_TX_CKO_EN;
writel(val, priv->base + RXTXCTRL);
/* disable reference clock for phy */
val = readl(priv->base + CKCTRL0);
val |= CKCTRL0_CK_OFF;
writel(val, priv->base + CKCTRL0);
return 0;
}
static void uniphier_ahciphy_pxs2_enable(struct uniphier_ahciphy_priv *priv,
bool enable)
{
u32 val;
val = readl(priv->base + CKCTRL);
if (enable) {
val |= CKCTRL_REF_SSP_EN;
writel(val, priv->base + CKCTRL);
val &= ~CKCTRL_P0_RESET;
writel(val, priv->base + CKCTRL);
} else {
val |= CKCTRL_P0_RESET;
writel(val, priv->base + CKCTRL);
val &= ~CKCTRL_REF_SSP_EN;
writel(val, priv->base + CKCTRL);
}
}
static int uniphier_ahciphy_pxs2_power_on(struct uniphier_ahciphy_priv *priv)
{
int ret;
u32 val;
uniphier_ahciphy_pxs2_enable(priv, true);
/* wait until PLL is ready */
if (priv->data->is_ready_high)
ret = readl_poll_timeout(priv->base + CKCTRL, val,
(val & CKCTRL_P0_READY), 200, 400);
else
ret = readl_poll_timeout(priv->base + CKCTRL, val,
!(val & CKCTRL_P0_READY), 200, 400);
if (ret) {
dev_err(priv->dev, "Failed to check whether PHY PLL is ready\n");
uniphier_ahciphy_pxs2_enable(priv, false);
}
return ret;
}
static int uniphier_ahciphy_pxs2_power_off(struct uniphier_ahciphy_priv *priv)
{
uniphier_ahciphy_pxs2_enable(priv, false);
return 0;
}
static int uniphier_ahciphy_pxs3_init(struct uniphier_ahciphy_priv *priv)
{
int i;
u32 val;
/* setup port parameter */
val = readl(priv->base + TXCTRL0);
val &= ~TXCTRL0_AMP_G3_MASK;
val |= FIELD_PREP(TXCTRL0_AMP_G3_MASK, 0x73);
val &= ~TXCTRL0_AMP_G2_MASK;
val |= FIELD_PREP(TXCTRL0_AMP_G2_MASK, 0x46);
val &= ~TXCTRL0_AMP_G1_MASK;
val |= FIELD_PREP(TXCTRL0_AMP_G1_MASK, 0x42);
writel(val, priv->base + TXCTRL0);
val = readl(priv->base + TXCTRL1);
val &= ~TXCTRL1_DEEMPH_G3_MASK;
val |= FIELD_PREP(TXCTRL1_DEEMPH_G3_MASK, 0x23);
val &= ~TXCTRL1_DEEMPH_G2_MASK;
val |= FIELD_PREP(TXCTRL1_DEEMPH_G2_MASK, 0x05);
val &= ~TXCTRL1_DEEMPH_G1_MASK;
val |= FIELD_PREP(TXCTRL1_DEEMPH_G1_MASK, 0x05);
val = readl(priv->base + RXCTRL);
val &= ~RXCTRL_LOS_LVL_MASK;
val |= FIELD_PREP(RXCTRL_LOS_LVL_MASK, 0x9);
val &= ~RXCTRL_LOS_BIAS_MASK;
val |= FIELD_PREP(RXCTRL_LOS_BIAS_MASK, 0x2);
val &= ~RXCTRL_RX_EQ_MASK;
val |= FIELD_PREP(RXCTRL_RX_EQ_MASK, 0x1);
/* dummy read 25 times to make a wait time for the phy to stabilize */
for (i = 0; i < 25; i++)
readl(priv->base + CKCTRL);
return 0;
}
static int uniphier_ahciphy_init(struct phy *phy)
{
struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = clk_prepare_enable(priv->clk_parent_gio);
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk_parent);
if (ret)
goto out_clk_gio_disable;
ret = reset_control_deassert(priv->rst_parent_gio);
if (ret)
goto out_clk_disable;
ret = reset_control_deassert(priv->rst_parent);
if (ret)
goto out_rst_gio_assert;
if (priv->data->init) {
ret = priv->data->init(priv);
if (ret)
goto out_rst_assert;
}
return 0;
out_rst_assert:
reset_control_assert(priv->rst_parent);
out_rst_gio_assert:
reset_control_assert(priv->rst_parent_gio);
out_clk_disable:
clk_disable_unprepare(priv->clk_parent);
out_clk_gio_disable:
clk_disable_unprepare(priv->clk_parent_gio);
return ret;
}
static int uniphier_ahciphy_exit(struct phy *phy)
{
struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy);
reset_control_assert(priv->rst_parent);
reset_control_assert(priv->rst_parent_gio);
clk_disable_unprepare(priv->clk_parent);
clk_disable_unprepare(priv->clk_parent_gio);
return 0;
}
static int uniphier_ahciphy_power_on(struct phy *phy)
{
struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy);
int ret = 0;
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
ret = reset_control_deassert(priv->rst);
if (ret)
goto out_clk_disable;
if (priv->data->power_on) {
ret = priv->data->power_on(priv);
if (ret)
goto out_reset_assert;
}
return 0;
out_reset_assert:
reset_control_assert(priv->rst);
out_clk_disable:
clk_disable_unprepare(priv->clk);
return ret;
}
static int uniphier_ahciphy_power_off(struct phy *phy)
{
struct uniphier_ahciphy_priv *priv = phy_get_drvdata(phy);
int ret = 0;
if (priv->data->power_off)
ret = priv->data->power_off(priv);
reset_control_assert(priv->rst);
clk_disable_unprepare(priv->clk);
return ret;
}
static const struct phy_ops uniphier_ahciphy_ops = {
.init = uniphier_ahciphy_init,
.exit = uniphier_ahciphy_exit,
.power_on = uniphier_ahciphy_power_on,
.power_off = uniphier_ahciphy_power_off,
.owner = THIS_MODULE,
};
static int uniphier_ahciphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct uniphier_ahciphy_priv *priv;
struct phy *phy;
struct phy_provider *phy_provider;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->data = of_device_get_match_data(dev);
if (WARN_ON(!priv->data))
return -EINVAL;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->clk_parent = devm_clk_get(dev, "link");
if (IS_ERR(priv->clk_parent))
return PTR_ERR(priv->clk_parent);
if (priv->data->is_phy_clk) {
priv->clk = devm_clk_get(dev, "phy");
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
}
priv->rst_parent = devm_reset_control_get_shared(dev, "link");
if (IS_ERR(priv->rst_parent))
return PTR_ERR(priv->rst_parent);
priv->rst = devm_reset_control_get_shared(dev, "phy");
if (IS_ERR(priv->rst))
return PTR_ERR(priv->rst);
if (priv->data->is_legacy) {
priv->clk_parent_gio = devm_clk_get(dev, "gio");
if (IS_ERR(priv->clk_parent_gio))
return PTR_ERR(priv->clk_parent_gio);
priv->rst_parent_gio =
devm_reset_control_get_shared(dev, "gio");
if (IS_ERR(priv->rst_parent_gio))
return PTR_ERR(priv->rst_parent_gio);
priv->rst_pm = devm_reset_control_get_shared(dev, "pm");
if (IS_ERR(priv->rst_pm))
return PTR_ERR(priv->rst_pm);
priv->rst_tx = devm_reset_control_get_shared(dev, "tx");
if (IS_ERR(priv->rst_tx))
return PTR_ERR(priv->rst_tx);
priv->rst_rx = devm_reset_control_get_shared(dev, "rx");
if (IS_ERR(priv->rst_rx))
return PTR_ERR(priv->rst_rx);
}
phy = devm_phy_create(dev, dev->of_node, &uniphier_ahciphy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create phy\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return PTR_ERR(phy_provider);
return 0;
}
static const struct uniphier_ahciphy_soc_data uniphier_pro4_data = {
.init = uniphier_ahciphy_pro4_init,
.power_on = uniphier_ahciphy_pro4_power_on,
.power_off = uniphier_ahciphy_pro4_power_off,
.is_legacy = true,
.is_phy_clk = false,
};
static const struct uniphier_ahciphy_soc_data uniphier_pxs2_data = {
.power_on = uniphier_ahciphy_pxs2_power_on,
.power_off = uniphier_ahciphy_pxs2_power_off,
.is_legacy = false,
.is_ready_high = false,
.is_phy_clk = false,
};
static const struct uniphier_ahciphy_soc_data uniphier_pxs3_data = {
.init = uniphier_ahciphy_pxs3_init,
.power_on = uniphier_ahciphy_pxs2_power_on,
.power_off = uniphier_ahciphy_pxs2_power_off,
.is_legacy = false,
.is_ready_high = true,
.is_phy_clk = true,
};
static const struct of_device_id uniphier_ahciphy_match[] = {
{
.compatible = "socionext,uniphier-pro4-ahci-phy",
.data = &uniphier_pro4_data,
},
{
.compatible = "socionext,uniphier-pxs2-ahci-phy",
.data = &uniphier_pxs2_data,
},
{
.compatible = "socionext,uniphier-pxs3-ahci-phy",
.data = &uniphier_pxs3_data,
},
{ /* Sentinel */ },
};
MODULE_DEVICE_TABLE(of, uniphier_ahciphy_match);
static struct platform_driver uniphier_ahciphy_driver = {
.probe = uniphier_ahciphy_probe,
.driver = {
.name = "uniphier-ahci-phy",
.of_match_table = uniphier_ahciphy_match,
},
};
module_platform_driver(uniphier_ahciphy_driver);
MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
MODULE_DESCRIPTION("UniPhier PHY driver for AHCI controller");
MODULE_LICENSE("GPL v2");