mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
8212a49d1c
Functions that are not used outsde of the module they are defined should be marked as static. Signed-off-by: Dmitry Torokhov <dtor@vmware.com> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
1988 lines
60 KiB
C
1988 lines
60 KiB
C
/*
|
||
* xHCI host controller driver
|
||
*
|
||
* Copyright (C) 2008 Intel Corp.
|
||
*
|
||
* Author: Sarah Sharp
|
||
* Some code borrowed from the Linux EHCI driver.
|
||
*
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License version 2 as
|
||
* published by the Free Software Foundation.
|
||
*
|
||
* This program is distributed in the hope that it will be useful, but
|
||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
* for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, write to the Free Software Foundation,
|
||
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
*/
|
||
|
||
#include <linux/usb.h>
|
||
#include <linux/pci.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/dmapool.h>
|
||
|
||
#include "xhci.h"
|
||
|
||
/*
|
||
* Allocates a generic ring segment from the ring pool, sets the dma address,
|
||
* initializes the segment to zero, and sets the private next pointer to NULL.
|
||
*
|
||
* Section 4.11.1.1:
|
||
* "All components of all Command and Transfer TRBs shall be initialized to '0'"
|
||
*/
|
||
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
|
||
{
|
||
struct xhci_segment *seg;
|
||
dma_addr_t dma;
|
||
|
||
seg = kzalloc(sizeof *seg, flags);
|
||
if (!seg)
|
||
return NULL;
|
||
xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
|
||
|
||
seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
|
||
if (!seg->trbs) {
|
||
kfree(seg);
|
||
return NULL;
|
||
}
|
||
xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
|
||
seg->trbs, (unsigned long long)dma);
|
||
|
||
memset(seg->trbs, 0, SEGMENT_SIZE);
|
||
seg->dma = dma;
|
||
seg->next = NULL;
|
||
|
||
return seg;
|
||
}
|
||
|
||
static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
|
||
{
|
||
if (!seg)
|
||
return;
|
||
if (seg->trbs) {
|
||
xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
|
||
seg->trbs, (unsigned long long)seg->dma);
|
||
dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
|
||
seg->trbs = NULL;
|
||
}
|
||
xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
|
||
kfree(seg);
|
||
}
|
||
|
||
/*
|
||
* Make the prev segment point to the next segment.
|
||
*
|
||
* Change the last TRB in the prev segment to be a Link TRB which points to the
|
||
* DMA address of the next segment. The caller needs to set any Link TRB
|
||
* related flags, such as End TRB, Toggle Cycle, and no snoop.
|
||
*/
|
||
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
|
||
struct xhci_segment *next, bool link_trbs)
|
||
{
|
||
u32 val;
|
||
|
||
if (!prev || !next)
|
||
return;
|
||
prev->next = next;
|
||
if (link_trbs) {
|
||
prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
|
||
|
||
/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
|
||
val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
|
||
val &= ~TRB_TYPE_BITMASK;
|
||
val |= TRB_TYPE(TRB_LINK);
|
||
/* Always set the chain bit with 0.95 hardware */
|
||
if (xhci_link_trb_quirk(xhci))
|
||
val |= TRB_CHAIN;
|
||
prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
|
||
}
|
||
xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
|
||
(unsigned long long)prev->dma,
|
||
(unsigned long long)next->dma);
|
||
}
|
||
|
||
/* XXX: Do we need the hcd structure in all these functions? */
|
||
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
|
||
{
|
||
struct xhci_segment *seg;
|
||
struct xhci_segment *first_seg;
|
||
|
||
if (!ring || !ring->first_seg)
|
||
return;
|
||
first_seg = ring->first_seg;
|
||
seg = first_seg->next;
|
||
xhci_dbg(xhci, "Freeing ring at %p\n", ring);
|
||
while (seg != first_seg) {
|
||
struct xhci_segment *next = seg->next;
|
||
xhci_segment_free(xhci, seg);
|
||
seg = next;
|
||
}
|
||
xhci_segment_free(xhci, first_seg);
|
||
ring->first_seg = NULL;
|
||
kfree(ring);
|
||
}
|
||
|
||
static void xhci_initialize_ring_info(struct xhci_ring *ring)
|
||
{
|
||
/* The ring is empty, so the enqueue pointer == dequeue pointer */
|
||
ring->enqueue = ring->first_seg->trbs;
|
||
ring->enq_seg = ring->first_seg;
|
||
ring->dequeue = ring->enqueue;
|
||
ring->deq_seg = ring->first_seg;
|
||
/* The ring is initialized to 0. The producer must write 1 to the cycle
|
||
* bit to handover ownership of the TRB, so PCS = 1. The consumer must
|
||
* compare CCS to the cycle bit to check ownership, so CCS = 1.
|
||
*/
|
||
ring->cycle_state = 1;
|
||
/* Not necessary for new rings, but needed for re-initialized rings */
|
||
ring->enq_updates = 0;
|
||
ring->deq_updates = 0;
|
||
}
|
||
|
||
/**
|
||
* Create a new ring with zero or more segments.
|
||
*
|
||
* Link each segment together into a ring.
|
||
* Set the end flag and the cycle toggle bit on the last segment.
|
||
* See section 4.9.1 and figures 15 and 16.
|
||
*/
|
||
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
|
||
unsigned int num_segs, bool link_trbs, gfp_t flags)
|
||
{
|
||
struct xhci_ring *ring;
|
||
struct xhci_segment *prev;
|
||
|
||
ring = kzalloc(sizeof *(ring), flags);
|
||
xhci_dbg(xhci, "Allocating ring at %p\n", ring);
|
||
if (!ring)
|
||
return NULL;
|
||
|
||
INIT_LIST_HEAD(&ring->td_list);
|
||
if (num_segs == 0)
|
||
return ring;
|
||
|
||
ring->first_seg = xhci_segment_alloc(xhci, flags);
|
||
if (!ring->first_seg)
|
||
goto fail;
|
||
num_segs--;
|
||
|
||
prev = ring->first_seg;
|
||
while (num_segs > 0) {
|
||
struct xhci_segment *next;
|
||
|
||
next = xhci_segment_alloc(xhci, flags);
|
||
if (!next)
|
||
goto fail;
|
||
xhci_link_segments(xhci, prev, next, link_trbs);
|
||
|
||
prev = next;
|
||
num_segs--;
|
||
}
|
||
xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
|
||
|
||
if (link_trbs) {
|
||
/* See section 4.9.2.1 and 6.4.4.1 */
|
||
prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
|
||
xhci_dbg(xhci, "Wrote link toggle flag to"
|
||
" segment %p (virtual), 0x%llx (DMA)\n",
|
||
prev, (unsigned long long)prev->dma);
|
||
}
|
||
xhci_initialize_ring_info(ring);
|
||
return ring;
|
||
|
||
fail:
|
||
xhci_ring_free(xhci, ring);
|
||
return NULL;
|
||
}
|
||
|
||
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
|
||
struct xhci_virt_device *virt_dev,
|
||
unsigned int ep_index)
|
||
{
|
||
int rings_cached;
|
||
|
||
rings_cached = virt_dev->num_rings_cached;
|
||
if (rings_cached < XHCI_MAX_RINGS_CACHED) {
|
||
virt_dev->num_rings_cached++;
|
||
rings_cached = virt_dev->num_rings_cached;
|
||
virt_dev->ring_cache[rings_cached] =
|
||
virt_dev->eps[ep_index].ring;
|
||
xhci_dbg(xhci, "Cached old ring, "
|
||
"%d ring%s cached\n",
|
||
rings_cached,
|
||
(rings_cached > 1) ? "s" : "");
|
||
} else {
|
||
xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
|
||
xhci_dbg(xhci, "Ring cache full (%d rings), "
|
||
"freeing ring\n",
|
||
virt_dev->num_rings_cached);
|
||
}
|
||
virt_dev->eps[ep_index].ring = NULL;
|
||
}
|
||
|
||
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
|
||
* pointers to the beginning of the ring.
|
||
*/
|
||
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
|
||
struct xhci_ring *ring)
|
||
{
|
||
struct xhci_segment *seg = ring->first_seg;
|
||
do {
|
||
memset(seg->trbs, 0,
|
||
sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
|
||
/* All endpoint rings have link TRBs */
|
||
xhci_link_segments(xhci, seg, seg->next, 1);
|
||
seg = seg->next;
|
||
} while (seg != ring->first_seg);
|
||
xhci_initialize_ring_info(ring);
|
||
/* td list should be empty since all URBs have been cancelled,
|
||
* but just in case...
|
||
*/
|
||
INIT_LIST_HEAD(&ring->td_list);
|
||
}
|
||
|
||
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
|
||
|
||
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
|
||
int type, gfp_t flags)
|
||
{
|
||
struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
|
||
if (!ctx)
|
||
return NULL;
|
||
|
||
BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
|
||
ctx->type = type;
|
||
ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
|
||
if (type == XHCI_CTX_TYPE_INPUT)
|
||
ctx->size += CTX_SIZE(xhci->hcc_params);
|
||
|
||
ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
|
||
memset(ctx->bytes, 0, ctx->size);
|
||
return ctx;
|
||
}
|
||
|
||
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
|
||
struct xhci_container_ctx *ctx)
|
||
{
|
||
if (!ctx)
|
||
return;
|
||
dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
|
||
kfree(ctx);
|
||
}
|
||
|
||
struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
|
||
struct xhci_container_ctx *ctx)
|
||
{
|
||
BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
|
||
return (struct xhci_input_control_ctx *)ctx->bytes;
|
||
}
|
||
|
||
struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
|
||
struct xhci_container_ctx *ctx)
|
||
{
|
||
if (ctx->type == XHCI_CTX_TYPE_DEVICE)
|
||
return (struct xhci_slot_ctx *)ctx->bytes;
|
||
|
||
return (struct xhci_slot_ctx *)
|
||
(ctx->bytes + CTX_SIZE(xhci->hcc_params));
|
||
}
|
||
|
||
struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
|
||
struct xhci_container_ctx *ctx,
|
||
unsigned int ep_index)
|
||
{
|
||
/* increment ep index by offset of start of ep ctx array */
|
||
ep_index++;
|
||
if (ctx->type == XHCI_CTX_TYPE_INPUT)
|
||
ep_index++;
|
||
|
||
return (struct xhci_ep_ctx *)
|
||
(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
|
||
}
|
||
|
||
|
||
/***************** Streams structures manipulation *************************/
|
||
|
||
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
|
||
unsigned int num_stream_ctxs,
|
||
struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
|
||
{
|
||
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
||
|
||
if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
|
||
pci_free_consistent(pdev,
|
||
sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
|
||
stream_ctx, dma);
|
||
else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
|
||
return dma_pool_free(xhci->small_streams_pool,
|
||
stream_ctx, dma);
|
||
else
|
||
return dma_pool_free(xhci->medium_streams_pool,
|
||
stream_ctx, dma);
|
||
}
|
||
|
||
/*
|
||
* The stream context array for each endpoint with bulk streams enabled can
|
||
* vary in size, based on:
|
||
* - how many streams the endpoint supports,
|
||
* - the maximum primary stream array size the host controller supports,
|
||
* - and how many streams the device driver asks for.
|
||
*
|
||
* The stream context array must be a power of 2, and can be as small as
|
||
* 64 bytes or as large as 1MB.
|
||
*/
|
||
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
|
||
unsigned int num_stream_ctxs, dma_addr_t *dma,
|
||
gfp_t mem_flags)
|
||
{
|
||
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
||
|
||
if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
|
||
return pci_alloc_consistent(pdev,
|
||
sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
|
||
dma);
|
||
else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
|
||
return dma_pool_alloc(xhci->small_streams_pool,
|
||
mem_flags, dma);
|
||
else
|
||
return dma_pool_alloc(xhci->medium_streams_pool,
|
||
mem_flags, dma);
|
||
}
|
||
|
||
struct xhci_ring *xhci_dma_to_transfer_ring(
|
||
struct xhci_virt_ep *ep,
|
||
u64 address)
|
||
{
|
||
if (ep->ep_state & EP_HAS_STREAMS)
|
||
return radix_tree_lookup(&ep->stream_info->trb_address_map,
|
||
address >> SEGMENT_SHIFT);
|
||
return ep->ring;
|
||
}
|
||
|
||
/* Only use this when you know stream_info is valid */
|
||
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
|
||
static struct xhci_ring *dma_to_stream_ring(
|
||
struct xhci_stream_info *stream_info,
|
||
u64 address)
|
||
{
|
||
return radix_tree_lookup(&stream_info->trb_address_map,
|
||
address >> SEGMENT_SHIFT);
|
||
}
|
||
#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
|
||
|
||
struct xhci_ring *xhci_stream_id_to_ring(
|
||
struct xhci_virt_device *dev,
|
||
unsigned int ep_index,
|
||
unsigned int stream_id)
|
||
{
|
||
struct xhci_virt_ep *ep = &dev->eps[ep_index];
|
||
|
||
if (stream_id == 0)
|
||
return ep->ring;
|
||
if (!ep->stream_info)
|
||
return NULL;
|
||
|
||
if (stream_id > ep->stream_info->num_streams)
|
||
return NULL;
|
||
return ep->stream_info->stream_rings[stream_id];
|
||
}
|
||
|
||
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
|
||
static int xhci_test_radix_tree(struct xhci_hcd *xhci,
|
||
unsigned int num_streams,
|
||
struct xhci_stream_info *stream_info)
|
||
{
|
||
u32 cur_stream;
|
||
struct xhci_ring *cur_ring;
|
||
u64 addr;
|
||
|
||
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
|
||
struct xhci_ring *mapped_ring;
|
||
int trb_size = sizeof(union xhci_trb);
|
||
|
||
cur_ring = stream_info->stream_rings[cur_stream];
|
||
for (addr = cur_ring->first_seg->dma;
|
||
addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
|
||
addr += trb_size) {
|
||
mapped_ring = dma_to_stream_ring(stream_info, addr);
|
||
if (cur_ring != mapped_ring) {
|
||
xhci_warn(xhci, "WARN: DMA address 0x%08llx "
|
||
"didn't map to stream ID %u; "
|
||
"mapped to ring %p\n",
|
||
(unsigned long long) addr,
|
||
cur_stream,
|
||
mapped_ring);
|
||
return -EINVAL;
|
||
}
|
||
}
|
||
/* One TRB after the end of the ring segment shouldn't return a
|
||
* pointer to the current ring (although it may be a part of a
|
||
* different ring).
|
||
*/
|
||
mapped_ring = dma_to_stream_ring(stream_info, addr);
|
||
if (mapped_ring != cur_ring) {
|
||
/* One TRB before should also fail */
|
||
addr = cur_ring->first_seg->dma - trb_size;
|
||
mapped_ring = dma_to_stream_ring(stream_info, addr);
|
||
}
|
||
if (mapped_ring == cur_ring) {
|
||
xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
|
||
"mapped to valid stream ID %u; "
|
||
"mapped ring = %p\n",
|
||
(unsigned long long) addr,
|
||
cur_stream,
|
||
mapped_ring);
|
||
return -EINVAL;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
|
||
|
||
/*
|
||
* Change an endpoint's internal structure so it supports stream IDs. The
|
||
* number of requested streams includes stream 0, which cannot be used by device
|
||
* drivers.
|
||
*
|
||
* The number of stream contexts in the stream context array may be bigger than
|
||
* the number of streams the driver wants to use. This is because the number of
|
||
* stream context array entries must be a power of two.
|
||
*
|
||
* We need a radix tree for mapping physical addresses of TRBs to which stream
|
||
* ID they belong to. We need to do this because the host controller won't tell
|
||
* us which stream ring the TRB came from. We could store the stream ID in an
|
||
* event data TRB, but that doesn't help us for the cancellation case, since the
|
||
* endpoint may stop before it reaches that event data TRB.
|
||
*
|
||
* The radix tree maps the upper portion of the TRB DMA address to a ring
|
||
* segment that has the same upper portion of DMA addresses. For example, say I
|
||
* have segments of size 1KB, that are always 64-byte aligned. A segment may
|
||
* start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
|
||
* key to the stream ID is 0x43244. I can use the DMA address of the TRB to
|
||
* pass the radix tree a key to get the right stream ID:
|
||
*
|
||
* 0x10c90fff >> 10 = 0x43243
|
||
* 0x10c912c0 >> 10 = 0x43244
|
||
* 0x10c91400 >> 10 = 0x43245
|
||
*
|
||
* Obviously, only those TRBs with DMA addresses that are within the segment
|
||
* will make the radix tree return the stream ID for that ring.
|
||
*
|
||
* Caveats for the radix tree:
|
||
*
|
||
* The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
|
||
* unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
|
||
* 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
|
||
* key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
|
||
* PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
|
||
* extended systems (where the DMA address can be bigger than 32-bits),
|
||
* if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
|
||
*/
|
||
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
|
||
unsigned int num_stream_ctxs,
|
||
unsigned int num_streams, gfp_t mem_flags)
|
||
{
|
||
struct xhci_stream_info *stream_info;
|
||
u32 cur_stream;
|
||
struct xhci_ring *cur_ring;
|
||
unsigned long key;
|
||
u64 addr;
|
||
int ret;
|
||
|
||
xhci_dbg(xhci, "Allocating %u streams and %u "
|
||
"stream context array entries.\n",
|
||
num_streams, num_stream_ctxs);
|
||
if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
|
||
xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
|
||
return NULL;
|
||
}
|
||
xhci->cmd_ring_reserved_trbs++;
|
||
|
||
stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
|
||
if (!stream_info)
|
||
goto cleanup_trbs;
|
||
|
||
stream_info->num_streams = num_streams;
|
||
stream_info->num_stream_ctxs = num_stream_ctxs;
|
||
|
||
/* Initialize the array of virtual pointers to stream rings. */
|
||
stream_info->stream_rings = kzalloc(
|
||
sizeof(struct xhci_ring *)*num_streams,
|
||
mem_flags);
|
||
if (!stream_info->stream_rings)
|
||
goto cleanup_info;
|
||
|
||
/* Initialize the array of DMA addresses for stream rings for the HW. */
|
||
stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
|
||
num_stream_ctxs, &stream_info->ctx_array_dma,
|
||
mem_flags);
|
||
if (!stream_info->stream_ctx_array)
|
||
goto cleanup_ctx;
|
||
memset(stream_info->stream_ctx_array, 0,
|
||
sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
|
||
|
||
/* Allocate everything needed to free the stream rings later */
|
||
stream_info->free_streams_command =
|
||
xhci_alloc_command(xhci, true, true, mem_flags);
|
||
if (!stream_info->free_streams_command)
|
||
goto cleanup_ctx;
|
||
|
||
INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
|
||
|
||
/* Allocate rings for all the streams that the driver will use,
|
||
* and add their segment DMA addresses to the radix tree.
|
||
* Stream 0 is reserved.
|
||
*/
|
||
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
|
||
stream_info->stream_rings[cur_stream] =
|
||
xhci_ring_alloc(xhci, 1, true, mem_flags);
|
||
cur_ring = stream_info->stream_rings[cur_stream];
|
||
if (!cur_ring)
|
||
goto cleanup_rings;
|
||
cur_ring->stream_id = cur_stream;
|
||
/* Set deq ptr, cycle bit, and stream context type */
|
||
addr = cur_ring->first_seg->dma |
|
||
SCT_FOR_CTX(SCT_PRI_TR) |
|
||
cur_ring->cycle_state;
|
||
stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
|
||
xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
|
||
cur_stream, (unsigned long long) addr);
|
||
|
||
key = (unsigned long)
|
||
(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
|
||
ret = radix_tree_insert(&stream_info->trb_address_map,
|
||
key, cur_ring);
|
||
if (ret) {
|
||
xhci_ring_free(xhci, cur_ring);
|
||
stream_info->stream_rings[cur_stream] = NULL;
|
||
goto cleanup_rings;
|
||
}
|
||
}
|
||
/* Leave the other unused stream ring pointers in the stream context
|
||
* array initialized to zero. This will cause the xHC to give us an
|
||
* error if the device asks for a stream ID we don't have setup (if it
|
||
* was any other way, the host controller would assume the ring is
|
||
* "empty" and wait forever for data to be queued to that stream ID).
|
||
*/
|
||
#if XHCI_DEBUG
|
||
/* Do a little test on the radix tree to make sure it returns the
|
||
* correct values.
|
||
*/
|
||
if (xhci_test_radix_tree(xhci, num_streams, stream_info))
|
||
goto cleanup_rings;
|
||
#endif
|
||
|
||
return stream_info;
|
||
|
||
cleanup_rings:
|
||
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
|
||
cur_ring = stream_info->stream_rings[cur_stream];
|
||
if (cur_ring) {
|
||
addr = cur_ring->first_seg->dma;
|
||
radix_tree_delete(&stream_info->trb_address_map,
|
||
addr >> SEGMENT_SHIFT);
|
||
xhci_ring_free(xhci, cur_ring);
|
||
stream_info->stream_rings[cur_stream] = NULL;
|
||
}
|
||
}
|
||
xhci_free_command(xhci, stream_info->free_streams_command);
|
||
cleanup_ctx:
|
||
kfree(stream_info->stream_rings);
|
||
cleanup_info:
|
||
kfree(stream_info);
|
||
cleanup_trbs:
|
||
xhci->cmd_ring_reserved_trbs--;
|
||
return NULL;
|
||
}
|
||
/*
|
||
* Sets the MaxPStreams field and the Linear Stream Array field.
|
||
* Sets the dequeue pointer to the stream context array.
|
||
*/
|
||
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
|
||
struct xhci_ep_ctx *ep_ctx,
|
||
struct xhci_stream_info *stream_info)
|
||
{
|
||
u32 max_primary_streams;
|
||
/* MaxPStreams is the number of stream context array entries, not the
|
||
* number we're actually using. Must be in 2^(MaxPstreams + 1) format.
|
||
* fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
|
||
*/
|
||
max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
|
||
xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
|
||
1 << (max_primary_streams + 1));
|
||
ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
|
||
ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
|
||
ep_ctx->ep_info |= EP_HAS_LSA;
|
||
ep_ctx->deq = stream_info->ctx_array_dma;
|
||
}
|
||
|
||
/*
|
||
* Sets the MaxPStreams field and the Linear Stream Array field to 0.
|
||
* Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
|
||
* not at the beginning of the ring).
|
||
*/
|
||
void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
|
||
struct xhci_ep_ctx *ep_ctx,
|
||
struct xhci_virt_ep *ep)
|
||
{
|
||
dma_addr_t addr;
|
||
ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
|
||
ep_ctx->ep_info &= ~EP_HAS_LSA;
|
||
addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
|
||
ep_ctx->deq = addr | ep->ring->cycle_state;
|
||
}
|
||
|
||
/* Frees all stream contexts associated with the endpoint,
|
||
*
|
||
* Caller should fix the endpoint context streams fields.
|
||
*/
|
||
void xhci_free_stream_info(struct xhci_hcd *xhci,
|
||
struct xhci_stream_info *stream_info)
|
||
{
|
||
int cur_stream;
|
||
struct xhci_ring *cur_ring;
|
||
dma_addr_t addr;
|
||
|
||
if (!stream_info)
|
||
return;
|
||
|
||
for (cur_stream = 1; cur_stream < stream_info->num_streams;
|
||
cur_stream++) {
|
||
cur_ring = stream_info->stream_rings[cur_stream];
|
||
if (cur_ring) {
|
||
addr = cur_ring->first_seg->dma;
|
||
radix_tree_delete(&stream_info->trb_address_map,
|
||
addr >> SEGMENT_SHIFT);
|
||
xhci_ring_free(xhci, cur_ring);
|
||
stream_info->stream_rings[cur_stream] = NULL;
|
||
}
|
||
}
|
||
xhci_free_command(xhci, stream_info->free_streams_command);
|
||
xhci->cmd_ring_reserved_trbs--;
|
||
if (stream_info->stream_ctx_array)
|
||
xhci_free_stream_ctx(xhci,
|
||
stream_info->num_stream_ctxs,
|
||
stream_info->stream_ctx_array,
|
||
stream_info->ctx_array_dma);
|
||
|
||
if (stream_info)
|
||
kfree(stream_info->stream_rings);
|
||
kfree(stream_info);
|
||
}
|
||
|
||
|
||
/***************** Device context manipulation *************************/
|
||
|
||
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
|
||
struct xhci_virt_ep *ep)
|
||
{
|
||
init_timer(&ep->stop_cmd_timer);
|
||
ep->stop_cmd_timer.data = (unsigned long) ep;
|
||
ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
|
||
ep->xhci = xhci;
|
||
}
|
||
|
||
/* All the xhci_tds in the ring's TD list should be freed at this point */
|
||
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
|
||
{
|
||
struct xhci_virt_device *dev;
|
||
int i;
|
||
|
||
/* Slot ID 0 is reserved */
|
||
if (slot_id == 0 || !xhci->devs[slot_id])
|
||
return;
|
||
|
||
dev = xhci->devs[slot_id];
|
||
xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
|
||
if (!dev)
|
||
return;
|
||
|
||
for (i = 0; i < 31; ++i) {
|
||
if (dev->eps[i].ring)
|
||
xhci_ring_free(xhci, dev->eps[i].ring);
|
||
if (dev->eps[i].stream_info)
|
||
xhci_free_stream_info(xhci,
|
||
dev->eps[i].stream_info);
|
||
}
|
||
|
||
if (dev->ring_cache) {
|
||
for (i = 0; i < dev->num_rings_cached; i++)
|
||
xhci_ring_free(xhci, dev->ring_cache[i]);
|
||
kfree(dev->ring_cache);
|
||
}
|
||
|
||
if (dev->in_ctx)
|
||
xhci_free_container_ctx(xhci, dev->in_ctx);
|
||
if (dev->out_ctx)
|
||
xhci_free_container_ctx(xhci, dev->out_ctx);
|
||
|
||
kfree(xhci->devs[slot_id]);
|
||
xhci->devs[slot_id] = NULL;
|
||
}
|
||
|
||
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
|
||
struct usb_device *udev, gfp_t flags)
|
||
{
|
||
struct xhci_virt_device *dev;
|
||
int i;
|
||
|
||
/* Slot ID 0 is reserved */
|
||
if (slot_id == 0 || xhci->devs[slot_id]) {
|
||
xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
|
||
return 0;
|
||
}
|
||
|
||
xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
|
||
if (!xhci->devs[slot_id])
|
||
return 0;
|
||
dev = xhci->devs[slot_id];
|
||
|
||
/* Allocate the (output) device context that will be used in the HC. */
|
||
dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
|
||
if (!dev->out_ctx)
|
||
goto fail;
|
||
|
||
xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
|
||
(unsigned long long)dev->out_ctx->dma);
|
||
|
||
/* Allocate the (input) device context for address device command */
|
||
dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
|
||
if (!dev->in_ctx)
|
||
goto fail;
|
||
|
||
xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
|
||
(unsigned long long)dev->in_ctx->dma);
|
||
|
||
/* Initialize the cancellation list and watchdog timers for each ep */
|
||
for (i = 0; i < 31; i++) {
|
||
xhci_init_endpoint_timer(xhci, &dev->eps[i]);
|
||
INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
|
||
}
|
||
|
||
/* Allocate endpoint 0 ring */
|
||
dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
|
||
if (!dev->eps[0].ring)
|
||
goto fail;
|
||
|
||
/* Allocate pointers to the ring cache */
|
||
dev->ring_cache = kzalloc(
|
||
sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
|
||
flags);
|
||
if (!dev->ring_cache)
|
||
goto fail;
|
||
dev->num_rings_cached = 0;
|
||
|
||
init_completion(&dev->cmd_completion);
|
||
INIT_LIST_HEAD(&dev->cmd_list);
|
||
dev->udev = udev;
|
||
|
||
/* Point to output device context in dcbaa. */
|
||
xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
|
||
xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
|
||
slot_id,
|
||
&xhci->dcbaa->dev_context_ptrs[slot_id],
|
||
(unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
|
||
|
||
return 1;
|
||
fail:
|
||
xhci_free_virt_device(xhci, slot_id);
|
||
return 0;
|
||
}
|
||
|
||
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
|
||
struct usb_device *udev)
|
||
{
|
||
struct xhci_virt_device *virt_dev;
|
||
struct xhci_ep_ctx *ep0_ctx;
|
||
struct xhci_ring *ep_ring;
|
||
|
||
virt_dev = xhci->devs[udev->slot_id];
|
||
ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
|
||
ep_ring = virt_dev->eps[0].ring;
|
||
/*
|
||
* FIXME we don't keep track of the dequeue pointer very well after a
|
||
* Set TR dequeue pointer, so we're setting the dequeue pointer of the
|
||
* host to our enqueue pointer. This should only be called after a
|
||
* configured device has reset, so all control transfers should have
|
||
* been completed or cancelled before the reset.
|
||
*/
|
||
ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
|
||
ep0_ctx->deq |= ep_ring->cycle_state;
|
||
}
|
||
|
||
/* Setup an xHCI virtual device for a Set Address command */
|
||
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
|
||
{
|
||
struct xhci_virt_device *dev;
|
||
struct xhci_ep_ctx *ep0_ctx;
|
||
struct usb_device *top_dev;
|
||
struct xhci_slot_ctx *slot_ctx;
|
||
struct xhci_input_control_ctx *ctrl_ctx;
|
||
|
||
dev = xhci->devs[udev->slot_id];
|
||
/* Slot ID 0 is reserved */
|
||
if (udev->slot_id == 0 || !dev) {
|
||
xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
|
||
udev->slot_id);
|
||
return -EINVAL;
|
||
}
|
||
ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
|
||
ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
|
||
slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
|
||
|
||
/* 2) New slot context and endpoint 0 context are valid*/
|
||
ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
|
||
|
||
/* 3) Only the control endpoint is valid - one endpoint context */
|
||
slot_ctx->dev_info |= LAST_CTX(1);
|
||
|
||
slot_ctx->dev_info |= (u32) udev->route;
|
||
switch (udev->speed) {
|
||
case USB_SPEED_SUPER:
|
||
slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
|
||
break;
|
||
case USB_SPEED_HIGH:
|
||
slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
|
||
break;
|
||
case USB_SPEED_FULL:
|
||
slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
|
||
break;
|
||
case USB_SPEED_LOW:
|
||
slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
|
||
break;
|
||
case USB_SPEED_WIRELESS:
|
||
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
|
||
return -EINVAL;
|
||
break;
|
||
default:
|
||
/* Speed was set earlier, this shouldn't happen. */
|
||
BUG();
|
||
}
|
||
/* Find the root hub port this device is under */
|
||
for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
|
||
top_dev = top_dev->parent)
|
||
/* Found device below root hub */;
|
||
slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
|
||
dev->port = top_dev->portnum;
|
||
xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
|
||
|
||
/* Is this a LS/FS device under a HS hub? */
|
||
if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
|
||
udev->tt) {
|
||
slot_ctx->tt_info = udev->tt->hub->slot_id;
|
||
slot_ctx->tt_info |= udev->ttport << 8;
|
||
if (udev->tt->multi)
|
||
slot_ctx->dev_info |= DEV_MTT;
|
||
}
|
||
xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
|
||
xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
|
||
|
||
/* Step 4 - ring already allocated */
|
||
/* Step 5 */
|
||
ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
|
||
/*
|
||
* XXX: Not sure about wireless USB devices.
|
||
*/
|
||
switch (udev->speed) {
|
||
case USB_SPEED_SUPER:
|
||
ep0_ctx->ep_info2 |= MAX_PACKET(512);
|
||
break;
|
||
case USB_SPEED_HIGH:
|
||
/* USB core guesses at a 64-byte max packet first for FS devices */
|
||
case USB_SPEED_FULL:
|
||
ep0_ctx->ep_info2 |= MAX_PACKET(64);
|
||
break;
|
||
case USB_SPEED_LOW:
|
||
ep0_ctx->ep_info2 |= MAX_PACKET(8);
|
||
break;
|
||
case USB_SPEED_WIRELESS:
|
||
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
|
||
return -EINVAL;
|
||
break;
|
||
default:
|
||
/* New speed? */
|
||
BUG();
|
||
}
|
||
/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
|
||
ep0_ctx->ep_info2 |= MAX_BURST(0);
|
||
ep0_ctx->ep_info2 |= ERROR_COUNT(3);
|
||
|
||
ep0_ctx->deq =
|
||
dev->eps[0].ring->first_seg->dma;
|
||
ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
|
||
|
||
/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the polling or NAK interval.
|
||
*
|
||
* The polling interval is expressed in "microframes". If xHCI's Interval field
|
||
* is set to N, it will service the endpoint every 2^(Interval)*125us.
|
||
*
|
||
* The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
|
||
* is set to 0.
|
||
*/
|
||
static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
|
||
struct usb_host_endpoint *ep)
|
||
{
|
||
unsigned int interval = 0;
|
||
|
||
switch (udev->speed) {
|
||
case USB_SPEED_HIGH:
|
||
/* Max NAK rate */
|
||
if (usb_endpoint_xfer_control(&ep->desc) ||
|
||
usb_endpoint_xfer_bulk(&ep->desc))
|
||
interval = ep->desc.bInterval;
|
||
/* Fall through - SS and HS isoc/int have same decoding */
|
||
case USB_SPEED_SUPER:
|
||
if (usb_endpoint_xfer_int(&ep->desc) ||
|
||
usb_endpoint_xfer_isoc(&ep->desc)) {
|
||
if (ep->desc.bInterval == 0)
|
||
interval = 0;
|
||
else
|
||
interval = ep->desc.bInterval - 1;
|
||
if (interval > 15)
|
||
interval = 15;
|
||
if (interval != ep->desc.bInterval + 1)
|
||
dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
|
||
ep->desc.bEndpointAddress, 1 << interval);
|
||
}
|
||
break;
|
||
/* Convert bInterval (in 1-255 frames) to microframes and round down to
|
||
* nearest power of 2.
|
||
*/
|
||
case USB_SPEED_FULL:
|
||
case USB_SPEED_LOW:
|
||
if (usb_endpoint_xfer_int(&ep->desc) ||
|
||
usb_endpoint_xfer_isoc(&ep->desc)) {
|
||
interval = fls(8*ep->desc.bInterval) - 1;
|
||
if (interval > 10)
|
||
interval = 10;
|
||
if (interval < 3)
|
||
interval = 3;
|
||
if ((1 << interval) != 8*ep->desc.bInterval)
|
||
dev_warn(&udev->dev,
|
||
"ep %#x - rounding interval"
|
||
" to %d microframes, "
|
||
"ep desc says %d microframes\n",
|
||
ep->desc.bEndpointAddress,
|
||
1 << interval,
|
||
8*ep->desc.bInterval);
|
||
}
|
||
break;
|
||
default:
|
||
BUG();
|
||
}
|
||
return EP_INTERVAL(interval);
|
||
}
|
||
|
||
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
|
||
* High speed endpoint descriptors can define "the number of additional
|
||
* transaction opportunities per microframe", but that goes in the Max Burst
|
||
* endpoint context field.
|
||
*/
|
||
static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
|
||
struct usb_host_endpoint *ep)
|
||
{
|
||
if (udev->speed != USB_SPEED_SUPER ||
|
||
!usb_endpoint_xfer_isoc(&ep->desc))
|
||
return 0;
|
||
return ep->ss_ep_comp.bmAttributes;
|
||
}
|
||
|
||
static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
|
||
struct usb_host_endpoint *ep)
|
||
{
|
||
int in;
|
||
u32 type;
|
||
|
||
in = usb_endpoint_dir_in(&ep->desc);
|
||
if (usb_endpoint_xfer_control(&ep->desc)) {
|
||
type = EP_TYPE(CTRL_EP);
|
||
} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
|
||
if (in)
|
||
type = EP_TYPE(BULK_IN_EP);
|
||
else
|
||
type = EP_TYPE(BULK_OUT_EP);
|
||
} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
|
||
if (in)
|
||
type = EP_TYPE(ISOC_IN_EP);
|
||
else
|
||
type = EP_TYPE(ISOC_OUT_EP);
|
||
} else if (usb_endpoint_xfer_int(&ep->desc)) {
|
||
if (in)
|
||
type = EP_TYPE(INT_IN_EP);
|
||
else
|
||
type = EP_TYPE(INT_OUT_EP);
|
||
} else {
|
||
BUG();
|
||
}
|
||
return type;
|
||
}
|
||
|
||
/* Return the maximum endpoint service interval time (ESIT) payload.
|
||
* Basically, this is the maxpacket size, multiplied by the burst size
|
||
* and mult size.
|
||
*/
|
||
static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
|
||
struct usb_device *udev,
|
||
struct usb_host_endpoint *ep)
|
||
{
|
||
int max_burst;
|
||
int max_packet;
|
||
|
||
/* Only applies for interrupt or isochronous endpoints */
|
||
if (usb_endpoint_xfer_control(&ep->desc) ||
|
||
usb_endpoint_xfer_bulk(&ep->desc))
|
||
return 0;
|
||
|
||
if (udev->speed == USB_SPEED_SUPER)
|
||
return ep->ss_ep_comp.wBytesPerInterval;
|
||
|
||
max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
|
||
max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
|
||
/* A 0 in max burst means 1 transfer per ESIT */
|
||
return max_packet * (max_burst + 1);
|
||
}
|
||
|
||
/* Set up an endpoint with one ring segment. Do not allocate stream rings.
|
||
* Drivers will have to call usb_alloc_streams() to do that.
|
||
*/
|
||
int xhci_endpoint_init(struct xhci_hcd *xhci,
|
||
struct xhci_virt_device *virt_dev,
|
||
struct usb_device *udev,
|
||
struct usb_host_endpoint *ep,
|
||
gfp_t mem_flags)
|
||
{
|
||
unsigned int ep_index;
|
||
struct xhci_ep_ctx *ep_ctx;
|
||
struct xhci_ring *ep_ring;
|
||
unsigned int max_packet;
|
||
unsigned int max_burst;
|
||
u32 max_esit_payload;
|
||
|
||
ep_index = xhci_get_endpoint_index(&ep->desc);
|
||
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
|
||
|
||
/* Set up the endpoint ring */
|
||
/*
|
||
* Isochronous endpoint ring needs bigger size because one isoc URB
|
||
* carries multiple packets and it will insert multiple tds to the
|
||
* ring.
|
||
* This should be replaced with dynamic ring resizing in the future.
|
||
*/
|
||
if (usb_endpoint_xfer_isoc(&ep->desc))
|
||
virt_dev->eps[ep_index].new_ring =
|
||
xhci_ring_alloc(xhci, 8, true, mem_flags);
|
||
else
|
||
virt_dev->eps[ep_index].new_ring =
|
||
xhci_ring_alloc(xhci, 1, true, mem_flags);
|
||
if (!virt_dev->eps[ep_index].new_ring) {
|
||
/* Attempt to use the ring cache */
|
||
if (virt_dev->num_rings_cached == 0)
|
||
return -ENOMEM;
|
||
virt_dev->eps[ep_index].new_ring =
|
||
virt_dev->ring_cache[virt_dev->num_rings_cached];
|
||
virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
|
||
virt_dev->num_rings_cached--;
|
||
xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
|
||
}
|
||
virt_dev->eps[ep_index].skip = false;
|
||
ep_ring = virt_dev->eps[ep_index].new_ring;
|
||
ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
|
||
|
||
ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
|
||
ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
|
||
|
||
/* FIXME dig Mult and streams info out of ep companion desc */
|
||
|
||
/* Allow 3 retries for everything but isoc;
|
||
* error count = 0 means infinite retries.
|
||
*/
|
||
if (!usb_endpoint_xfer_isoc(&ep->desc))
|
||
ep_ctx->ep_info2 = ERROR_COUNT(3);
|
||
else
|
||
ep_ctx->ep_info2 = ERROR_COUNT(1);
|
||
|
||
ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
|
||
|
||
/* Set the max packet size and max burst */
|
||
switch (udev->speed) {
|
||
case USB_SPEED_SUPER:
|
||
max_packet = ep->desc.wMaxPacketSize;
|
||
ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
|
||
/* dig out max burst from ep companion desc */
|
||
max_packet = ep->ss_ep_comp.bMaxBurst;
|
||
if (!max_packet)
|
||
xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
|
||
ep_ctx->ep_info2 |= MAX_BURST(max_packet);
|
||
break;
|
||
case USB_SPEED_HIGH:
|
||
/* bits 11:12 specify the number of additional transaction
|
||
* opportunities per microframe (USB 2.0, section 9.6.6)
|
||
*/
|
||
if (usb_endpoint_xfer_isoc(&ep->desc) ||
|
||
usb_endpoint_xfer_int(&ep->desc)) {
|
||
max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
|
||
ep_ctx->ep_info2 |= MAX_BURST(max_burst);
|
||
}
|
||
/* Fall through */
|
||
case USB_SPEED_FULL:
|
||
case USB_SPEED_LOW:
|
||
max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
|
||
ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
|
||
break;
|
||
default:
|
||
BUG();
|
||
}
|
||
max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
|
||
ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
|
||
|
||
/*
|
||
* XXX no idea how to calculate the average TRB buffer length for bulk
|
||
* endpoints, as the driver gives us no clue how big each scatter gather
|
||
* list entry (or buffer) is going to be.
|
||
*
|
||
* For isochronous and interrupt endpoints, we set it to the max
|
||
* available, until we have new API in the USB core to allow drivers to
|
||
* declare how much bandwidth they actually need.
|
||
*
|
||
* Normally, it would be calculated by taking the total of the buffer
|
||
* lengths in the TD and then dividing by the number of TRBs in a TD,
|
||
* including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
|
||
* use Event Data TRBs, and we don't chain in a link TRB on short
|
||
* transfers, we're basically dividing by 1.
|
||
*/
|
||
ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
|
||
|
||
/* FIXME Debug endpoint context */
|
||
return 0;
|
||
}
|
||
|
||
void xhci_endpoint_zero(struct xhci_hcd *xhci,
|
||
struct xhci_virt_device *virt_dev,
|
||
struct usb_host_endpoint *ep)
|
||
{
|
||
unsigned int ep_index;
|
||
struct xhci_ep_ctx *ep_ctx;
|
||
|
||
ep_index = xhci_get_endpoint_index(&ep->desc);
|
||
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
|
||
|
||
ep_ctx->ep_info = 0;
|
||
ep_ctx->ep_info2 = 0;
|
||
ep_ctx->deq = 0;
|
||
ep_ctx->tx_info = 0;
|
||
/* Don't free the endpoint ring until the set interface or configuration
|
||
* request succeeds.
|
||
*/
|
||
}
|
||
|
||
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
|
||
* Useful when you want to change one particular aspect of the endpoint and then
|
||
* issue a configure endpoint command.
|
||
*/
|
||
void xhci_endpoint_copy(struct xhci_hcd *xhci,
|
||
struct xhci_container_ctx *in_ctx,
|
||
struct xhci_container_ctx *out_ctx,
|
||
unsigned int ep_index)
|
||
{
|
||
struct xhci_ep_ctx *out_ep_ctx;
|
||
struct xhci_ep_ctx *in_ep_ctx;
|
||
|
||
out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
|
||
in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
|
||
|
||
in_ep_ctx->ep_info = out_ep_ctx->ep_info;
|
||
in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
|
||
in_ep_ctx->deq = out_ep_ctx->deq;
|
||
in_ep_ctx->tx_info = out_ep_ctx->tx_info;
|
||
}
|
||
|
||
/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
|
||
* Useful when you want to change one particular aspect of the endpoint and then
|
||
* issue a configure endpoint command. Only the context entries field matters,
|
||
* but we'll copy the whole thing anyway.
|
||
*/
|
||
void xhci_slot_copy(struct xhci_hcd *xhci,
|
||
struct xhci_container_ctx *in_ctx,
|
||
struct xhci_container_ctx *out_ctx)
|
||
{
|
||
struct xhci_slot_ctx *in_slot_ctx;
|
||
struct xhci_slot_ctx *out_slot_ctx;
|
||
|
||
in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
|
||
out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
|
||
|
||
in_slot_ctx->dev_info = out_slot_ctx->dev_info;
|
||
in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
|
||
in_slot_ctx->tt_info = out_slot_ctx->tt_info;
|
||
in_slot_ctx->dev_state = out_slot_ctx->dev_state;
|
||
}
|
||
|
||
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
|
||
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
|
||
{
|
||
int i;
|
||
struct device *dev = xhci_to_hcd(xhci)->self.controller;
|
||
int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
|
||
|
||
xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
|
||
|
||
if (!num_sp)
|
||
return 0;
|
||
|
||
xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
|
||
if (!xhci->scratchpad)
|
||
goto fail_sp;
|
||
|
||
xhci->scratchpad->sp_array =
|
||
pci_alloc_consistent(to_pci_dev(dev),
|
||
num_sp * sizeof(u64),
|
||
&xhci->scratchpad->sp_dma);
|
||
if (!xhci->scratchpad->sp_array)
|
||
goto fail_sp2;
|
||
|
||
xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
|
||
if (!xhci->scratchpad->sp_buffers)
|
||
goto fail_sp3;
|
||
|
||
xhci->scratchpad->sp_dma_buffers =
|
||
kzalloc(sizeof(dma_addr_t) * num_sp, flags);
|
||
|
||
if (!xhci->scratchpad->sp_dma_buffers)
|
||
goto fail_sp4;
|
||
|
||
xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
|
||
for (i = 0; i < num_sp; i++) {
|
||
dma_addr_t dma;
|
||
void *buf = pci_alloc_consistent(to_pci_dev(dev),
|
||
xhci->page_size, &dma);
|
||
if (!buf)
|
||
goto fail_sp5;
|
||
|
||
xhci->scratchpad->sp_array[i] = dma;
|
||
xhci->scratchpad->sp_buffers[i] = buf;
|
||
xhci->scratchpad->sp_dma_buffers[i] = dma;
|
||
}
|
||
|
||
return 0;
|
||
|
||
fail_sp5:
|
||
for (i = i - 1; i >= 0; i--) {
|
||
pci_free_consistent(to_pci_dev(dev), xhci->page_size,
|
||
xhci->scratchpad->sp_buffers[i],
|
||
xhci->scratchpad->sp_dma_buffers[i]);
|
||
}
|
||
kfree(xhci->scratchpad->sp_dma_buffers);
|
||
|
||
fail_sp4:
|
||
kfree(xhci->scratchpad->sp_buffers);
|
||
|
||
fail_sp3:
|
||
pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
|
||
xhci->scratchpad->sp_array,
|
||
xhci->scratchpad->sp_dma);
|
||
|
||
fail_sp2:
|
||
kfree(xhci->scratchpad);
|
||
xhci->scratchpad = NULL;
|
||
|
||
fail_sp:
|
||
return -ENOMEM;
|
||
}
|
||
|
||
static void scratchpad_free(struct xhci_hcd *xhci)
|
||
{
|
||
int num_sp;
|
||
int i;
|
||
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
||
|
||
if (!xhci->scratchpad)
|
||
return;
|
||
|
||
num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
|
||
|
||
for (i = 0; i < num_sp; i++) {
|
||
pci_free_consistent(pdev, xhci->page_size,
|
||
xhci->scratchpad->sp_buffers[i],
|
||
xhci->scratchpad->sp_dma_buffers[i]);
|
||
}
|
||
kfree(xhci->scratchpad->sp_dma_buffers);
|
||
kfree(xhci->scratchpad->sp_buffers);
|
||
pci_free_consistent(pdev, num_sp * sizeof(u64),
|
||
xhci->scratchpad->sp_array,
|
||
xhci->scratchpad->sp_dma);
|
||
kfree(xhci->scratchpad);
|
||
xhci->scratchpad = NULL;
|
||
}
|
||
|
||
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
|
||
bool allocate_in_ctx, bool allocate_completion,
|
||
gfp_t mem_flags)
|
||
{
|
||
struct xhci_command *command;
|
||
|
||
command = kzalloc(sizeof(*command), mem_flags);
|
||
if (!command)
|
||
return NULL;
|
||
|
||
if (allocate_in_ctx) {
|
||
command->in_ctx =
|
||
xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
|
||
mem_flags);
|
||
if (!command->in_ctx) {
|
||
kfree(command);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
if (allocate_completion) {
|
||
command->completion =
|
||
kzalloc(sizeof(struct completion), mem_flags);
|
||
if (!command->completion) {
|
||
xhci_free_container_ctx(xhci, command->in_ctx);
|
||
kfree(command);
|
||
return NULL;
|
||
}
|
||
init_completion(command->completion);
|
||
}
|
||
|
||
command->status = 0;
|
||
INIT_LIST_HEAD(&command->cmd_list);
|
||
return command;
|
||
}
|
||
|
||
void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
|
||
{
|
||
int last;
|
||
|
||
if (!urb_priv)
|
||
return;
|
||
|
||
last = urb_priv->length - 1;
|
||
if (last >= 0) {
|
||
int i;
|
||
for (i = 0; i <= last; i++)
|
||
kfree(urb_priv->td[i]);
|
||
}
|
||
kfree(urb_priv);
|
||
}
|
||
|
||
void xhci_free_command(struct xhci_hcd *xhci,
|
||
struct xhci_command *command)
|
||
{
|
||
xhci_free_container_ctx(xhci,
|
||
command->in_ctx);
|
||
kfree(command->completion);
|
||
kfree(command);
|
||
}
|
||
|
||
void xhci_mem_cleanup(struct xhci_hcd *xhci)
|
||
{
|
||
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
|
||
int size;
|
||
int i;
|
||
|
||
/* Free the Event Ring Segment Table and the actual Event Ring */
|
||
if (xhci->ir_set) {
|
||
xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
|
||
xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
|
||
xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
|
||
}
|
||
size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
|
||
if (xhci->erst.entries)
|
||
pci_free_consistent(pdev, size,
|
||
xhci->erst.entries, xhci->erst.erst_dma_addr);
|
||
xhci->erst.entries = NULL;
|
||
xhci_dbg(xhci, "Freed ERST\n");
|
||
if (xhci->event_ring)
|
||
xhci_ring_free(xhci, xhci->event_ring);
|
||
xhci->event_ring = NULL;
|
||
xhci_dbg(xhci, "Freed event ring\n");
|
||
|
||
xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
|
||
if (xhci->cmd_ring)
|
||
xhci_ring_free(xhci, xhci->cmd_ring);
|
||
xhci->cmd_ring = NULL;
|
||
xhci_dbg(xhci, "Freed command ring\n");
|
||
|
||
for (i = 1; i < MAX_HC_SLOTS; ++i)
|
||
xhci_free_virt_device(xhci, i);
|
||
|
||
if (xhci->segment_pool)
|
||
dma_pool_destroy(xhci->segment_pool);
|
||
xhci->segment_pool = NULL;
|
||
xhci_dbg(xhci, "Freed segment pool\n");
|
||
|
||
if (xhci->device_pool)
|
||
dma_pool_destroy(xhci->device_pool);
|
||
xhci->device_pool = NULL;
|
||
xhci_dbg(xhci, "Freed device context pool\n");
|
||
|
||
if (xhci->small_streams_pool)
|
||
dma_pool_destroy(xhci->small_streams_pool);
|
||
xhci->small_streams_pool = NULL;
|
||
xhci_dbg(xhci, "Freed small stream array pool\n");
|
||
|
||
if (xhci->medium_streams_pool)
|
||
dma_pool_destroy(xhci->medium_streams_pool);
|
||
xhci->medium_streams_pool = NULL;
|
||
xhci_dbg(xhci, "Freed medium stream array pool\n");
|
||
|
||
xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
|
||
if (xhci->dcbaa)
|
||
pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
|
||
xhci->dcbaa, xhci->dcbaa->dma);
|
||
xhci->dcbaa = NULL;
|
||
|
||
scratchpad_free(xhci);
|
||
|
||
xhci->num_usb2_ports = 0;
|
||
xhci->num_usb3_ports = 0;
|
||
kfree(xhci->usb2_ports);
|
||
kfree(xhci->usb3_ports);
|
||
kfree(xhci->port_array);
|
||
|
||
xhci->page_size = 0;
|
||
xhci->page_shift = 0;
|
||
xhci->bus_suspended = 0;
|
||
}
|
||
|
||
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
|
||
struct xhci_segment *input_seg,
|
||
union xhci_trb *start_trb,
|
||
union xhci_trb *end_trb,
|
||
dma_addr_t input_dma,
|
||
struct xhci_segment *result_seg,
|
||
char *test_name, int test_number)
|
||
{
|
||
unsigned long long start_dma;
|
||
unsigned long long end_dma;
|
||
struct xhci_segment *seg;
|
||
|
||
start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
|
||
end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
|
||
|
||
seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
|
||
if (seg != result_seg) {
|
||
xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
|
||
test_name, test_number);
|
||
xhci_warn(xhci, "Tested TRB math w/ seg %p and "
|
||
"input DMA 0x%llx\n",
|
||
input_seg,
|
||
(unsigned long long) input_dma);
|
||
xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
|
||
"ending TRB %p (0x%llx DMA)\n",
|
||
start_trb, start_dma,
|
||
end_trb, end_dma);
|
||
xhci_warn(xhci, "Expected seg %p, got seg %p\n",
|
||
result_seg, seg);
|
||
return -1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
|
||
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
|
||
{
|
||
struct {
|
||
dma_addr_t input_dma;
|
||
struct xhci_segment *result_seg;
|
||
} simple_test_vector [] = {
|
||
/* A zeroed DMA field should fail */
|
||
{ 0, NULL },
|
||
/* One TRB before the ring start should fail */
|
||
{ xhci->event_ring->first_seg->dma - 16, NULL },
|
||
/* One byte before the ring start should fail */
|
||
{ xhci->event_ring->first_seg->dma - 1, NULL },
|
||
/* Starting TRB should succeed */
|
||
{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
|
||
/* Ending TRB should succeed */
|
||
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
|
||
xhci->event_ring->first_seg },
|
||
/* One byte after the ring end should fail */
|
||
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
|
||
/* One TRB after the ring end should fail */
|
||
{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
|
||
/* An address of all ones should fail */
|
||
{ (dma_addr_t) (~0), NULL },
|
||
};
|
||
struct {
|
||
struct xhci_segment *input_seg;
|
||
union xhci_trb *start_trb;
|
||
union xhci_trb *end_trb;
|
||
dma_addr_t input_dma;
|
||
struct xhci_segment *result_seg;
|
||
} complex_test_vector [] = {
|
||
/* Test feeding a valid DMA address from a different ring */
|
||
{ .input_seg = xhci->event_ring->first_seg,
|
||
.start_trb = xhci->event_ring->first_seg->trbs,
|
||
.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
|
||
.input_dma = xhci->cmd_ring->first_seg->dma,
|
||
.result_seg = NULL,
|
||
},
|
||
/* Test feeding a valid end TRB from a different ring */
|
||
{ .input_seg = xhci->event_ring->first_seg,
|
||
.start_trb = xhci->event_ring->first_seg->trbs,
|
||
.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
|
||
.input_dma = xhci->cmd_ring->first_seg->dma,
|
||
.result_seg = NULL,
|
||
},
|
||
/* Test feeding a valid start and end TRB from a different ring */
|
||
{ .input_seg = xhci->event_ring->first_seg,
|
||
.start_trb = xhci->cmd_ring->first_seg->trbs,
|
||
.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
|
||
.input_dma = xhci->cmd_ring->first_seg->dma,
|
||
.result_seg = NULL,
|
||
},
|
||
/* TRB in this ring, but after this TD */
|
||
{ .input_seg = xhci->event_ring->first_seg,
|
||
.start_trb = &xhci->event_ring->first_seg->trbs[0],
|
||
.end_trb = &xhci->event_ring->first_seg->trbs[3],
|
||
.input_dma = xhci->event_ring->first_seg->dma + 4*16,
|
||
.result_seg = NULL,
|
||
},
|
||
/* TRB in this ring, but before this TD */
|
||
{ .input_seg = xhci->event_ring->first_seg,
|
||
.start_trb = &xhci->event_ring->first_seg->trbs[3],
|
||
.end_trb = &xhci->event_ring->first_seg->trbs[6],
|
||
.input_dma = xhci->event_ring->first_seg->dma + 2*16,
|
||
.result_seg = NULL,
|
||
},
|
||
/* TRB in this ring, but after this wrapped TD */
|
||
{ .input_seg = xhci->event_ring->first_seg,
|
||
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
|
||
.end_trb = &xhci->event_ring->first_seg->trbs[1],
|
||
.input_dma = xhci->event_ring->first_seg->dma + 2*16,
|
||
.result_seg = NULL,
|
||
},
|
||
/* TRB in this ring, but before this wrapped TD */
|
||
{ .input_seg = xhci->event_ring->first_seg,
|
||
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
|
||
.end_trb = &xhci->event_ring->first_seg->trbs[1],
|
||
.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
|
||
.result_seg = NULL,
|
||
},
|
||
/* TRB not in this ring, and we have a wrapped TD */
|
||
{ .input_seg = xhci->event_ring->first_seg,
|
||
.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
|
||
.end_trb = &xhci->event_ring->first_seg->trbs[1],
|
||
.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
|
||
.result_seg = NULL,
|
||
},
|
||
};
|
||
|
||
unsigned int num_tests;
|
||
int i, ret;
|
||
|
||
num_tests = ARRAY_SIZE(simple_test_vector);
|
||
for (i = 0; i < num_tests; i++) {
|
||
ret = xhci_test_trb_in_td(xhci,
|
||
xhci->event_ring->first_seg,
|
||
xhci->event_ring->first_seg->trbs,
|
||
&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
|
||
simple_test_vector[i].input_dma,
|
||
simple_test_vector[i].result_seg,
|
||
"Simple", i);
|
||
if (ret < 0)
|
||
return ret;
|
||
}
|
||
|
||
num_tests = ARRAY_SIZE(complex_test_vector);
|
||
for (i = 0; i < num_tests; i++) {
|
||
ret = xhci_test_trb_in_td(xhci,
|
||
complex_test_vector[i].input_seg,
|
||
complex_test_vector[i].start_trb,
|
||
complex_test_vector[i].end_trb,
|
||
complex_test_vector[i].input_dma,
|
||
complex_test_vector[i].result_seg,
|
||
"Complex", i);
|
||
if (ret < 0)
|
||
return ret;
|
||
}
|
||
xhci_dbg(xhci, "TRB math tests passed.\n");
|
||
return 0;
|
||
}
|
||
|
||
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
|
||
{
|
||
u64 temp;
|
||
dma_addr_t deq;
|
||
|
||
deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
|
||
xhci->event_ring->dequeue);
|
||
if (deq == 0 && !in_interrupt())
|
||
xhci_warn(xhci, "WARN something wrong with SW event ring "
|
||
"dequeue ptr.\n");
|
||
/* Update HC event ring dequeue pointer */
|
||
temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
|
||
temp &= ERST_PTR_MASK;
|
||
/* Don't clear the EHB bit (which is RW1C) because
|
||
* there might be more events to service.
|
||
*/
|
||
temp &= ~ERST_EHB;
|
||
xhci_dbg(xhci, "// Write event ring dequeue pointer, "
|
||
"preserving EHB bit\n");
|
||
xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
|
||
&xhci->ir_set->erst_dequeue);
|
||
}
|
||
|
||
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
|
||
u32 __iomem *addr, u8 major_revision)
|
||
{
|
||
u32 temp, port_offset, port_count;
|
||
int i;
|
||
|
||
if (major_revision > 0x03) {
|
||
xhci_warn(xhci, "Ignoring unknown port speed, "
|
||
"Ext Cap %p, revision = 0x%x\n",
|
||
addr, major_revision);
|
||
/* Ignoring port protocol we can't understand. FIXME */
|
||
return;
|
||
}
|
||
|
||
/* Port offset and count in the third dword, see section 7.2 */
|
||
temp = xhci_readl(xhci, addr + 2);
|
||
port_offset = XHCI_EXT_PORT_OFF(temp);
|
||
port_count = XHCI_EXT_PORT_COUNT(temp);
|
||
xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
|
||
"count = %u, revision = 0x%x\n",
|
||
addr, port_offset, port_count, major_revision);
|
||
/* Port count includes the current port offset */
|
||
if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
|
||
/* WTF? "Valid values are ‘1’ to MaxPorts" */
|
||
return;
|
||
port_offset--;
|
||
for (i = port_offset; i < (port_offset + port_count); i++) {
|
||
/* Duplicate entry. Ignore the port if the revisions differ. */
|
||
if (xhci->port_array[i] != 0) {
|
||
xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
|
||
" port %u\n", addr, i);
|
||
xhci_warn(xhci, "Port was marked as USB %u, "
|
||
"duplicated as USB %u\n",
|
||
xhci->port_array[i], major_revision);
|
||
/* Only adjust the roothub port counts if we haven't
|
||
* found a similar duplicate.
|
||
*/
|
||
if (xhci->port_array[i] != major_revision &&
|
||
xhci->port_array[i] != (u8) -1) {
|
||
if (xhci->port_array[i] == 0x03)
|
||
xhci->num_usb3_ports--;
|
||
else
|
||
xhci->num_usb2_ports--;
|
||
xhci->port_array[i] = (u8) -1;
|
||
}
|
||
/* FIXME: Should we disable the port? */
|
||
continue;
|
||
}
|
||
xhci->port_array[i] = major_revision;
|
||
if (major_revision == 0x03)
|
||
xhci->num_usb3_ports++;
|
||
else
|
||
xhci->num_usb2_ports++;
|
||
}
|
||
/* FIXME: Should we disable ports not in the Extended Capabilities? */
|
||
}
|
||
|
||
/*
|
||
* Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
|
||
* specify what speeds each port is supposed to be. We can't count on the port
|
||
* speed bits in the PORTSC register being correct until a device is connected,
|
||
* but we need to set up the two fake roothubs with the correct number of USB
|
||
* 3.0 and USB 2.0 ports at host controller initialization time.
|
||
*/
|
||
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
|
||
{
|
||
u32 __iomem *addr;
|
||
u32 offset;
|
||
unsigned int num_ports;
|
||
int i, port_index;
|
||
|
||
addr = &xhci->cap_regs->hcc_params;
|
||
offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
|
||
if (offset == 0) {
|
||
xhci_err(xhci, "No Extended Capability registers, "
|
||
"unable to set up roothub.\n");
|
||
return -ENODEV;
|
||
}
|
||
|
||
num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
|
||
xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
|
||
if (!xhci->port_array)
|
||
return -ENOMEM;
|
||
|
||
/*
|
||
* For whatever reason, the first capability offset is from the
|
||
* capability register base, not from the HCCPARAMS register.
|
||
* See section 5.3.6 for offset calculation.
|
||
*/
|
||
addr = &xhci->cap_regs->hc_capbase + offset;
|
||
while (1) {
|
||
u32 cap_id;
|
||
|
||
cap_id = xhci_readl(xhci, addr);
|
||
if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
|
||
xhci_add_in_port(xhci, num_ports, addr,
|
||
(u8) XHCI_EXT_PORT_MAJOR(cap_id));
|
||
offset = XHCI_EXT_CAPS_NEXT(cap_id);
|
||
if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
|
||
== num_ports)
|
||
break;
|
||
/*
|
||
* Once you're into the Extended Capabilities, the offset is
|
||
* always relative to the register holding the offset.
|
||
*/
|
||
addr += offset;
|
||
}
|
||
|
||
if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
|
||
xhci_warn(xhci, "No ports on the roothubs?\n");
|
||
return -ENODEV;
|
||
}
|
||
xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
|
||
xhci->num_usb2_ports, xhci->num_usb3_ports);
|
||
/*
|
||
* Note we could have all USB 3.0 ports, or all USB 2.0 ports.
|
||
* Not sure how the USB core will handle a hub with no ports...
|
||
*/
|
||
if (xhci->num_usb2_ports) {
|
||
xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
|
||
xhci->num_usb2_ports, flags);
|
||
if (!xhci->usb2_ports)
|
||
return -ENOMEM;
|
||
|
||
port_index = 0;
|
||
for (i = 0; i < num_ports; i++) {
|
||
if (xhci->port_array[i] == 0x03 ||
|
||
xhci->port_array[i] == 0 ||
|
||
xhci->port_array[i] == -1)
|
||
continue;
|
||
|
||
xhci->usb2_ports[port_index] =
|
||
&xhci->op_regs->port_status_base +
|
||
NUM_PORT_REGS*i;
|
||
xhci_dbg(xhci, "USB 2.0 port at index %u, "
|
||
"addr = %p\n", i,
|
||
xhci->usb2_ports[port_index]);
|
||
port_index++;
|
||
}
|
||
}
|
||
if (xhci->num_usb3_ports) {
|
||
xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
|
||
xhci->num_usb3_ports, flags);
|
||
if (!xhci->usb3_ports)
|
||
return -ENOMEM;
|
||
|
||
port_index = 0;
|
||
for (i = 0; i < num_ports; i++)
|
||
if (xhci->port_array[i] == 0x03) {
|
||
xhci->usb3_ports[port_index] =
|
||
&xhci->op_regs->port_status_base +
|
||
NUM_PORT_REGS*i;
|
||
xhci_dbg(xhci, "USB 3.0 port at index %u, "
|
||
"addr = %p\n", i,
|
||
xhci->usb3_ports[port_index]);
|
||
port_index++;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
|
||
{
|
||
dma_addr_t dma;
|
||
struct device *dev = xhci_to_hcd(xhci)->self.controller;
|
||
unsigned int val, val2;
|
||
u64 val_64;
|
||
struct xhci_segment *seg;
|
||
u32 page_size;
|
||
int i;
|
||
|
||
page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
|
||
xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
|
||
for (i = 0; i < 16; i++) {
|
||
if ((0x1 & page_size) != 0)
|
||
break;
|
||
page_size = page_size >> 1;
|
||
}
|
||
if (i < 16)
|
||
xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
|
||
else
|
||
xhci_warn(xhci, "WARN: no supported page size\n");
|
||
/* Use 4K pages, since that's common and the minimum the HC supports */
|
||
xhci->page_shift = 12;
|
||
xhci->page_size = 1 << xhci->page_shift;
|
||
xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
|
||
|
||
/*
|
||
* Program the Number of Device Slots Enabled field in the CONFIG
|
||
* register with the max value of slots the HC can handle.
|
||
*/
|
||
val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
|
||
xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
|
||
(unsigned int) val);
|
||
val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
|
||
val |= (val2 & ~HCS_SLOTS_MASK);
|
||
xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
|
||
(unsigned int) val);
|
||
xhci_writel(xhci, val, &xhci->op_regs->config_reg);
|
||
|
||
/*
|
||
* Section 5.4.8 - doorbell array must be
|
||
* "physically contiguous and 64-byte (cache line) aligned".
|
||
*/
|
||
xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
|
||
sizeof(*xhci->dcbaa), &dma);
|
||
if (!xhci->dcbaa)
|
||
goto fail;
|
||
memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
|
||
xhci->dcbaa->dma = dma;
|
||
xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
|
||
(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
|
||
xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
|
||
|
||
/*
|
||
* Initialize the ring segment pool. The ring must be a contiguous
|
||
* structure comprised of TRBs. The TRBs must be 16 byte aligned,
|
||
* however, the command ring segment needs 64-byte aligned segments,
|
||
* so we pick the greater alignment need.
|
||
*/
|
||
xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
|
||
SEGMENT_SIZE, 64, xhci->page_size);
|
||
|
||
/* See Table 46 and Note on Figure 55 */
|
||
xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
|
||
2112, 64, xhci->page_size);
|
||
if (!xhci->segment_pool || !xhci->device_pool)
|
||
goto fail;
|
||
|
||
/* Linear stream context arrays don't have any boundary restrictions,
|
||
* and only need to be 16-byte aligned.
|
||
*/
|
||
xhci->small_streams_pool =
|
||
dma_pool_create("xHCI 256 byte stream ctx arrays",
|
||
dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
|
||
xhci->medium_streams_pool =
|
||
dma_pool_create("xHCI 1KB stream ctx arrays",
|
||
dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
|
||
/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
|
||
* will be allocated with pci_alloc_consistent()
|
||
*/
|
||
|
||
if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
|
||
goto fail;
|
||
|
||
/* Set up the command ring to have one segments for now. */
|
||
xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
|
||
if (!xhci->cmd_ring)
|
||
goto fail;
|
||
xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
|
||
xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
|
||
(unsigned long long)xhci->cmd_ring->first_seg->dma);
|
||
|
||
/* Set the address in the Command Ring Control register */
|
||
val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
|
||
val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
|
||
(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
|
||
xhci->cmd_ring->cycle_state;
|
||
xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
|
||
xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
|
||
xhci_dbg_cmd_ptrs(xhci);
|
||
|
||
val = xhci_readl(xhci, &xhci->cap_regs->db_off);
|
||
val &= DBOFF_MASK;
|
||
xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
|
||
" from cap regs base addr\n", val);
|
||
xhci->dba = (void __iomem *) xhci->cap_regs + val;
|
||
xhci_dbg_regs(xhci);
|
||
xhci_print_run_regs(xhci);
|
||
/* Set ir_set to interrupt register set 0 */
|
||
xhci->ir_set = &xhci->run_regs->ir_set[0];
|
||
|
||
/*
|
||
* Event ring setup: Allocate a normal ring, but also setup
|
||
* the event ring segment table (ERST). Section 4.9.3.
|
||
*/
|
||
xhci_dbg(xhci, "// Allocating event ring\n");
|
||
xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
|
||
if (!xhci->event_ring)
|
||
goto fail;
|
||
if (xhci_check_trb_in_td_math(xhci, flags) < 0)
|
||
goto fail;
|
||
|
||
xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
|
||
sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
|
||
if (!xhci->erst.entries)
|
||
goto fail;
|
||
xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
|
||
(unsigned long long)dma);
|
||
|
||
memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
|
||
xhci->erst.num_entries = ERST_NUM_SEGS;
|
||
xhci->erst.erst_dma_addr = dma;
|
||
xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
|
||
xhci->erst.num_entries,
|
||
xhci->erst.entries,
|
||
(unsigned long long)xhci->erst.erst_dma_addr);
|
||
|
||
/* set ring base address and size for each segment table entry */
|
||
for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
|
||
struct xhci_erst_entry *entry = &xhci->erst.entries[val];
|
||
entry->seg_addr = seg->dma;
|
||
entry->seg_size = TRBS_PER_SEGMENT;
|
||
entry->rsvd = 0;
|
||
seg = seg->next;
|
||
}
|
||
|
||
/* set ERST count with the number of entries in the segment table */
|
||
val = xhci_readl(xhci, &xhci->ir_set->erst_size);
|
||
val &= ERST_SIZE_MASK;
|
||
val |= ERST_NUM_SEGS;
|
||
xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
|
||
val);
|
||
xhci_writel(xhci, val, &xhci->ir_set->erst_size);
|
||
|
||
xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
|
||
/* set the segment table base address */
|
||
xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
|
||
(unsigned long long)xhci->erst.erst_dma_addr);
|
||
val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
|
||
val_64 &= ERST_PTR_MASK;
|
||
val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
|
||
xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
|
||
|
||
/* Set the event ring dequeue address */
|
||
xhci_set_hc_event_deq(xhci);
|
||
xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
|
||
xhci_print_ir_set(xhci, 0);
|
||
|
||
/*
|
||
* XXX: Might need to set the Interrupter Moderation Register to
|
||
* something other than the default (~1ms minimum between interrupts).
|
||
* See section 5.5.1.2.
|
||
*/
|
||
init_completion(&xhci->addr_dev);
|
||
for (i = 0; i < MAX_HC_SLOTS; ++i)
|
||
xhci->devs[i] = NULL;
|
||
for (i = 0; i < MAX_HC_PORTS; ++i)
|
||
xhci->resume_done[i] = 0;
|
||
|
||
if (scratchpad_alloc(xhci, flags))
|
||
goto fail;
|
||
if (xhci_setup_port_arrays(xhci, flags))
|
||
goto fail;
|
||
|
||
return 0;
|
||
|
||
fail:
|
||
xhci_warn(xhci, "Couldn't initialize memory\n");
|
||
xhci_mem_cleanup(xhci);
|
||
return -ENOMEM;
|
||
}
|