mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
559 lines
13 KiB
C
559 lines
13 KiB
C
/*
|
|
* Mips Jazz DMA controller support
|
|
* Copyright (C) 1995, 1996 by Andreas Busse
|
|
*
|
|
* NOTE: Some of the argument checking could be removed when
|
|
* things have settled down. Also, instead of returning 0xffffffff
|
|
* on failure of vdma_alloc() one could leave page #0 unused
|
|
* and return the more usual NULL pointer as logical address.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/gfp.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/jazz.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/jazzdma.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
/*
|
|
* Set this to one to enable additional vdma debug code.
|
|
*/
|
|
#define CONF_DEBUG_VDMA 0
|
|
|
|
static VDMA_PGTBL_ENTRY *pgtbl;
|
|
|
|
static DEFINE_SPINLOCK(vdma_lock);
|
|
|
|
/*
|
|
* Debug stuff
|
|
*/
|
|
#define vdma_debug ((CONF_DEBUG_VDMA) ? debuglvl : 0)
|
|
|
|
static int debuglvl = 3;
|
|
|
|
/*
|
|
* Initialize the pagetable with a one-to-one mapping of
|
|
* the first 16 Mbytes of main memory and declare all
|
|
* entries to be unused. Using this method will at least
|
|
* allow some early device driver operations to work.
|
|
*/
|
|
static inline void vdma_pgtbl_init(void)
|
|
{
|
|
unsigned long paddr = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
|
|
pgtbl[i].frame = paddr;
|
|
pgtbl[i].owner = VDMA_PAGE_EMPTY;
|
|
paddr += VDMA_PAGESIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the Jazz R4030 dma controller
|
|
*/
|
|
static int __init vdma_init(void)
|
|
{
|
|
/*
|
|
* Allocate 32k of memory for DMA page tables. This needs to be page
|
|
* aligned and should be uncached to avoid cache flushing after every
|
|
* update.
|
|
*/
|
|
pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
|
|
get_order(VDMA_PGTBL_SIZE));
|
|
BUG_ON(!pgtbl);
|
|
dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
|
|
pgtbl = (VDMA_PGTBL_ENTRY *)KSEG1ADDR(pgtbl);
|
|
|
|
/*
|
|
* Clear the R4030 translation table
|
|
*/
|
|
vdma_pgtbl_init();
|
|
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE, CPHYSADDR(pgtbl));
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
|
|
|
|
printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA pagetables using a simple first-fit algorithm
|
|
*/
|
|
unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
|
|
{
|
|
int first, last, pages, frame, i;
|
|
unsigned long laddr, flags;
|
|
|
|
/* check arguments */
|
|
|
|
if (paddr > 0x1fffffff) {
|
|
if (vdma_debug)
|
|
printk("vdma_alloc: Invalid physical address: %08lx\n",
|
|
paddr);
|
|
return VDMA_ERROR; /* invalid physical address */
|
|
}
|
|
if (size > 0x400000 || size == 0) {
|
|
if (vdma_debug)
|
|
printk("vdma_alloc: Invalid size: %08lx\n", size);
|
|
return VDMA_ERROR; /* invalid physical address */
|
|
}
|
|
|
|
spin_lock_irqsave(&vdma_lock, flags);
|
|
/*
|
|
* Find free chunk
|
|
*/
|
|
pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
|
|
first = 0;
|
|
while (1) {
|
|
while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
|
|
first < VDMA_PGTBL_ENTRIES) first++;
|
|
if (first + pages > VDMA_PGTBL_ENTRIES) { /* nothing free */
|
|
spin_unlock_irqrestore(&vdma_lock, flags);
|
|
return VDMA_ERROR;
|
|
}
|
|
|
|
last = first + 1;
|
|
while (pgtbl[last].owner == VDMA_PAGE_EMPTY
|
|
&& last - first < pages)
|
|
last++;
|
|
|
|
if (last - first == pages)
|
|
break; /* found */
|
|
first = last + 1;
|
|
}
|
|
|
|
/*
|
|
* Mark pages as allocated
|
|
*/
|
|
laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
|
|
frame = paddr & ~(VDMA_PAGESIZE - 1);
|
|
|
|
for (i = first; i < last; i++) {
|
|
pgtbl[i].frame = frame;
|
|
pgtbl[i].owner = laddr;
|
|
frame += VDMA_PAGESIZE;
|
|
}
|
|
|
|
/*
|
|
* Update translation table and return logical start address
|
|
*/
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
|
|
|
|
if (vdma_debug > 1)
|
|
printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
|
|
pages, laddr);
|
|
|
|
if (vdma_debug > 2) {
|
|
printk("LADDR: ");
|
|
for (i = first; i < last; i++)
|
|
printk("%08x ", i << 12);
|
|
printk("\nPADDR: ");
|
|
for (i = first; i < last; i++)
|
|
printk("%08x ", pgtbl[i].frame);
|
|
printk("\nOWNER: ");
|
|
for (i = first; i < last; i++)
|
|
printk("%08x ", pgtbl[i].owner);
|
|
printk("\n");
|
|
}
|
|
|
|
spin_unlock_irqrestore(&vdma_lock, flags);
|
|
|
|
return laddr;
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_alloc);
|
|
|
|
/*
|
|
* Free previously allocated dma translation pages
|
|
* Note that this does NOT change the translation table,
|
|
* it just marks the free'd pages as unused!
|
|
*/
|
|
int vdma_free(unsigned long laddr)
|
|
{
|
|
int i;
|
|
|
|
i = laddr >> 12;
|
|
|
|
if (pgtbl[i].owner != laddr) {
|
|
printk
|
|
("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
|
|
laddr);
|
|
return -1;
|
|
}
|
|
|
|
while (i < VDMA_PGTBL_ENTRIES && pgtbl[i].owner == laddr) {
|
|
pgtbl[i].owner = VDMA_PAGE_EMPTY;
|
|
i++;
|
|
}
|
|
|
|
if (vdma_debug > 1)
|
|
printk("vdma_free: freed %ld pages starting from %08lx\n",
|
|
i - (laddr >> 12), laddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_free);
|
|
|
|
/*
|
|
* Map certain page(s) to another physical address.
|
|
* Caller must have allocated the page(s) before.
|
|
*/
|
|
int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
|
|
{
|
|
int first, pages, npages;
|
|
|
|
if (laddr > 0xffffff) {
|
|
if (vdma_debug)
|
|
printk
|
|
("vdma_map: Invalid logical address: %08lx\n",
|
|
laddr);
|
|
return -EINVAL; /* invalid logical address */
|
|
}
|
|
if (paddr > 0x1fffffff) {
|
|
if (vdma_debug)
|
|
printk
|
|
("vdma_map: Invalid physical address: %08lx\n",
|
|
paddr);
|
|
return -EINVAL; /* invalid physical address */
|
|
}
|
|
|
|
npages = pages =
|
|
(((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
|
|
first = laddr >> 12;
|
|
if (vdma_debug)
|
|
printk("vdma_remap: first=%x, pages=%x\n", first, pages);
|
|
if (first + pages > VDMA_PGTBL_ENTRIES) {
|
|
if (vdma_debug)
|
|
printk("vdma_alloc: Invalid size: %08lx\n", size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
paddr &= ~(VDMA_PAGESIZE - 1);
|
|
while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
|
|
if (pgtbl[first].owner != laddr) {
|
|
if (vdma_debug)
|
|
printk("Trying to remap other's pages.\n");
|
|
return -EPERM; /* not owner */
|
|
}
|
|
pgtbl[first].frame = paddr;
|
|
paddr += VDMA_PAGESIZE;
|
|
first++;
|
|
pages--;
|
|
}
|
|
|
|
/*
|
|
* Update translation table
|
|
*/
|
|
r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
|
|
|
|
if (vdma_debug > 2) {
|
|
int i;
|
|
pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
|
|
first = laddr >> 12;
|
|
printk("LADDR: ");
|
|
for (i = first; i < first + pages; i++)
|
|
printk("%08x ", i << 12);
|
|
printk("\nPADDR: ");
|
|
for (i = first; i < first + pages; i++)
|
|
printk("%08x ", pgtbl[i].frame);
|
|
printk("\nOWNER: ");
|
|
for (i = first; i < first + pages; i++)
|
|
printk("%08x ", pgtbl[i].owner);
|
|
printk("\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Translate a physical address to a logical address.
|
|
* This will return the logical address of the first
|
|
* match.
|
|
*/
|
|
unsigned long vdma_phys2log(unsigned long paddr)
|
|
{
|
|
int i;
|
|
int frame;
|
|
|
|
frame = paddr & ~(VDMA_PAGESIZE - 1);
|
|
|
|
for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
|
|
if (pgtbl[i].frame == frame)
|
|
break;
|
|
}
|
|
|
|
if (i == VDMA_PGTBL_ENTRIES)
|
|
return ~0UL;
|
|
|
|
return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_phys2log);
|
|
|
|
/*
|
|
* Translate a logical DMA address to a physical address
|
|
*/
|
|
unsigned long vdma_log2phys(unsigned long laddr)
|
|
{
|
|
return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_log2phys);
|
|
|
|
/*
|
|
* Print DMA statistics
|
|
*/
|
|
void vdma_stats(void)
|
|
{
|
|
int i;
|
|
|
|
printk("vdma_stats: CONFIG: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_CONFIG));
|
|
printk("R4030 translation table base: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
|
|
printk("R4030 translation table limit: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
|
|
printk("vdma_stats: INV_ADDR: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_INV_ADDR));
|
|
printk("vdma_stats: R_FAIL_ADDR: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
|
|
printk("vdma_stats: M_FAIL_ADDR: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
|
|
printk("vdma_stats: IRQ_SOURCE: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
|
|
printk("vdma_stats: I386_ERROR: %08x\n",
|
|
r4030_read_reg32(JAZZ_R4030_I386_ERROR));
|
|
printk("vdma_chnl_modes: ");
|
|
for (i = 0; i < 8; i++)
|
|
printk("%04x ",
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
|
|
(i << 5)));
|
|
printk("\n");
|
|
printk("vdma_chnl_enables: ");
|
|
for (i = 0; i < 8; i++)
|
|
printk("%04x ",
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(i << 5)));
|
|
printk("\n");
|
|
}
|
|
|
|
/*
|
|
* DMA transfer functions
|
|
*/
|
|
|
|
/*
|
|
* Enable a DMA channel. Also clear any error conditions.
|
|
*/
|
|
void vdma_enable(int channel)
|
|
{
|
|
int status;
|
|
|
|
if (vdma_debug)
|
|
printk("vdma_enable: channel %d\n", channel);
|
|
|
|
/*
|
|
* Check error conditions first
|
|
*/
|
|
status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
|
|
if (status & 0x400)
|
|
printk("VDMA: Channel %d: Address error!\n", channel);
|
|
if (status & 0x200)
|
|
printk("VDMA: Channel %d: Memory error!\n", channel);
|
|
|
|
/*
|
|
* Clear all interrupt flags
|
|
*/
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) | R4030_TC_INTR
|
|
| R4030_MEM_INTR | R4030_ADDR_INTR);
|
|
|
|
/*
|
|
* Enable the desired channel
|
|
*/
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) |
|
|
R4030_CHNL_ENABLE);
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_enable);
|
|
|
|
/*
|
|
* Disable a DMA channel
|
|
*/
|
|
void vdma_disable(int channel)
|
|
{
|
|
if (vdma_debug) {
|
|
int status =
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5));
|
|
|
|
printk("vdma_disable: channel %d\n", channel);
|
|
printk("VDMA: channel %d status: %04x (%s) mode: "
|
|
"%02x addr: %06x count: %06x\n",
|
|
channel, status,
|
|
((status & 0x600) ? "ERROR" : "OK"),
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
|
|
(channel << 5)),
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
|
|
(channel << 5)),
|
|
(unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
|
|
(channel << 5)));
|
|
}
|
|
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) &
|
|
~R4030_CHNL_ENABLE);
|
|
|
|
/*
|
|
* After disabling a DMA channel a remote bus register should be
|
|
* read to ensure that the current DMA acknowledge cycle is completed.
|
|
*/
|
|
*((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_disable);
|
|
|
|
/*
|
|
* Set DMA mode. This function accepts the mode values used
|
|
* to set a PC-style DMA controller. For the SCSI and FDC
|
|
* channels, we also set the default modes each time we're
|
|
* called.
|
|
* NOTE: The FAST and BURST dma modes are supported by the
|
|
* R4030 Rev. 2 and PICA chipsets only. I leave them disabled
|
|
* for now.
|
|
*/
|
|
void vdma_set_mode(int channel, int mode)
|
|
{
|
|
if (vdma_debug)
|
|
printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
|
|
mode);
|
|
|
|
switch (channel) {
|
|
case JAZZ_SCSI_DMA: /* scsi */
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
|
|
/* R4030_MODE_FAST | */
|
|
/* R4030_MODE_BURST | */
|
|
R4030_MODE_INTR_EN |
|
|
R4030_MODE_WIDTH_16 |
|
|
R4030_MODE_ATIME_80);
|
|
break;
|
|
|
|
case JAZZ_FLOPPY_DMA: /* floppy */
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
|
|
/* R4030_MODE_FAST | */
|
|
/* R4030_MODE_BURST | */
|
|
R4030_MODE_INTR_EN |
|
|
R4030_MODE_WIDTH_8 |
|
|
R4030_MODE_ATIME_120);
|
|
break;
|
|
|
|
case JAZZ_AUDIOL_DMA:
|
|
case JAZZ_AUDIOR_DMA:
|
|
printk("VDMA: Audio DMA not supported yet.\n");
|
|
break;
|
|
|
|
default:
|
|
printk
|
|
("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
|
|
channel);
|
|
}
|
|
|
|
switch (mode) {
|
|
case DMA_MODE_READ:
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) &
|
|
~R4030_CHNL_WRITE);
|
|
break;
|
|
|
|
case DMA_MODE_WRITE:
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
|
|
r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
|
|
(channel << 5)) |
|
|
R4030_CHNL_WRITE);
|
|
break;
|
|
|
|
default:
|
|
printk
|
|
("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
|
|
mode);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_set_mode);
|
|
|
|
/*
|
|
* Set Transfer Address
|
|
*/
|
|
void vdma_set_addr(int channel, long addr)
|
|
{
|
|
if (vdma_debug)
|
|
printk("vdma_set_addr: channel %d, addr %lx\n", channel,
|
|
addr);
|
|
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_set_addr);
|
|
|
|
/*
|
|
* Set Transfer Count
|
|
*/
|
|
void vdma_set_count(int channel, int count)
|
|
{
|
|
if (vdma_debug)
|
|
printk("vdma_set_count: channel %d, count %08x\n", channel,
|
|
(unsigned) count);
|
|
|
|
r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdma_set_count);
|
|
|
|
/*
|
|
* Get Residual
|
|
*/
|
|
int vdma_get_residue(int channel)
|
|
{
|
|
int residual;
|
|
|
|
residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
|
|
|
|
if (vdma_debug)
|
|
printk("vdma_get_residual: channel %d: residual=%d\n",
|
|
channel, residual);
|
|
|
|
return residual;
|
|
}
|
|
|
|
/*
|
|
* Get DMA channel enable register
|
|
*/
|
|
int vdma_get_enable(int channel)
|
|
{
|
|
int enable;
|
|
|
|
enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
|
|
|
|
if (vdma_debug)
|
|
printk("vdma_get_enable: channel %d: enable=%d\n", channel,
|
|
enable);
|
|
|
|
return enable;
|
|
}
|
|
|
|
arch_initcall(vdma_init);
|