linux/drivers/spi/spi-dw-dma.c
Andy Shevchenko b3f82dc26c
spi: dw: Make DMA request line assignments explicit for Intel Medfield
The 2afccbd283 ("spi: dw: Discard static DW DMA slave structures")
did a clean up of global variables, which is fine, but messed up with
the carefully provided information in the custom DMA slave structures.
There reader can find an assignment of the DMA request lines in use.

Partially revert the above mentioned commit to restore readability
and maintainability of the code.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20200529183150.44149-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2020-05-29 20:04:04 +01:00

481 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Special handling for DW DMA core
*
* Copyright (c) 2009, 2014 Intel Corporation.
*/
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include "spi-dw.h"
#define WAIT_RETRIES 5
#define RX_BUSY 0
#define RX_BURST_LEVEL 16
#define TX_BUSY 1
#define TX_BURST_LEVEL 16
static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
struct dw_dma_slave *s = param;
if (s->dma_dev != chan->device->dev)
return false;
chan->private = s;
return true;
}
static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
{
struct dma_slave_caps caps;
u32 max_burst, def_burst;
int ret;
def_burst = dws->fifo_len / 2;
ret = dma_get_slave_caps(dws->rxchan, &caps);
if (!ret && caps.max_burst)
max_burst = caps.max_burst;
else
max_burst = RX_BURST_LEVEL;
dws->rxburst = min(max_burst, def_burst);
ret = dma_get_slave_caps(dws->txchan, &caps);
if (!ret && caps.max_burst)
max_burst = caps.max_burst;
else
max_burst = TX_BURST_LEVEL;
dws->txburst = min(max_burst, def_burst);
}
static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
{
struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
struct pci_dev *dma_dev;
dma_cap_mask_t mask;
/*
* Get pci device for DMA controller, currently it could only
* be the DMA controller of Medfield
*/
dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
if (!dma_dev)
return -ENODEV;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* 1. Init rx channel */
rx->dma_dev = &dma_dev->dev;
dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
if (!dws->rxchan)
goto err_exit;
/* 2. Init tx channel */
tx->dma_dev = &dma_dev->dev;
dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
if (!dws->txchan)
goto free_rxchan;
dws->master->dma_rx = dws->rxchan;
dws->master->dma_tx = dws->txchan;
init_completion(&dws->dma_completion);
dw_spi_dma_maxburst_init(dws);
return 0;
free_rxchan:
dma_release_channel(dws->rxchan);
dws->rxchan = NULL;
err_exit:
return -EBUSY;
}
static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
{
dws->rxchan = dma_request_slave_channel(dev, "rx");
if (!dws->rxchan)
return -ENODEV;
dws->txchan = dma_request_slave_channel(dev, "tx");
if (!dws->txchan) {
dma_release_channel(dws->rxchan);
dws->rxchan = NULL;
return -ENODEV;
}
dws->master->dma_rx = dws->rxchan;
dws->master->dma_tx = dws->txchan;
init_completion(&dws->dma_completion);
dw_spi_dma_maxburst_init(dws);
return 0;
}
static void dw_spi_dma_exit(struct dw_spi *dws)
{
if (dws->txchan) {
dmaengine_terminate_sync(dws->txchan);
dma_release_channel(dws->txchan);
}
if (dws->rxchan) {
dmaengine_terminate_sync(dws->rxchan);
dma_release_channel(dws->rxchan);
}
dw_writel(dws, DW_SPI_DMACR, 0);
}
static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
{
u16 irq_status = dw_readl(dws, DW_SPI_ISR);
if (!irq_status)
return IRQ_NONE;
dw_readl(dws, DW_SPI_ICR);
spi_reset_chip(dws);
dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
dws->master->cur_msg->status = -EIO;
complete(&dws->dma_completion);
return IRQ_HANDLED;
}
static bool dw_spi_can_dma(struct spi_controller *master,
struct spi_device *spi, struct spi_transfer *xfer)
{
struct dw_spi *dws = spi_controller_get_devdata(master);
return xfer->len > dws->fifo_len;
}
static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
{
if (n_bytes == 1)
return DMA_SLAVE_BUSWIDTH_1_BYTE;
else if (n_bytes == 2)
return DMA_SLAVE_BUSWIDTH_2_BYTES;
return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}
static int dw_spi_dma_wait(struct dw_spi *dws, struct spi_transfer *xfer)
{
unsigned long long ms;
ms = xfer->len * MSEC_PER_SEC * BITS_PER_BYTE;
do_div(ms, xfer->effective_speed_hz);
ms += ms + 200;
if (ms > UINT_MAX)
ms = UINT_MAX;
ms = wait_for_completion_timeout(&dws->dma_completion,
msecs_to_jiffies(ms));
if (ms == 0) {
dev_err(&dws->master->cur_msg->spi->dev,
"DMA transaction timed out\n");
return -ETIMEDOUT;
}
return 0;
}
static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
{
return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
}
static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
struct spi_transfer *xfer)
{
int retry = WAIT_RETRIES;
struct spi_delay delay;
u32 nents;
nents = dw_readl(dws, DW_SPI_TXFLR);
delay.unit = SPI_DELAY_UNIT_SCK;
delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
while (dw_spi_dma_tx_busy(dws) && retry--)
spi_delay_exec(&delay, xfer);
if (retry < 0) {
dev_err(&dws->master->dev, "Tx hanged up\n");
return -EIO;
}
return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_tx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(TX_BUSY, &dws->dma_chan_busy);
if (test_bit(RX_BUSY, &dws->dma_chan_busy))
return;
dw_writel(dws, DW_SPI_DMACR, 0);
complete(&dws->dma_completion);
}
static struct dma_async_tx_descriptor *
dw_spi_dma_prepare_tx(struct dw_spi *dws, struct spi_transfer *xfer)
{
struct dma_slave_config txconf;
struct dma_async_tx_descriptor *txdesc;
if (!xfer->tx_buf)
return NULL;
memset(&txconf, 0, sizeof(txconf));
txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr = dws->dma_addr;
txconf.dst_maxburst = dws->txburst;
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
txconf.device_fc = false;
dmaengine_slave_config(dws->txchan, &txconf);
txdesc = dmaengine_prep_slave_sg(dws->txchan,
xfer->tx_sg.sgl,
xfer->tx_sg.nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc)
return NULL;
txdesc->callback = dw_spi_dma_tx_done;
txdesc->callback_param = dws;
return txdesc;
}
static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
{
return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
}
static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
{
int retry = WAIT_RETRIES;
struct spi_delay delay;
unsigned long ns, us;
u32 nents;
/*
* It's unlikely that DMA engine is still doing the data fetching, but
* if it's let's give it some reasonable time. The timeout calculation
* is based on the synchronous APB/SSI reference clock rate, on a
* number of data entries left in the Rx FIFO, times a number of clock
* periods normally needed for a single APB read/write transaction
* without PREADY signal utilized (which is true for the DW APB SSI
* controller).
*/
nents = dw_readl(dws, DW_SPI_RXFLR);
ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
if (ns <= NSEC_PER_USEC) {
delay.unit = SPI_DELAY_UNIT_NSECS;
delay.value = ns;
} else {
us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
delay.unit = SPI_DELAY_UNIT_USECS;
delay.value = clamp_val(us, 0, USHRT_MAX);
}
while (dw_spi_dma_rx_busy(dws) && retry--)
spi_delay_exec(&delay, NULL);
if (retry < 0) {
dev_err(&dws->master->dev, "Rx hanged up\n");
return -EIO;
}
return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for rx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_rx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(RX_BUSY, &dws->dma_chan_busy);
if (test_bit(TX_BUSY, &dws->dma_chan_busy))
return;
dw_writel(dws, DW_SPI_DMACR, 0);
complete(&dws->dma_completion);
}
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
struct spi_transfer *xfer)
{
struct dma_slave_config rxconf;
struct dma_async_tx_descriptor *rxdesc;
if (!xfer->rx_buf)
return NULL;
memset(&rxconf, 0, sizeof(rxconf));
rxconf.direction = DMA_DEV_TO_MEM;
rxconf.src_addr = dws->dma_addr;
rxconf.src_maxburst = dws->rxburst;
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
rxconf.device_fc = false;
dmaengine_slave_config(dws->rxchan, &rxconf);
rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
xfer->rx_sg.sgl,
xfer->rx_sg.nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc)
return NULL;
rxdesc->callback = dw_spi_dma_rx_done;
rxdesc->callback_param = dws;
return rxdesc;
}
static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
u16 imr = 0, dma_ctrl = 0;
dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
dw_writel(dws, DW_SPI_DMATDLR, dws->fifo_len - dws->txburst);
if (xfer->tx_buf) {
dma_ctrl |= SPI_DMA_TDMAE;
imr |= SPI_INT_TXOI;
}
if (xfer->rx_buf) {
dma_ctrl |= SPI_DMA_RDMAE;
imr |= SPI_INT_RXUI | SPI_INT_RXOI;
}
dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
/* Set the interrupt mask */
spi_umask_intr(dws, imr);
reinit_completion(&dws->dma_completion);
dws->transfer_handler = dw_spi_dma_transfer_handler;
return 0;
}
static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
struct dma_async_tx_descriptor *txdesc, *rxdesc;
int ret;
/* Prepare the TX dma transfer */
txdesc = dw_spi_dma_prepare_tx(dws, xfer);
/* Prepare the RX dma transfer */
rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
/* rx must be started before tx due to spi instinct */
if (rxdesc) {
set_bit(RX_BUSY, &dws->dma_chan_busy);
dmaengine_submit(rxdesc);
dma_async_issue_pending(dws->rxchan);
}
if (txdesc) {
set_bit(TX_BUSY, &dws->dma_chan_busy);
dmaengine_submit(txdesc);
dma_async_issue_pending(dws->txchan);
}
ret = dw_spi_dma_wait(dws, xfer);
if (ret)
return ret;
if (txdesc && dws->master->cur_msg->status == -EINPROGRESS) {
ret = dw_spi_dma_wait_tx_done(dws, xfer);
if (ret)
return ret;
}
if (rxdesc && dws->master->cur_msg->status == -EINPROGRESS)
ret = dw_spi_dma_wait_rx_done(dws);
return ret;
}
static void dw_spi_dma_stop(struct dw_spi *dws)
{
if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->txchan);
clear_bit(TX_BUSY, &dws->dma_chan_busy);
}
if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->rxchan);
clear_bit(RX_BUSY, &dws->dma_chan_busy);
}
dw_writel(dws, DW_SPI_DMACR, 0);
}
static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
.dma_init = dw_spi_dma_init_mfld,
.dma_exit = dw_spi_dma_exit,
.dma_setup = dw_spi_dma_setup,
.can_dma = dw_spi_can_dma,
.dma_transfer = dw_spi_dma_transfer,
.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_mfld(struct dw_spi *dws)
{
dws->dma_ops = &dw_spi_dma_mfld_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
.dma_init = dw_spi_dma_init_generic,
.dma_exit = dw_spi_dma_exit,
.dma_setup = dw_spi_dma_setup,
.can_dma = dw_spi_can_dma,
.dma_transfer = dw_spi_dma_transfer,
.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_generic(struct dw_spi *dws)
{
dws->dma_ops = &dw_spi_dma_generic_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);