linux/drivers/media/dvb/frontends/dib0090.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1524 lines
41 KiB
C

/*
* Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
*
* Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* This code is more or less generated from another driver, please
* excuse some codingstyle oddities.
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include "dvb_frontend.h"
#include "dib0090.h"
#include "dibx000_common.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
#define dprintk(args...) do { \
if (debug) { \
printk(KERN_DEBUG "DiB0090: "); \
printk(args); \
printk("\n"); \
} \
} while (0)
#define CONFIG_SYS_ISDBT
#define CONFIG_BAND_CBAND
#define CONFIG_BAND_VHF
#define CONFIG_BAND_UHF
#define CONFIG_DIB0090_USE_PWM_AGC
#define EN_LNA0 0x8000
#define EN_LNA1 0x4000
#define EN_LNA2 0x2000
#define EN_LNA3 0x1000
#define EN_MIX0 0x0800
#define EN_MIX1 0x0400
#define EN_MIX2 0x0200
#define EN_MIX3 0x0100
#define EN_IQADC 0x0040
#define EN_PLL 0x0020
#define EN_TX 0x0010
#define EN_BB 0x0008
#define EN_LO 0x0004
#define EN_BIAS 0x0001
#define EN_IQANA 0x0002
#define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
#define EN_CRYSTAL 0x0002
#define EN_UHF 0x22E9
#define EN_VHF 0x44E9
#define EN_LBD 0x11E9
#define EN_SBD 0x44E9
#define EN_CAB 0x88E9
#define pgm_read_word(w) (*w)
struct dc_calibration;
struct dib0090_tuning {
u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
u8 switch_trim;
u8 lna_tune;
u8 lna_bias;
u16 v2i;
u16 mix;
u16 load;
u16 tuner_enable;
};
struct dib0090_pll {
u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
u8 vco_band;
u8 hfdiv_code;
u8 hfdiv;
u8 topresc;
};
struct dib0090_state {
struct i2c_adapter *i2c;
struct dvb_frontend *fe;
const struct dib0090_config *config;
u8 current_band;
u16 revision;
enum frontend_tune_state tune_state;
u32 current_rf;
u16 wbd_offset;
s16 wbd_target; /* in dB */
s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */
s16 current_gain; /* keeps the currently programmed gain */
u8 agc_step; /* new binary search */
u16 gain[2]; /* for channel monitoring */
const u16 *rf_ramp;
const u16 *bb_ramp;
/* for the software AGC ramps */
u16 bb_1_def;
u16 rf_lt_def;
u16 gain_reg[4];
/* for the captrim/dc-offset search */
s8 step;
s16 adc_diff;
s16 min_adc_diff;
s8 captrim;
s8 fcaptrim;
const struct dc_calibration *dc;
u16 bb6, bb7;
const struct dib0090_tuning *current_tune_table_index;
const struct dib0090_pll *current_pll_table_index;
u8 tuner_is_tuned;
u8 agc_freeze;
u8 reset;
};
static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
{
u8 b[2];
struct i2c_msg msg[2] = {
{.addr = state->config->i2c_address, .flags = 0, .buf = &reg, .len = 1},
{.addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = b, .len = 2},
};
if (i2c_transfer(state->i2c, msg, 2) != 2) {
printk(KERN_WARNING "DiB0090 I2C read failed\n");
return 0;
}
return (b[0] << 8) | b[1];
}
static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
{
u8 b[3] = { reg & 0xff, val >> 8, val & 0xff };
struct i2c_msg msg = {.addr = state->config->i2c_address, .flags = 0, .buf = b, .len = 3 };
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "DiB0090 I2C write failed\n");
return -EREMOTEIO;
}
return 0;
}
#define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
#define ADC_TARGET -220
#define GAIN_ALPHA 5
#define WBD_ALPHA 6
#define LPF 100
static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
{
do {
dib0090_write_reg(state, r++, *b++);
} while (--c);
}
static u16 dib0090_identify(struct dvb_frontend *fe)
{
struct dib0090_state *state = fe->tuner_priv;
u16 v;
v = dib0090_read_reg(state, 0x1a);
#ifdef FIRMWARE_FIREFLY
/* pll is not locked locked */
if (!(v & 0x800))
dprintk("FE%d : Identification : pll is not yet locked", fe->id);
#endif
/* without PLL lock info */
v &= 0x3ff;
dprintk("P/V: %04x:", v);
if ((v >> 8) & 0xf)
dprintk("FE%d : Product ID = 0x%x : KROSUS", fe->id, (v >> 8) & 0xf);
else
return 0xff;
v &= 0xff;
if (((v >> 5) & 0x7) == 0x1)
dprintk("FE%d : MP001 : 9090/8096", fe->id);
else if (((v >> 5) & 0x7) == 0x4)
dprintk("FE%d : MP005 : Single Sband", fe->id);
else if (((v >> 5) & 0x7) == 0x6)
dprintk("FE%d : MP008 : diversity VHF-UHF-LBAND", fe->id);
else if (((v >> 5) & 0x7) == 0x7)
dprintk("FE%d : MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND", fe->id);
else
return 0xff;
/* revision only */
if ((v & 0x1f) == 0x3)
dprintk("FE%d : P1-D/E/F detected", fe->id);
else if ((v & 0x1f) == 0x1)
dprintk("FE%d : P1C detected", fe->id);
else if ((v & 0x1f) == 0x0) {
#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
dprintk("FE%d : P1-A/B detected: using previous driver - support will be removed soon", fe->id);
dib0090_p1b_register(fe);
#else
dprintk("FE%d : P1-A/B detected: driver is deactivated - not available", fe->id);
return 0xff;
#endif
}
return v;
}
static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
{
struct dib0090_state *state = fe->tuner_priv;
HARD_RESET(state);
dib0090_write_reg(state, 0x24, EN_PLL);
dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
/* adcClkOutRatio=8->7, release reset */
dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
if (cfg->clkoutdrive != 0)
dib0090_write_reg(state, 0x23,
(0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (cfg->clkoutdrive << 5) | (cfg->
clkouttobamse
<< 4) | (0
<<
2)
| (0));
else
dib0090_write_reg(state, 0x23,
(0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (7 << 5) | (cfg->
clkouttobamse << 4) | (0
<<
2)
| (0));
/* enable pll, de-activate reset, ratio: 2/1 = 60MHz */
dib0090_write_reg(state, 0x21,
(cfg->io.pll_bypass << 15) | (1 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv));
}
static int dib0090_wakeup(struct dvb_frontend *fe)
{
struct dib0090_state *state = fe->tuner_priv;
if (state->config->sleep)
state->config->sleep(fe, 0);
return 0;
}
static int dib0090_sleep(struct dvb_frontend *fe)
{
struct dib0090_state *state = fe->tuner_priv;
if (state->config->sleep)
state->config->sleep(fe, 1);
return 0;
}
void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
{
struct dib0090_state *state = fe->tuner_priv;
if (fast)
dib0090_write_reg(state, 0x04, 0);
else
dib0090_write_reg(state, 0x04, 1);
}
EXPORT_SYMBOL(dib0090_dcc_freq);
static const u16 rf_ramp_pwm_cband[] = {
0, /* max RF gain in 10th of dB */
0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
0, /* ramp_max = maximum X used on the ramp */
(0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */
(0 << 10) | 0, /* 0x2d, LNA 1 */
(0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */
(0 << 10) | 0, /* 0x2f, LNA 2 */
(0 << 10) | 0, /* 0x30, LNA 3 = 0dB */
(0 << 10) | 0, /* 0x31, LNA 3 */
(0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
(0 << 10) | 0, /* GAIN_4_2, LNA 4 */
};
static const u16 rf_ramp_vhf[] = {
412, /* max RF gain in 10th of dB */
132, 307, 127, /* LNA1, 13.2dB */
105, 412, 255, /* LNA2, 10.5dB */
50, 50, 127, /* LNA3, 5dB */
125, 175, 127, /* LNA4, 12.5dB */
0, 0, 127, /* CBAND, 0dB */
};
static const u16 rf_ramp_uhf[] = {
412, /* max RF gain in 10th of dB */
132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */
105, 412, 255, /* LNA2 : 10.5 dB */
50, 50, 127, /* LNA3 : 5.0 dB */
125, 175, 127, /* LNA4 : 12.5 dB */
0, 0, 127, /* CBAND : 0.0 dB */
};
static const u16 rf_ramp_cband[] = {
332, /* max RF gain in 10th of dB */
132, 252, 127, /* LNA1, dB */
80, 332, 255, /* LNA2, dB */
0, 0, 127, /* LNA3, dB */
0, 0, 127, /* LNA4, dB */
120, 120, 127, /* LT1 CBAND */
};
static const u16 rf_ramp_pwm_vhf[] = {
404, /* max RF gain in 10th of dB */
25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
1011, /* ramp_max = maximum X used on the ramp */
(6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
(0 << 10) | 756, /* 0x2d, LNA 1 */
(16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
(0 << 10) | 1011, /* 0x2f, LNA 2 */
(16 << 10) | 290, /* 0x30, LNA 3 = 5dB */
(0 << 10) | 417, /* 0x31, LNA 3 */
(7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */
(0 << 10) | 290, /* GAIN_4_2, LNA 4 */
};
static const u16 rf_ramp_pwm_uhf[] = {
404, /* max RF gain in 10th of dB */
25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
1011, /* ramp_max = maximum X used on the ramp */
(6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
(0 << 10) | 756, /* 0x2d, LNA 1 */
(16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
(0 << 10) | 1011, /* 0x2f, LNA 2 */
(16 << 10) | 0, /* 0x30, LNA 3 = 5dB */
(0 << 10) | 127, /* 0x31, LNA 3 */
(7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */
(0 << 10) | 417, /* GAIN_4_2, LNA 4 */
};
static const u16 bb_ramp_boost[] = {
550, /* max BB gain in 10th of dB */
260, 260, 26, /* BB1, 26dB */
290, 550, 29, /* BB2, 29dB */
};
static const u16 bb_ramp_pwm_normal[] = {
500, /* max RF gain in 10th of dB */
8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */
400,
(2 << 9) | 0, /* 0x35 = 21dB */
(0 << 9) | 168, /* 0x36 */
(2 << 9) | 168, /* 0x37 = 29dB */
(0 << 9) | 400, /* 0x38 */
};
struct slope {
int16_t range;
int16_t slope;
};
static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
{
u8 i;
u16 rest;
u16 ret = 0;
for (i = 0; i < num; i++) {
if (val > slopes[i].range)
rest = slopes[i].range;
else
rest = val;
ret += (rest * slopes[i].slope) / slopes[i].range;
val -= rest;
}
return ret;
}
static const struct slope dib0090_wbd_slopes[3] = {
{66, 120}, /* -64,-52: offset - 65 */
{600, 170}, /* -52,-35: 65 - 665 */
{170, 250}, /* -45,-10: 665 - 835 */
};
static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
{
wbd &= 0x3ff;
if (wbd < state->wbd_offset)
wbd = 0;
else
wbd -= state->wbd_offset;
/* -64dB is the floor */
return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
}
static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
{
u16 offset = 250;
/* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
if (state->current_band == BAND_VHF)
offset = 650;
#ifndef FIRMWARE_FIREFLY
if (state->current_band == BAND_VHF)
offset = state->config->wbd_vhf_offset;
if (state->current_band == BAND_CBAND)
offset = state->config->wbd_cband_offset;
#endif
state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
dprintk("wbd-target: %d dB", (u32) state->wbd_target);
}
static const int gain_reg_addr[4] = {
0x08, 0x0a, 0x0f, 0x01
};
static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
{
u16 rf, bb, ref;
u16 i, v, gain_reg[4] = { 0 }, gain;
const u16 *g;
if (top_delta < -511)
top_delta = -511;
if (top_delta > 511)
top_delta = 511;
if (force) {
top_delta *= (1 << WBD_ALPHA);
gain_delta *= (1 << GAIN_ALPHA);
}
if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */
state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
else
state->rf_gain_limit += top_delta;
if (state->rf_gain_limit < 0) /*underflow */
state->rf_gain_limit = 0;
/* use gain as a temporary variable and correct current_gain */
gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */
state->current_gain = gain;
else
state->current_gain += gain_delta;
/* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
if (state->current_gain < 0)
state->current_gain = 0;
/* now split total gain to rf and bb gain */
gain = state->current_gain >> GAIN_ALPHA;
/* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
rf = state->rf_gain_limit >> WBD_ALPHA;
bb = gain - rf;
if (bb > state->bb_ramp[0])
bb = state->bb_ramp[0];
} else { /* high signal level -> all gains put on RF */
rf = gain;
bb = 0;
}
state->gain[0] = rf;
state->gain[1] = bb;
/* software ramp */
/* Start with RF gains */
g = state->rf_ramp + 1; /* point on RF LNA1 max gain */
ref = rf;
for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
v = 0; /* force the gain to write for the current amp to be null */
else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */
v = g[2]; /* force this amp to be full gain */
else /* compute the value to set to this amp because we are somewhere in his range */
v = ((ref - (g[1] - g[0])) * g[2]) / g[0];
if (i == 0) /* LNA 1 reg mapping */
gain_reg[0] = v;
else if (i == 1) /* LNA 2 reg mapping */
gain_reg[0] |= v << 7;
else if (i == 2) /* LNA 3 reg mapping */
gain_reg[1] = v;
else if (i == 3) /* LNA 4 reg mapping */
gain_reg[1] |= v << 7;
else if (i == 4) /* CBAND LNA reg mapping */
gain_reg[2] = v | state->rf_lt_def;
else if (i == 5) /* BB gain 1 reg mapping */
gain_reg[3] = v << 3;
else if (i == 6) /* BB gain 2 reg mapping */
gain_reg[3] |= v << 8;
g += 3; /* go to next gain bloc */
/* When RF is finished, start with BB */
if (i == 4) {
g = state->bb_ramp + 1; /* point on BB gain 1 max gain */
ref = bb;
}
}
gain_reg[3] |= state->bb_1_def;
gain_reg[3] |= ((bb % 10) * 100) / 125;
#ifdef DEBUG_AGC
dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb,
gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
#endif
/* Write the amplifier regs */
for (i = 0; i < 4; i++) {
v = gain_reg[i];
if (force || state->gain_reg[i] != v) {
state->gain_reg[i] = v;
dib0090_write_reg(state, gain_reg_addr[i], v);
}
}
}
static void dib0090_set_boost(struct dib0090_state *state, int onoff)
{
state->bb_1_def &= 0xdfff;
state->bb_1_def |= onoff << 13;
}
static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
{
state->rf_ramp = cfg;
}
static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
{
state->rf_ramp = cfg;
dib0090_write_reg(state, 0x2a, 0xffff);
dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a));
dib0090_write_regs(state, 0x2c, cfg + 3, 6);
dib0090_write_regs(state, 0x3e, cfg + 9, 2);
}
static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
{
state->bb_ramp = cfg;
dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
}
static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
{
state->bb_ramp = cfg;
dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
dib0090_write_reg(state, 0x33, 0xffff);
dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33));
dib0090_write_regs(state, 0x35, cfg + 3, 4);
}
void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
{
struct dib0090_state *state = fe->tuner_priv;
/* reset the AGC */
if (state->config->use_pwm_agc) {
#ifdef CONFIG_BAND_SBAND
if (state->current_band == BAND_SBAND) {
dib0090_set_rframp_pwm(state, rf_ramp_pwm_sband);
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_boost);
} else
#endif
#ifdef CONFIG_BAND_CBAND
if (state->current_band == BAND_CBAND) {
dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband);
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
} else
#endif
#ifdef CONFIG_BAND_VHF
if (state->current_band == BAND_VHF) {
dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf);
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
} else
#endif
{
dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf);
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
}
if (state->rf_ramp[0] != 0)
dib0090_write_reg(state, 0x32, (3 << 11));
else
dib0090_write_reg(state, 0x32, (0 << 11));
dib0090_write_reg(state, 0x39, (1 << 10));
}
}
EXPORT_SYMBOL(dib0090_pwm_gain_reset);
int dib0090_gain_control(struct dvb_frontend *fe)
{
struct dib0090_state *state = fe->tuner_priv;
enum frontend_tune_state *tune_state = &state->tune_state;
int ret = 10;
u16 wbd_val = 0;
u8 apply_gain_immediatly = 1;
s16 wbd_error = 0, adc_error = 0;
if (*tune_state == CT_AGC_START) {
state->agc_freeze = 0;
dib0090_write_reg(state, 0x04, 0x0);
#ifdef CONFIG_BAND_SBAND
if (state->current_band == BAND_SBAND) {
dib0090_set_rframp(state, rf_ramp_sband);
dib0090_set_bbramp(state, bb_ramp_boost);
} else
#endif
#ifdef CONFIG_BAND_VHF
if (state->current_band == BAND_VHF) {
dib0090_set_rframp(state, rf_ramp_vhf);
dib0090_set_bbramp(state, bb_ramp_boost);
} else
#endif
#ifdef CONFIG_BAND_CBAND
if (state->current_band == BAND_CBAND) {
dib0090_set_rframp(state, rf_ramp_cband);
dib0090_set_bbramp(state, bb_ramp_boost);
} else
#endif
{
dib0090_set_rframp(state, rf_ramp_uhf);
dib0090_set_bbramp(state, bb_ramp_boost);
}
dib0090_write_reg(state, 0x32, 0);
dib0090_write_reg(state, 0x39, 0);
dib0090_wbd_target(state, state->current_rf);
state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;
*tune_state = CT_AGC_STEP_0;
} else if (!state->agc_freeze) {
s16 wbd;
int adc;
wbd_val = dib0090_read_reg(state, 0x1d);
/* read and calc the wbd power */
wbd = dib0090_wbd_to_db(state, wbd_val);
wbd_error = state->wbd_target - wbd;
if (*tune_state == CT_AGC_STEP_0) {
if (wbd_error < 0 && state->rf_gain_limit > 0) {
#ifdef CONFIG_BAND_CBAND
/* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
if (state->current_band == BAND_CBAND && ltg2) {
ltg2 >>= 1;
state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */
}
#endif
} else {
state->agc_step = 0;
*tune_state = CT_AGC_STEP_1;
}
} else {
/* calc the adc power */
adc = state->config->get_adc_power(fe);
adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */
adc_error = (s16) (((s32) ADC_TARGET) - adc);
#ifdef CONFIG_STANDARD_DAB
if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
adc_error += 130;
#endif
#ifdef CONFIG_STANDARD_DVBT
if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
(state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
adc_error += 60;
#endif
#ifdef CONFIG_SYS_ISDBT
if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
0)
&&
((state->fe->dtv_property_cache.layer[0].modulation ==
QAM_64)
|| (state->fe->dtv_property_cache.layer[0].
modulation == QAM_16)))
||
((state->fe->dtv_property_cache.layer[1].segment_count >
0)
&&
((state->fe->dtv_property_cache.layer[1].modulation ==
QAM_64)
|| (state->fe->dtv_property_cache.layer[1].
modulation == QAM_16)))
||
((state->fe->dtv_property_cache.layer[2].segment_count >
0)
&&
((state->fe->dtv_property_cache.layer[2].modulation ==
QAM_64)
|| (state->fe->dtv_property_cache.layer[2].
modulation == QAM_16)))
)
)
adc_error += 60;
#endif
if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */
if (ABS(adc_error) < 50 || state->agc_step++ > 5) {
#ifdef CONFIG_STANDARD_DAB
if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
dib0090_write_reg(state, 0x04, 0x0);
} else
#endif
{
dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
}
*tune_state = CT_AGC_STOP;
}
} else {
/* everything higher than or equal to CT_AGC_STOP means tracking */
ret = 100; /* 10ms interval */
apply_gain_immediatly = 0;
}
}
#ifdef DEBUG_AGC
dprintk
("FE: %d, tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
(u32) fe->id, (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
(u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
#endif
}
/* apply gain */
if (!state->agc_freeze)
dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
return ret;
}
EXPORT_SYMBOL(dib0090_gain_control);
void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
{
struct dib0090_state *state = fe->tuner_priv;
if (rf)
*rf = state->gain[0];
if (bb)
*bb = state->gain[1];
if (rf_gain_limit)
*rf_gain_limit = state->rf_gain_limit;
if (rflt)
*rflt = (state->rf_lt_def >> 10) & 0x7;
}
EXPORT_SYMBOL(dib0090_get_current_gain);
u16 dib0090_get_wbd_offset(struct dvb_frontend *tuner)
{
struct dib0090_state *st = tuner->tuner_priv;
return st->wbd_offset;
}
EXPORT_SYMBOL(dib0090_get_wbd_offset);
static const u16 dib0090_defaults[] = {
25, 0x01,
0x0000,
0x99a0,
0x6008,
0x0000,
0x8acb,
0x0000,
0x0405,
0x0000,
0x0000,
0x0000,
0xb802,
0x0300,
0x2d12,
0xbac0,
0x7c00,
0xdbb9,
0x0954,
0x0743,
0x8000,
0x0001,
0x0040,
0x0100,
0x0000,
0xe910,
0x149e,
1, 0x1c,
0xff2d,
1, 0x39,
0x0000,
1, 0x1b,
EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL,
2, 0x1e,
0x07FF,
0x0007,
1, 0x24,
EN_UHF | EN_CRYSTAL,
2, 0x3c,
0x3ff,
0x111,
0
};
static int dib0090_reset(struct dvb_frontend *fe)
{
struct dib0090_state *state = fe->tuner_priv;
u16 l, r, *n;
dib0090_reset_digital(fe, state->config);
state->revision = dib0090_identify(fe);
/* Revision definition */
if (state->revision == 0xff)
return -EINVAL;
#ifdef EFUSE
else if ((state->revision & 0x1f) >= 3) /* Update the efuse : Only available for KROSUS > P1C */
dib0090_set_EFUSE(state);
#endif
#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
if (!(state->revision & 0x1)) /* it is P1B - reset is already done */
return 0;
#endif
/* Upload the default values */
n = (u16 *) dib0090_defaults;
l = pgm_read_word(n++);
while (l) {
r = pgm_read_word(n++);
do {
/* DEBUG_TUNER */
/* dprintk("%d, %d, %d", l, r, pgm_read_word(n)); */
dib0090_write_reg(state, r, pgm_read_word(n++));
r++;
} while (--l);
l = pgm_read_word(n++);
}
/* Congigure in function of the crystal */
if (state->config->io.clock_khz >= 24000)
l = 1;
else
l = 2;
dib0090_write_reg(state, 0x14, l);
dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);
state->reset = 3; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
return 0;
}
#define steps(u) (((u) > 15) ? ((u)-16) : (u))
#define INTERN_WAIT 10
static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
int ret = INTERN_WAIT * 10;
switch (*tune_state) {
case CT_TUNER_STEP_2:
/* Turns to positive */
dib0090_write_reg(state, 0x1f, 0x7);
*tune_state = CT_TUNER_STEP_3;
break;
case CT_TUNER_STEP_3:
state->adc_diff = dib0090_read_reg(state, 0x1d);
/* Turns to negative */
dib0090_write_reg(state, 0x1f, 0x4);
*tune_state = CT_TUNER_STEP_4;
break;
case CT_TUNER_STEP_4:
state->adc_diff -= dib0090_read_reg(state, 0x1d);
*tune_state = CT_TUNER_STEP_5;
ret = 0;
break;
default:
break;
}
return ret;
}
struct dc_calibration {
uint8_t addr;
uint8_t offset;
uint8_t pga:1;
uint16_t bb1;
uint8_t i:1;
};
static const struct dc_calibration dc_table[] = {
/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
{0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
{0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
{0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
{0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
{0},
};
static void dib0090_set_trim(struct dib0090_state *state)
{
u16 *val;
if (state->dc->addr == 0x07)
val = &state->bb7;
else
val = &state->bb6;
*val &= ~(0x1f << state->dc->offset);
*val |= state->step << state->dc->offset;
dib0090_write_reg(state, state->dc->addr, *val);
}
static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
int ret = 0;
switch (*tune_state) {
case CT_TUNER_START:
/* init */
dprintk("Internal DC calibration");
/* the LNA is off */
dib0090_write_reg(state, 0x24, 0x02ed);
/* force vcm2 = 0.8V */
state->bb6 = 0;
state->bb7 = 0x040d;
state->dc = dc_table;
*tune_state = CT_TUNER_STEP_0;
/* fall through */
case CT_TUNER_STEP_0:
dib0090_write_reg(state, 0x01, state->dc->bb1);
dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));
state->step = 0;
state->min_adc_diff = 1023;
*tune_state = CT_TUNER_STEP_1;
ret = 50;
break;
case CT_TUNER_STEP_1:
dib0090_set_trim(state);
*tune_state = CT_TUNER_STEP_2;
break;
case CT_TUNER_STEP_2:
case CT_TUNER_STEP_3:
case CT_TUNER_STEP_4:
ret = dib0090_get_offset(state, tune_state);
break;
case CT_TUNER_STEP_5: /* found an offset */
dprintk("FE%d: IQC read=%d, current=%x", state->fe->id, (u32) state->adc_diff, state->step);
/* first turn for this frequency */
if (state->step == 0) {
if (state->dc->pga && state->adc_diff < 0)
state->step = 0x10;
if (state->dc->pga == 0 && state->adc_diff > 0)
state->step = 0x10;
}
state->adc_diff = ABS(state->adc_diff);
if (state->adc_diff < state->min_adc_diff && steps(state->step) < 15) { /* stop search when the delta to 0 is increasing */
state->step++;
state->min_adc_diff = state->adc_diff;
*tune_state = CT_TUNER_STEP_1;
} else {
/* the minimum was what we have seen in the step before */
state->step--;
dib0090_set_trim(state);
dprintk("FE%d: BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->fe->id, state->dc->addr, state->adc_diff,
state->step);
state->dc++;
if (state->dc->addr == 0) /* done */
*tune_state = CT_TUNER_STEP_6;
else
*tune_state = CT_TUNER_STEP_0;
}
break;
case CT_TUNER_STEP_6:
dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
dib0090_write_reg(state, 0x1f, 0x7);
*tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
state->reset &= ~0x1;
default:
break;
}
return ret;
}
static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
switch (*tune_state) {
case CT_TUNER_START:
/* WBD-mode=log, Bias=2, Gain=6, Testmode=1, en=1, WBDMUX=1 */
dib0090_write_reg(state, 0x10, 0xdb09 | (1 << 10));
dib0090_write_reg(state, 0x24, EN_UHF & 0x0fff);
*tune_state = CT_TUNER_STEP_0;
return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
case CT_TUNER_STEP_0:
state->wbd_offset = dib0090_read_reg(state, 0x1d);
dprintk("WBD calibration offset = %d", state->wbd_offset);
*tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
state->reset &= ~0x2;
break;
default:
break;
}
return 0;
}
static void dib0090_set_bandwidth(struct dib0090_state *state)
{
u16 tmp;
if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
tmp = (3 << 14);
else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
tmp = (2 << 14);
else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
tmp = (1 << 14);
else
tmp = (0 << 14);
state->bb_1_def &= 0x3fff;
state->bb_1_def |= tmp;
dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */
}
static const struct dib0090_pll dib0090_pll_table[] = {
#ifdef CONFIG_BAND_CBAND
{56000, 0, 9, 48, 6},
{70000, 1, 9, 48, 6},
{87000, 0, 8, 32, 4},
{105000, 1, 8, 32, 4},
{115000, 0, 7, 24, 6},
{140000, 1, 7, 24, 6},
{170000, 0, 6, 16, 4},
#endif
#ifdef CONFIG_BAND_VHF
{200000, 1, 6, 16, 4},
{230000, 0, 5, 12, 6},
{280000, 1, 5, 12, 6},
{340000, 0, 4, 8, 4},
{380000, 1, 4, 8, 4},
{450000, 0, 3, 6, 6},
#endif
#ifdef CONFIG_BAND_UHF
{580000, 1, 3, 6, 6},
{700000, 0, 2, 4, 4},
{860000, 1, 2, 4, 4},
#endif
#ifdef CONFIG_BAND_LBAND
{1800000, 1, 0, 2, 4},
#endif
#ifdef CONFIG_BAND_SBAND
{2900000, 0, 14, 1, 4},
#endif
};
static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {
#ifdef CONFIG_BAND_CBAND
{184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
{227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
{380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
#endif
#ifdef CONFIG_BAND_UHF
{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};
static const struct dib0090_tuning dib0090_tuning_table[] = {
#ifdef CONFIG_BAND_CBAND
{170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
#endif
#ifdef CONFIG_BAND_VHF
{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
#endif
#ifdef CONFIG_BAND_UHF
{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};
#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
static int dib0090_tune(struct dvb_frontend *fe)
{
struct dib0090_state *state = fe->tuner_priv;
const struct dib0090_tuning *tune = state->current_tune_table_index;
const struct dib0090_pll *pll = state->current_pll_table_index;
enum frontend_tune_state *tune_state = &state->tune_state;
u32 rf;
u16 lo4 = 0xe900, lo5, lo6, Den;
u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
u16 tmp, adc;
int8_t step_sign;
int ret = 10; /* 1ms is the default delay most of the time */
u8 c, i;
state->current_band = (u8) BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000);
rf = fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->freq_offset_khz_vhf);
/* in any case we first need to do a reset if needed */
if (state->reset & 0x1)
return dib0090_dc_offset_calibration(state, tune_state);
else if (state->reset & 0x2)
return dib0090_wbd_calibration(state, tune_state);
/************************* VCO ***************************/
/* Default values for FG */
/* from these are needed : */
/* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
#ifdef CONFIG_SYS_ISDBT
if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1)
rf += 850;
#endif
if (state->current_rf != rf) {
state->tuner_is_tuned = 0;
tune = dib0090_tuning_table;
tmp = (state->revision >> 5) & 0x7;
if (tmp == 0x4 || tmp == 0x7) {
/* CBAND tuner version for VHF */
if (state->current_band == BAND_FM || state->current_band == BAND_VHF) {
/* Force CBAND */
state->current_band = BAND_CBAND;
tune = dib0090_tuning_table_fm_vhf_on_cband;
}
}
pll = dib0090_pll_table;
/* Look for the interval */
while (rf > tune->max_freq)
tune++;
while (rf > pll->max_freq)
pll++;
state->current_tune_table_index = tune;
state->current_pll_table_index = pll;
}
if (*tune_state == CT_TUNER_START) {
if (state->tuner_is_tuned == 0)
state->current_rf = 0;
if (state->current_rf != rf) {
dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
/* external loop filter, otherwise:
* lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
* lo6 = 0x0e34 */
if (pll->vco_band)
lo5 = 0x049e;
else if (state->config->analog_output)
lo5 = 0x041d;
else
lo5 = 0x041c;
lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */
if (!state->config->io.pll_int_loop_filt)
lo6 = 0xff28;
else
lo6 = (state->config->io.pll_int_loop_filt << 3);
VCOF_kHz = (pll->hfdiv * rf) * 2;
FREF = state->config->io.clock_khz;
FBDiv = (VCOF_kHz / pll->topresc / FREF);
Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
if (Rest < LPF)
Rest = 0;
else if (Rest < 2 * LPF)
Rest = 2 * LPF;
else if (Rest > (FREF - LPF)) {
Rest = 0;
FBDiv += 1;
} else if (Rest > (FREF - 2 * LPF))
Rest = FREF - 2 * LPF;
Rest = (Rest * 6528) / (FREF / 10);
Den = 1;
dprintk(" ***** ******* Rest value = %d", Rest);
if (Rest > 0) {
if (state->config->analog_output)
lo6 |= (1 << 2) | 2;
else
lo6 |= (1 << 2) | 1;
Den = 255;
}
#ifdef CONFIG_BAND_SBAND
if (state->current_band == BAND_SBAND)
lo6 &= 0xfffb;
#endif
dib0090_write_reg(state, 0x15, (u16) FBDiv);
dib0090_write_reg(state, 0x16, (Den << 8) | 1);
dib0090_write_reg(state, 0x17, (u16) Rest);
dib0090_write_reg(state, 0x19, lo5);
dib0090_write_reg(state, 0x1c, lo6);
lo6 = tune->tuner_enable;
if (state->config->analog_output)
lo6 = (lo6 & 0xff9f) | 0x2;
dib0090_write_reg(state, 0x24, lo6 | EN_LO
#ifdef CONFIG_DIB0090_USE_PWM_AGC
| state->config->use_pwm_agc * EN_CRYSTAL
#endif
);
state->current_rf = rf;
/* prepare a complete captrim */
state->step = state->captrim = state->fcaptrim = 64;
} else { /* we are already tuned to this frequency - the configuration is correct */
/* do a minimal captrim even if the frequency has not changed */
state->step = 4;
state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
}
state->adc_diff = 3000;
dib0090_write_reg(state, 0x10, 0x2B1);
dib0090_write_reg(state, 0x1e, 0x0032);
ret = 20;
*tune_state = CT_TUNER_STEP_1;
} else if (*tune_state == CT_TUNER_STEP_0) {
/* nothing */
} else if (*tune_state == CT_TUNER_STEP_1) {
state->step /= 2;
dib0090_write_reg(state, 0x18, lo4 | state->captrim);
*tune_state = CT_TUNER_STEP_2;
} else if (*tune_state == CT_TUNER_STEP_2) {
adc = dib0090_read_reg(state, 0x1d);
dprintk("FE %d CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) fe->id, (u32) state->captrim, (u32) adc,
(u32) (adc) * (u32) 1800 / (u32) 1024);
if (adc >= 400) {
adc -= 400;
step_sign = -1;
} else {
adc = 400 - adc;
step_sign = 1;
}
if (adc < state->adc_diff) {
dprintk("FE %d CAPTRIM=%d is closer to target (%d/%d)", (u32) fe->id, (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
state->adc_diff = adc;
state->fcaptrim = state->captrim;
}
state->captrim += step_sign * state->step;
if (state->step >= 1)
*tune_state = CT_TUNER_STEP_1;
else
*tune_state = CT_TUNER_STEP_3;
ret = 15;
} else if (*tune_state == CT_TUNER_STEP_3) {
/*write the final cptrim config */
dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);
#ifdef CONFIG_TUNER_DIB0090_CAPTRIM_MEMORY
state->memory[state->memory_index].cap = state->fcaptrim;
#endif
*tune_state = CT_TUNER_STEP_4;
} else if (*tune_state == CT_TUNER_STEP_4) {
dib0090_write_reg(state, 0x1e, 0x07ff);
dprintk("FE %d Final Captrim: %d", (u32) fe->id, (u32) state->fcaptrim);
dprintk("FE %d HFDIV code: %d", (u32) fe->id, (u32) pll->hfdiv_code);
dprintk("FE %d VCO = %d", (u32) fe->id, (u32) pll->vco_band);
dprintk("FE %d VCOF in kHz: %d ((%d*%d) << 1))", (u32) fe->id, (u32) ((pll->hfdiv * rf) * 2), (u32) pll->hfdiv, (u32) rf);
dprintk("FE %d REFDIV: %d, FREF: %d", (u32) fe->id, (u32) 1, (u32) state->config->io.clock_khz);
dprintk("FE %d FBDIV: %d, Rest: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
dprintk("FE %d Num: %d, Den: %d, SD: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x17),
(u32) (dib0090_read_reg(state, 0x16) >> 8), (u32) dib0090_read_reg(state, 0x1c) & 0x3);
c = 4;
i = 3;
#if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) {
c = 2;
i = 2;
}
#endif
dib0090_write_reg(state, 0x10, (c << 13) | (i << 11) | (WBD
#ifdef CONFIG_DIB0090_USE_PWM_AGC
| (state->config->use_pwm_agc << 1)
#endif
));
dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | (tune->lna_bias << 0));
dib0090_write_reg(state, 0x0c, tune->v2i);
dib0090_write_reg(state, 0x0d, tune->mix);
dib0090_write_reg(state, 0x0e, tune->load);
*tune_state = CT_TUNER_STEP_5;
} else if (*tune_state == CT_TUNER_STEP_5) {
/* initialize the lt gain register */
state->rf_lt_def = 0x7c00;
dib0090_write_reg(state, 0x0f, state->rf_lt_def);
dib0090_set_bandwidth(state);
state->tuner_is_tuned = 1;
*tune_state = CT_TUNER_STOP;
} else
ret = FE_CALLBACK_TIME_NEVER;
return ret;
}
static int dib0090_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
{
struct dib0090_state *state = fe->tuner_priv;
return state->tune_state;
}
EXPORT_SYMBOL(dib0090_get_tune_state);
int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
{
struct dib0090_state *state = fe->tuner_priv;
state->tune_state = tune_state;
return 0;
}
EXPORT_SYMBOL(dib0090_set_tune_state);
static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
{
struct dib0090_state *state = fe->tuner_priv;
*frequency = 1000 * state->current_rf;
return 0;
}
static int dib0090_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
{
struct dib0090_state *state = fe->tuner_priv;
uint32_t ret;
state->tune_state = CT_TUNER_START;
do {
ret = dib0090_tune(fe);
if (ret != FE_CALLBACK_TIME_NEVER)
msleep(ret / 10);
else
break;
} while (state->tune_state != CT_TUNER_STOP);
return 0;
}
static const struct dvb_tuner_ops dib0090_ops = {
.info = {
.name = "DiBcom DiB0090",
.frequency_min = 45000000,
.frequency_max = 860000000,
.frequency_step = 1000,
},
.release = dib0090_release,
.init = dib0090_wakeup,
.sleep = dib0090_sleep,
.set_params = dib0090_set_params,
.get_frequency = dib0090_get_frequency,
};
struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
{
struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
if (st == NULL)
return NULL;
st->config = config;
st->i2c = i2c;
st->fe = fe;
fe->tuner_priv = st;
if (dib0090_reset(fe) != 0)
goto free_mem;
printk(KERN_INFO "DiB0090: successfully identified\n");
memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));
return fe;
free_mem:
kfree(st);
fe->tuner_priv = NULL;
return NULL;
}
EXPORT_SYMBOL(dib0090_register);
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
MODULE_LICENSE("GPL");