mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
768b42a7eb
There's an inherent race with setting devices RO when they have dirty btree nodes on them. We already check if a btree node is on an RO device before we dirty it, so this patch just allows those writes so that we don't have errors forcing the entire filesystem read only when trying to remove a device. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2378 lines
59 KiB
C
2378 lines
59 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Some low level IO code, and hacks for various block layer limitations
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_foreground.h"
|
|
#include "bkey_on_stack.h"
|
|
#include "bset.h"
|
|
#include "btree_update.h"
|
|
#include "buckets.h"
|
|
#include "checksum.h"
|
|
#include "compress.h"
|
|
#include "clock.h"
|
|
#include "debug.h"
|
|
#include "disk_groups.h"
|
|
#include "ec.h"
|
|
#include "error.h"
|
|
#include "extent_update.h"
|
|
#include "inode.h"
|
|
#include "io.h"
|
|
#include "journal.h"
|
|
#include "keylist.h"
|
|
#include "move.h"
|
|
#include "rebalance.h"
|
|
#include "super.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
const char *bch2_blk_status_to_str(blk_status_t status)
|
|
{
|
|
if (status == BLK_STS_REMOVED)
|
|
return "device removed";
|
|
return blk_status_to_str(status);
|
|
}
|
|
|
|
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
|
|
|
|
static bool bch2_target_congested(struct bch_fs *c, u16 target)
|
|
{
|
|
const struct bch_devs_mask *devs;
|
|
unsigned d, nr = 0, total = 0;
|
|
u64 now = local_clock(), last;
|
|
s64 congested;
|
|
struct bch_dev *ca;
|
|
|
|
if (!target)
|
|
return false;
|
|
|
|
rcu_read_lock();
|
|
devs = bch2_target_to_mask(c, target);
|
|
for_each_set_bit(d, devs->d, BCH_SB_MEMBERS_MAX) {
|
|
ca = rcu_dereference(c->devs[d]);
|
|
if (!ca)
|
|
continue;
|
|
|
|
congested = atomic_read(&ca->congested);
|
|
last = READ_ONCE(ca->congested_last);
|
|
if (time_after64(now, last))
|
|
congested -= (now - last) >> 12;
|
|
|
|
total += max(congested, 0LL);
|
|
nr++;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return bch2_rand_range(nr * CONGESTED_MAX) < total;
|
|
}
|
|
|
|
static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
|
|
u64 now, int rw)
|
|
{
|
|
u64 latency_capable =
|
|
ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
|
|
/* ideally we'd be taking into account the device's variance here: */
|
|
u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
|
|
s64 latency_over = io_latency - latency_threshold;
|
|
|
|
if (latency_threshold && latency_over > 0) {
|
|
/*
|
|
* bump up congested by approximately latency_over * 4 /
|
|
* latency_threshold - we don't need much accuracy here so don't
|
|
* bother with the divide:
|
|
*/
|
|
if (atomic_read(&ca->congested) < CONGESTED_MAX)
|
|
atomic_add(latency_over >>
|
|
max_t(int, ilog2(latency_threshold) - 2, 0),
|
|
&ca->congested);
|
|
|
|
ca->congested_last = now;
|
|
} else if (atomic_read(&ca->congested) > 0) {
|
|
atomic_dec(&ca->congested);
|
|
}
|
|
}
|
|
|
|
void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
|
|
{
|
|
atomic64_t *latency = &ca->cur_latency[rw];
|
|
u64 now = local_clock();
|
|
u64 io_latency = time_after64(now, submit_time)
|
|
? now - submit_time
|
|
: 0;
|
|
u64 old, new, v = atomic64_read(latency);
|
|
|
|
do {
|
|
old = v;
|
|
|
|
/*
|
|
* If the io latency was reasonably close to the current
|
|
* latency, skip doing the update and atomic operation - most of
|
|
* the time:
|
|
*/
|
|
if (abs((int) (old - io_latency)) < (old >> 1) &&
|
|
now & ~(~0 << 5))
|
|
break;
|
|
|
|
new = ewma_add(old, io_latency, 5);
|
|
} while ((v = atomic64_cmpxchg(latency, old, new)) != old);
|
|
|
|
bch2_congested_acct(ca, io_latency, now, rw);
|
|
|
|
__bch2_time_stats_update(&ca->io_latency[rw], submit_time, now);
|
|
}
|
|
|
|
#else
|
|
|
|
static bool bch2_target_congested(struct bch_fs *c, u16 target)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Allocate, free from mempool: */
|
|
|
|
void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
|
|
{
|
|
struct bvec_iter_all iter;
|
|
struct bio_vec *bv;
|
|
|
|
bio_for_each_segment_all(bv, bio, iter)
|
|
if (bv->bv_page != ZERO_PAGE(0))
|
|
mempool_free(bv->bv_page, &c->bio_bounce_pages);
|
|
bio->bi_vcnt = 0;
|
|
}
|
|
|
|
static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
|
|
{
|
|
struct page *page;
|
|
|
|
if (likely(!*using_mempool)) {
|
|
page = alloc_page(GFP_NOIO);
|
|
if (unlikely(!page)) {
|
|
mutex_lock(&c->bio_bounce_pages_lock);
|
|
*using_mempool = true;
|
|
goto pool_alloc;
|
|
|
|
}
|
|
} else {
|
|
pool_alloc:
|
|
page = mempool_alloc(&c->bio_bounce_pages, GFP_NOIO);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
|
|
size_t size)
|
|
{
|
|
bool using_mempool = false;
|
|
|
|
while (size) {
|
|
struct page *page = __bio_alloc_page_pool(c, &using_mempool);
|
|
unsigned len = min(PAGE_SIZE, size);
|
|
|
|
BUG_ON(!bio_add_page(bio, page, len, 0));
|
|
size -= len;
|
|
}
|
|
|
|
if (using_mempool)
|
|
mutex_unlock(&c->bio_bounce_pages_lock);
|
|
}
|
|
|
|
/* Extent update path: */
|
|
|
|
static int sum_sector_overwrites(struct btree_trans *trans,
|
|
struct btree_iter *extent_iter,
|
|
struct bkey_i *new,
|
|
bool may_allocate,
|
|
bool *maybe_extending,
|
|
s64 *delta)
|
|
{
|
|
struct btree_iter *iter;
|
|
struct bkey_s_c old;
|
|
int ret = 0;
|
|
|
|
*maybe_extending = true;
|
|
*delta = 0;
|
|
|
|
iter = bch2_trans_copy_iter(trans, extent_iter);
|
|
if (IS_ERR(iter))
|
|
return PTR_ERR(iter);
|
|
|
|
for_each_btree_key_continue(iter, BTREE_ITER_SLOTS, old, ret) {
|
|
if (!may_allocate &&
|
|
bch2_bkey_nr_ptrs_fully_allocated(old) <
|
|
bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new))) {
|
|
ret = -ENOSPC;
|
|
break;
|
|
}
|
|
|
|
*delta += (min(new->k.p.offset,
|
|
old.k->p.offset) -
|
|
max(bkey_start_offset(&new->k),
|
|
bkey_start_offset(old.k))) *
|
|
(bkey_extent_is_allocation(&new->k) -
|
|
bkey_extent_is_allocation(old.k));
|
|
|
|
if (bkey_cmp(old.k->p, new->k.p) >= 0) {
|
|
/*
|
|
* Check if there's already data above where we're
|
|
* going to be writing to - this means we're definitely
|
|
* not extending the file:
|
|
*
|
|
* Note that it's not sufficient to check if there's
|
|
* data up to the sector offset we're going to be
|
|
* writing to, because i_size could be up to one block
|
|
* less:
|
|
*/
|
|
if (!bkey_cmp(old.k->p, new->k.p))
|
|
old = bch2_btree_iter_next(iter);
|
|
|
|
if (old.k && !bkey_err(old) &&
|
|
old.k->p.inode == extent_iter->pos.inode &&
|
|
bkey_extent_is_data(old.k))
|
|
*maybe_extending = false;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
bch2_trans_iter_put(trans, iter);
|
|
return ret;
|
|
}
|
|
|
|
int bch2_extent_update(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct bkey_i *k,
|
|
struct disk_reservation *disk_res,
|
|
u64 *journal_seq,
|
|
u64 new_i_size,
|
|
s64 *i_sectors_delta)
|
|
{
|
|
/* this must live until after bch2_trans_commit(): */
|
|
struct bkey_inode_buf inode_p;
|
|
bool extending = false;
|
|
s64 delta = 0;
|
|
int ret;
|
|
|
|
ret = bch2_extent_trim_atomic(k, iter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = sum_sector_overwrites(trans, iter, k,
|
|
disk_res && disk_res->sectors != 0,
|
|
&extending, &delta);
|
|
if (ret)
|
|
return ret;
|
|
|
|
new_i_size = extending
|
|
? min(k->k.p.offset << 9, new_i_size)
|
|
: 0;
|
|
|
|
if (delta || new_i_size) {
|
|
struct btree_iter *inode_iter;
|
|
struct bch_inode_unpacked inode_u;
|
|
|
|
inode_iter = bch2_inode_peek(trans, &inode_u,
|
|
k->k.p.inode, BTREE_ITER_INTENT);
|
|
if (IS_ERR(inode_iter))
|
|
return PTR_ERR(inode_iter);
|
|
|
|
/*
|
|
* XXX:
|
|
* writeback can race a bit with truncate, because truncate
|
|
* first updates the inode then truncates the pagecache. This is
|
|
* ugly, but lets us preserve the invariant that the in memory
|
|
* i_size is always >= the on disk i_size.
|
|
*
|
|
BUG_ON(new_i_size > inode_u.bi_size &&
|
|
(inode_u.bi_flags & BCH_INODE_I_SIZE_DIRTY));
|
|
*/
|
|
BUG_ON(new_i_size > inode_u.bi_size && !extending);
|
|
|
|
if (!(inode_u.bi_flags & BCH_INODE_I_SIZE_DIRTY) &&
|
|
new_i_size > inode_u.bi_size)
|
|
inode_u.bi_size = new_i_size;
|
|
else
|
|
new_i_size = 0;
|
|
|
|
inode_u.bi_sectors += delta;
|
|
|
|
if (delta || new_i_size) {
|
|
bch2_inode_pack(&inode_p, &inode_u);
|
|
bch2_trans_update(trans, inode_iter,
|
|
&inode_p.inode.k_i, 0);
|
|
}
|
|
|
|
bch2_trans_iter_put(trans, inode_iter);
|
|
}
|
|
|
|
bch2_trans_update(trans, iter, k, 0);
|
|
|
|
ret = bch2_trans_commit(trans, disk_res, journal_seq,
|
|
BTREE_INSERT_NOCHECK_RW|
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_USE_RESERVE);
|
|
if (!ret && i_sectors_delta)
|
|
*i_sectors_delta += delta;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch2_fpunch_at(struct btree_trans *trans, struct btree_iter *iter,
|
|
struct bpos end, u64 *journal_seq,
|
|
s64 *i_sectors_delta)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
|
|
struct bkey_s_c k;
|
|
int ret = 0, ret2 = 0;
|
|
|
|
while ((k = bch2_btree_iter_peek(iter)).k &&
|
|
bkey_cmp(iter->pos, end) < 0) {
|
|
struct disk_reservation disk_res =
|
|
bch2_disk_reservation_init(c, 0);
|
|
struct bkey_i delete;
|
|
|
|
bch2_trans_begin(trans);
|
|
|
|
ret = bkey_err(k);
|
|
if (ret)
|
|
goto btree_err;
|
|
|
|
bkey_init(&delete.k);
|
|
delete.k.p = iter->pos;
|
|
|
|
/* create the biggest key we can */
|
|
bch2_key_resize(&delete.k, max_sectors);
|
|
bch2_cut_back(end, &delete);
|
|
|
|
ret = bch2_extent_update(trans, iter, &delete,
|
|
&disk_res, journal_seq,
|
|
0, i_sectors_delta);
|
|
bch2_disk_reservation_put(c, &disk_res);
|
|
btree_err:
|
|
if (ret == -EINTR) {
|
|
ret2 = ret;
|
|
ret = 0;
|
|
}
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (bkey_cmp(iter->pos, end) > 0) {
|
|
bch2_btree_iter_set_pos(iter, end);
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
}
|
|
|
|
return ret ?: ret2;
|
|
}
|
|
|
|
int bch2_fpunch(struct bch_fs *c, u64 inum, u64 start, u64 end,
|
|
u64 *journal_seq, s64 *i_sectors_delta)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
int ret = 0;
|
|
|
|
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024);
|
|
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
|
|
POS(inum, start),
|
|
BTREE_ITER_INTENT);
|
|
|
|
ret = bch2_fpunch_at(&trans, iter, POS(inum, end),
|
|
journal_seq, i_sectors_delta);
|
|
bch2_trans_exit(&trans);
|
|
|
|
if (ret == -EINTR)
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch2_write_index_default(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bkey_on_stack sk;
|
|
struct keylist *keys = &op->insert_keys;
|
|
struct bkey_i *k = bch2_keylist_front(keys);
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
int ret;
|
|
|
|
bkey_on_stack_init(&sk);
|
|
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024);
|
|
|
|
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
|
|
bkey_start_pos(&k->k),
|
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
|
|
|
|
do {
|
|
bch2_trans_begin(&trans);
|
|
|
|
k = bch2_keylist_front(keys);
|
|
|
|
bkey_on_stack_realloc(&sk, c, k->k.u64s);
|
|
bkey_copy(sk.k, k);
|
|
bch2_cut_front(iter->pos, sk.k);
|
|
|
|
ret = bch2_extent_update(&trans, iter, sk.k,
|
|
&op->res, op_journal_seq(op),
|
|
op->new_i_size, &op->i_sectors_delta);
|
|
if (ret == -EINTR)
|
|
continue;
|
|
if (ret)
|
|
break;
|
|
|
|
if (bkey_cmp(iter->pos, k->k.p) >= 0)
|
|
bch2_keylist_pop_front(keys);
|
|
} while (!bch2_keylist_empty(keys));
|
|
|
|
bch2_trans_exit(&trans);
|
|
bkey_on_stack_exit(&sk, c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Writes */
|
|
|
|
void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
|
|
enum bch_data_type type,
|
|
const struct bkey_i *k)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bch_write_bio *n;
|
|
struct bch_dev *ca;
|
|
|
|
BUG_ON(c->opts.nochanges);
|
|
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX ||
|
|
!c->devs[ptr->dev]);
|
|
|
|
ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
|
|
if (to_entry(ptr + 1) < ptrs.end) {
|
|
n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
|
|
GFP_NOIO, &ca->replica_set));
|
|
|
|
n->bio.bi_end_io = wbio->bio.bi_end_io;
|
|
n->bio.bi_private = wbio->bio.bi_private;
|
|
n->parent = wbio;
|
|
n->split = true;
|
|
n->bounce = false;
|
|
n->put_bio = true;
|
|
n->bio.bi_opf = wbio->bio.bi_opf;
|
|
bio_inc_remaining(&wbio->bio);
|
|
} else {
|
|
n = wbio;
|
|
n->split = false;
|
|
}
|
|
|
|
n->c = c;
|
|
n->dev = ptr->dev;
|
|
n->have_ioref = bch2_dev_get_ioref(ca,
|
|
type == BCH_DATA_btree ? READ : WRITE);
|
|
n->submit_time = local_clock();
|
|
n->bio.bi_iter.bi_sector = ptr->offset;
|
|
|
|
if (!journal_flushes_device(ca))
|
|
n->bio.bi_opf |= REQ_FUA;
|
|
|
|
if (likely(n->have_ioref)) {
|
|
this_cpu_add(ca->io_done->sectors[WRITE][type],
|
|
bio_sectors(&n->bio));
|
|
|
|
bio_set_dev(&n->bio, ca->disk_sb.bdev);
|
|
|
|
if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
|
|
bio_endio(&n->bio);
|
|
continue;
|
|
}
|
|
|
|
submit_bio(&n->bio);
|
|
} else {
|
|
n->bio.bi_status = BLK_STS_REMOVED;
|
|
bio_endio(&n->bio);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __bch2_write(struct closure *);
|
|
|
|
static void bch2_write_done(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
|
|
if (!op->error && (op->flags & BCH_WRITE_FLUSH))
|
|
op->error = bch2_journal_error(&c->journal);
|
|
|
|
bch2_disk_reservation_put(c, &op->res);
|
|
percpu_ref_put(&c->writes);
|
|
bch2_keylist_free(&op->insert_keys, op->inline_keys);
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
|
|
|
|
if (op->end_io) {
|
|
EBUG_ON(cl->parent);
|
|
closure_debug_destroy(cl);
|
|
op->end_io(op);
|
|
} else {
|
|
closure_return(cl);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bch_write_index - after a write, update index to point to new data
|
|
*/
|
|
static void __bch2_write_index(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct keylist *keys = &op->insert_keys;
|
|
struct bch_extent_ptr *ptr;
|
|
struct bkey_i *src, *dst = keys->keys, *n, *k;
|
|
unsigned dev;
|
|
int ret;
|
|
|
|
for (src = keys->keys; src != keys->top; src = n) {
|
|
n = bkey_next(src);
|
|
|
|
if (bkey_extent_is_direct_data(&src->k)) {
|
|
bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
|
|
test_bit(ptr->dev, op->failed.d));
|
|
|
|
if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) {
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (dst != src)
|
|
memmove_u64s_down(dst, src, src->u64s);
|
|
dst = bkey_next(dst);
|
|
}
|
|
|
|
keys->top = dst;
|
|
|
|
/*
|
|
* probably not the ideal place to hook this in, but I don't
|
|
* particularly want to plumb io_opts all the way through the btree
|
|
* update stack right now
|
|
*/
|
|
for_each_keylist_key(keys, k) {
|
|
bch2_rebalance_add_key(c, bkey_i_to_s_c(k), &op->opts);
|
|
|
|
if (bch2_bkey_is_incompressible(bkey_i_to_s_c(k)))
|
|
bch2_check_set_feature(op->c, BCH_FEATURE_incompressible);
|
|
|
|
}
|
|
|
|
if (!bch2_keylist_empty(keys)) {
|
|
u64 sectors_start = keylist_sectors(keys);
|
|
int ret = op->index_update_fn(op);
|
|
|
|
BUG_ON(ret == -EINTR);
|
|
BUG_ON(keylist_sectors(keys) && !ret);
|
|
|
|
op->written += sectors_start - keylist_sectors(keys);
|
|
|
|
if (ret) {
|
|
__bcache_io_error(c, "btree IO error %i", ret);
|
|
op->error = ret;
|
|
}
|
|
}
|
|
out:
|
|
/* If some a bucket wasn't written, we can't erasure code it: */
|
|
for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
|
|
bch2_open_bucket_write_error(c, &op->open_buckets, dev);
|
|
|
|
bch2_open_buckets_put(c, &op->open_buckets);
|
|
return;
|
|
err:
|
|
keys->top = keys->keys;
|
|
op->error = ret;
|
|
goto out;
|
|
}
|
|
|
|
static void bch2_write_index(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
|
|
__bch2_write_index(op);
|
|
|
|
if (!(op->flags & BCH_WRITE_DONE)) {
|
|
continue_at(cl, __bch2_write, index_update_wq(op));
|
|
} else if (!op->error && (op->flags & BCH_WRITE_FLUSH)) {
|
|
bch2_journal_flush_seq_async(&c->journal,
|
|
*op_journal_seq(op),
|
|
cl);
|
|
continue_at(cl, bch2_write_done, index_update_wq(op));
|
|
} else {
|
|
continue_at_nobarrier(cl, bch2_write_done, NULL);
|
|
}
|
|
}
|
|
|
|
static void bch2_write_endio(struct bio *bio)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_write_bio *wbio = to_wbio(bio);
|
|
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
|
|
struct bch_fs *c = wbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
|
|
|
|
if (bch2_dev_io_err_on(bio->bi_status, ca, "data write: %s",
|
|
bch2_blk_status_to_str(bio->bi_status)))
|
|
set_bit(wbio->dev, op->failed.d);
|
|
|
|
if (wbio->have_ioref) {
|
|
bch2_latency_acct(ca, wbio->submit_time, WRITE);
|
|
percpu_ref_put(&ca->io_ref);
|
|
}
|
|
|
|
if (wbio->bounce)
|
|
bch2_bio_free_pages_pool(c, bio);
|
|
|
|
if (wbio->put_bio)
|
|
bio_put(bio);
|
|
|
|
if (parent)
|
|
bio_endio(&parent->bio);
|
|
else if (!(op->flags & BCH_WRITE_SKIP_CLOSURE_PUT))
|
|
closure_put(cl);
|
|
else
|
|
continue_at_nobarrier(cl, bch2_write_index, index_update_wq(op));
|
|
}
|
|
|
|
static void init_append_extent(struct bch_write_op *op,
|
|
struct write_point *wp,
|
|
struct bversion version,
|
|
struct bch_extent_crc_unpacked crc)
|
|
{
|
|
struct bkey_i_extent *e;
|
|
struct bch_extent_ptr *ptr;
|
|
|
|
op->pos.offset += crc.uncompressed_size;
|
|
|
|
e = bkey_extent_init(op->insert_keys.top);
|
|
e->k.p = op->pos;
|
|
e->k.size = crc.uncompressed_size;
|
|
e->k.version = version;
|
|
|
|
if (crc.csum_type ||
|
|
crc.compression_type ||
|
|
crc.nonce)
|
|
bch2_extent_crc_append(&e->k_i, crc);
|
|
|
|
bch2_alloc_sectors_append_ptrs(op->c, wp, &e->k_i, crc.compressed_size);
|
|
|
|
if (op->flags & BCH_WRITE_CACHED)
|
|
extent_for_each_ptr(extent_i_to_s(e), ptr)
|
|
ptr->cached = true;
|
|
|
|
bch2_keylist_push(&op->insert_keys);
|
|
}
|
|
|
|
static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
|
|
struct write_point *wp,
|
|
struct bio *src,
|
|
bool *page_alloc_failed,
|
|
void *buf)
|
|
{
|
|
struct bch_write_bio *wbio;
|
|
struct bio *bio;
|
|
unsigned output_available =
|
|
min(wp->sectors_free << 9, src->bi_iter.bi_size);
|
|
unsigned pages = DIV_ROUND_UP(output_available +
|
|
(buf
|
|
? ((unsigned long) buf & (PAGE_SIZE - 1))
|
|
: 0), PAGE_SIZE);
|
|
|
|
bio = bio_alloc_bioset(NULL, pages, 0,
|
|
GFP_NOIO, &c->bio_write);
|
|
wbio = wbio_init(bio);
|
|
wbio->put_bio = true;
|
|
/* copy WRITE_SYNC flag */
|
|
wbio->bio.bi_opf = src->bi_opf;
|
|
|
|
if (buf) {
|
|
bch2_bio_map(bio, buf, output_available);
|
|
return bio;
|
|
}
|
|
|
|
wbio->bounce = true;
|
|
|
|
/*
|
|
* We can't use mempool for more than c->sb.encoded_extent_max
|
|
* worth of pages, but we'd like to allocate more if we can:
|
|
*/
|
|
bch2_bio_alloc_pages_pool(c, bio,
|
|
min_t(unsigned, output_available,
|
|
c->sb.encoded_extent_max << 9));
|
|
|
|
if (bio->bi_iter.bi_size < output_available)
|
|
*page_alloc_failed =
|
|
bch2_bio_alloc_pages(bio,
|
|
output_available -
|
|
bio->bi_iter.bi_size,
|
|
GFP_NOFS) != 0;
|
|
|
|
return bio;
|
|
}
|
|
|
|
static int bch2_write_rechecksum(struct bch_fs *c,
|
|
struct bch_write_op *op,
|
|
unsigned new_csum_type)
|
|
{
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bch_extent_crc_unpacked new_crc;
|
|
int ret;
|
|
|
|
/* bch2_rechecksum_bio() can't encrypt or decrypt data: */
|
|
|
|
if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
|
|
bch2_csum_type_is_encryption(new_csum_type))
|
|
new_csum_type = op->crc.csum_type;
|
|
|
|
ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
|
|
NULL, &new_crc,
|
|
op->crc.offset, op->crc.live_size,
|
|
new_csum_type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bio_advance(bio, op->crc.offset << 9);
|
|
bio->bi_iter.bi_size = op->crc.live_size << 9;
|
|
op->crc = new_crc;
|
|
return 0;
|
|
}
|
|
|
|
static int bch2_write_decrypt(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct nonce nonce = extent_nonce(op->version, op->crc);
|
|
struct bch_csum csum;
|
|
|
|
if (!bch2_csum_type_is_encryption(op->crc.csum_type))
|
|
return 0;
|
|
|
|
/*
|
|
* If we need to decrypt data in the write path, we'll no longer be able
|
|
* to verify the existing checksum (poly1305 mac, in this case) after
|
|
* it's decrypted - this is the last point we'll be able to reverify the
|
|
* checksum:
|
|
*/
|
|
csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
|
|
if (bch2_crc_cmp(op->crc.csum, csum))
|
|
return -EIO;
|
|
|
|
bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
|
|
op->crc.csum_type = 0;
|
|
op->crc.csum = (struct bch_csum) { 0, 0 };
|
|
return 0;
|
|
}
|
|
|
|
static enum prep_encoded_ret {
|
|
PREP_ENCODED_OK,
|
|
PREP_ENCODED_ERR,
|
|
PREP_ENCODED_CHECKSUM_ERR,
|
|
PREP_ENCODED_DO_WRITE,
|
|
} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bio *bio = &op->wbio.bio;
|
|
|
|
if (!(op->flags & BCH_WRITE_DATA_ENCODED))
|
|
return PREP_ENCODED_OK;
|
|
|
|
BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
|
|
|
|
/* Can we just write the entire extent as is? */
|
|
if (op->crc.uncompressed_size == op->crc.live_size &&
|
|
op->crc.compressed_size <= wp->sectors_free &&
|
|
(op->crc.compression_type == op->compression_type ||
|
|
op->incompressible)) {
|
|
if (!crc_is_compressed(op->crc) &&
|
|
op->csum_type != op->crc.csum_type &&
|
|
bch2_write_rechecksum(c, op, op->csum_type))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
return PREP_ENCODED_DO_WRITE;
|
|
}
|
|
|
|
/*
|
|
* If the data is compressed and we couldn't write the entire extent as
|
|
* is, we have to decompress it:
|
|
*/
|
|
if (crc_is_compressed(op->crc)) {
|
|
struct bch_csum csum;
|
|
|
|
if (bch2_write_decrypt(op))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
/* Last point we can still verify checksum: */
|
|
csum = bch2_checksum_bio(c, op->crc.csum_type,
|
|
extent_nonce(op->version, op->crc),
|
|
bio);
|
|
if (bch2_crc_cmp(op->crc.csum, csum))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
|
|
return PREP_ENCODED_ERR;
|
|
}
|
|
|
|
/*
|
|
* No longer have compressed data after this point - data might be
|
|
* encrypted:
|
|
*/
|
|
|
|
/*
|
|
* If the data is checksummed and we're only writing a subset,
|
|
* rechecksum and adjust bio to point to currently live data:
|
|
*/
|
|
if ((op->crc.live_size != op->crc.uncompressed_size ||
|
|
op->crc.csum_type != op->csum_type) &&
|
|
bch2_write_rechecksum(c, op, op->csum_type))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
/*
|
|
* If we want to compress the data, it has to be decrypted:
|
|
*/
|
|
if ((op->compression_type ||
|
|
bch2_csum_type_is_encryption(op->crc.csum_type) !=
|
|
bch2_csum_type_is_encryption(op->csum_type)) &&
|
|
bch2_write_decrypt(op))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
return PREP_ENCODED_OK;
|
|
}
|
|
|
|
static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
|
|
struct bio **_dst)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bio *src = &op->wbio.bio, *dst = src;
|
|
struct bvec_iter saved_iter;
|
|
void *ec_buf;
|
|
struct bpos ec_pos = op->pos;
|
|
unsigned total_output = 0, total_input = 0;
|
|
bool bounce = false;
|
|
bool page_alloc_failed = false;
|
|
int ret, more = 0;
|
|
|
|
BUG_ON(!bio_sectors(src));
|
|
|
|
ec_buf = bch2_writepoint_ec_buf(c, wp);
|
|
|
|
switch (bch2_write_prep_encoded_data(op, wp)) {
|
|
case PREP_ENCODED_OK:
|
|
break;
|
|
case PREP_ENCODED_ERR:
|
|
ret = -EIO;
|
|
goto err;
|
|
case PREP_ENCODED_CHECKSUM_ERR:
|
|
goto csum_err;
|
|
case PREP_ENCODED_DO_WRITE:
|
|
/* XXX look for bug here */
|
|
if (ec_buf) {
|
|
dst = bch2_write_bio_alloc(c, wp, src,
|
|
&page_alloc_failed,
|
|
ec_buf);
|
|
bio_copy_data(dst, src);
|
|
bounce = true;
|
|
}
|
|
init_append_extent(op, wp, op->version, op->crc);
|
|
goto do_write;
|
|
}
|
|
|
|
if (ec_buf ||
|
|
op->compression_type ||
|
|
(op->csum_type &&
|
|
!(op->flags & BCH_WRITE_PAGES_STABLE)) ||
|
|
(bch2_csum_type_is_encryption(op->csum_type) &&
|
|
!(op->flags & BCH_WRITE_PAGES_OWNED))) {
|
|
dst = bch2_write_bio_alloc(c, wp, src,
|
|
&page_alloc_failed,
|
|
ec_buf);
|
|
bounce = true;
|
|
}
|
|
|
|
saved_iter = dst->bi_iter;
|
|
|
|
do {
|
|
struct bch_extent_crc_unpacked crc =
|
|
(struct bch_extent_crc_unpacked) { 0 };
|
|
struct bversion version = op->version;
|
|
size_t dst_len, src_len;
|
|
|
|
if (page_alloc_failed &&
|
|
bio_sectors(dst) < wp->sectors_free &&
|
|
bio_sectors(dst) < c->sb.encoded_extent_max)
|
|
break;
|
|
|
|
BUG_ON(op->compression_type &&
|
|
(op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
bch2_csum_type_is_encryption(op->crc.csum_type));
|
|
BUG_ON(op->compression_type && !bounce);
|
|
|
|
crc.compression_type = op->incompressible
|
|
? BCH_COMPRESSION_TYPE_incompressible
|
|
: op->compression_type
|
|
? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
|
|
op->compression_type)
|
|
: 0;
|
|
if (!crc_is_compressed(crc)) {
|
|
dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
|
|
dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
|
|
|
|
if (op->csum_type)
|
|
dst_len = min_t(unsigned, dst_len,
|
|
c->sb.encoded_extent_max << 9);
|
|
|
|
if (bounce) {
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
bio_copy_data(dst, src);
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
}
|
|
|
|
src_len = dst_len;
|
|
}
|
|
|
|
BUG_ON(!src_len || !dst_len);
|
|
|
|
if (bch2_csum_type_is_encryption(op->csum_type)) {
|
|
if (bversion_zero(version)) {
|
|
version.lo = atomic64_inc_return(&c->key_version);
|
|
} else {
|
|
crc.nonce = op->nonce;
|
|
op->nonce += src_len >> 9;
|
|
}
|
|
}
|
|
|
|
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
!crc_is_compressed(crc) &&
|
|
bch2_csum_type_is_encryption(op->crc.csum_type) ==
|
|
bch2_csum_type_is_encryption(op->csum_type)) {
|
|
/*
|
|
* Note: when we're using rechecksum(), we need to be
|
|
* checksumming @src because it has all the data our
|
|
* existing checksum covers - if we bounced (because we
|
|
* were trying to compress), @dst will only have the
|
|
* part of the data the new checksum will cover.
|
|
*
|
|
* But normally we want to be checksumming post bounce,
|
|
* because part of the reason for bouncing is so the
|
|
* data can't be modified (by userspace) while it's in
|
|
* flight.
|
|
*/
|
|
if (bch2_rechecksum_bio(c, src, version, op->crc,
|
|
&crc, &op->crc,
|
|
src_len >> 9,
|
|
bio_sectors(src) - (src_len >> 9),
|
|
op->csum_type))
|
|
goto csum_err;
|
|
} else {
|
|
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
bch2_rechecksum_bio(c, src, version, op->crc,
|
|
NULL, &op->crc,
|
|
src_len >> 9,
|
|
bio_sectors(src) - (src_len >> 9),
|
|
op->crc.csum_type))
|
|
goto csum_err;
|
|
|
|
crc.compressed_size = dst_len >> 9;
|
|
crc.uncompressed_size = src_len >> 9;
|
|
crc.live_size = src_len >> 9;
|
|
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
bch2_encrypt_bio(c, op->csum_type,
|
|
extent_nonce(version, crc), dst);
|
|
crc.csum = bch2_checksum_bio(c, op->csum_type,
|
|
extent_nonce(version, crc), dst);
|
|
crc.csum_type = op->csum_type;
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
}
|
|
|
|
init_append_extent(op, wp, version, crc);
|
|
|
|
if (dst != src)
|
|
bio_advance(dst, dst_len);
|
|
bio_advance(src, src_len);
|
|
total_output += dst_len;
|
|
total_input += src_len;
|
|
} while (dst->bi_iter.bi_size &&
|
|
src->bi_iter.bi_size &&
|
|
wp->sectors_free &&
|
|
!bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX));
|
|
|
|
more = src->bi_iter.bi_size != 0;
|
|
|
|
dst->bi_iter = saved_iter;
|
|
|
|
if (dst == src && more) {
|
|
BUG_ON(total_output != total_input);
|
|
|
|
dst = bio_split(src, total_input >> 9,
|
|
GFP_NOIO, &c->bio_write);
|
|
wbio_init(dst)->put_bio = true;
|
|
/* copy WRITE_SYNC flag */
|
|
dst->bi_opf = src->bi_opf;
|
|
}
|
|
|
|
dst->bi_iter.bi_size = total_output;
|
|
do_write:
|
|
/* might have done a realloc... */
|
|
bch2_ec_add_backpointer(c, wp, ec_pos, total_input >> 9);
|
|
|
|
*_dst = dst;
|
|
return more;
|
|
csum_err:
|
|
bch_err(c, "error verifying existing checksum while "
|
|
"rewriting existing data (memory corruption?)");
|
|
ret = -EIO;
|
|
err:
|
|
if (to_wbio(dst)->bounce)
|
|
bch2_bio_free_pages_pool(c, dst);
|
|
if (to_wbio(dst)->put_bio)
|
|
bio_put(dst);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __bch2_write(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
struct write_point *wp;
|
|
struct bio *bio;
|
|
bool skip_put = true;
|
|
unsigned nofs_flags;
|
|
int ret;
|
|
|
|
nofs_flags = memalloc_nofs_save();
|
|
again:
|
|
memset(&op->failed, 0, sizeof(op->failed));
|
|
|
|
do {
|
|
struct bkey_i *key_to_write;
|
|
unsigned key_to_write_offset = op->insert_keys.top_p -
|
|
op->insert_keys.keys_p;
|
|
|
|
/* +1 for possible cache device: */
|
|
if (op->open_buckets.nr + op->nr_replicas + 1 >
|
|
ARRAY_SIZE(op->open_buckets.v))
|
|
goto flush_io;
|
|
|
|
if (bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX))
|
|
goto flush_io;
|
|
|
|
if ((op->flags & BCH_WRITE_FROM_INTERNAL) &&
|
|
percpu_ref_is_dying(&c->writes)) {
|
|
ret = -EROFS;
|
|
goto err;
|
|
}
|
|
|
|
wp = bch2_alloc_sectors_start(c,
|
|
op->target,
|
|
op->opts.erasure_code,
|
|
op->write_point,
|
|
&op->devs_have,
|
|
op->nr_replicas,
|
|
op->nr_replicas_required,
|
|
op->alloc_reserve,
|
|
op->flags,
|
|
(op->flags & BCH_WRITE_ALLOC_NOWAIT) ? NULL : cl);
|
|
EBUG_ON(!wp);
|
|
|
|
if (unlikely(IS_ERR(wp))) {
|
|
if (unlikely(PTR_ERR(wp) != -EAGAIN)) {
|
|
ret = PTR_ERR(wp);
|
|
goto err;
|
|
}
|
|
|
|
goto flush_io;
|
|
}
|
|
|
|
/*
|
|
* It's possible for the allocator to fail, put us on the
|
|
* freelist waitlist, and then succeed in one of various retry
|
|
* paths: if that happens, we need to disable the skip_put
|
|
* optimization because otherwise there won't necessarily be a
|
|
* barrier before we free the bch_write_op:
|
|
*/
|
|
if (atomic_read(&cl->remaining) & CLOSURE_WAITING)
|
|
skip_put = false;
|
|
|
|
bch2_open_bucket_get(c, wp, &op->open_buckets);
|
|
ret = bch2_write_extent(op, wp, &bio);
|
|
bch2_alloc_sectors_done(c, wp);
|
|
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
if (ret) {
|
|
skip_put = false;
|
|
} else {
|
|
/*
|
|
* for the skip_put optimization this has to be set
|
|
* before we submit the bio:
|
|
*/
|
|
op->flags |= BCH_WRITE_DONE;
|
|
}
|
|
|
|
bio->bi_end_io = bch2_write_endio;
|
|
bio->bi_private = &op->cl;
|
|
bio->bi_opf |= REQ_OP_WRITE;
|
|
|
|
if (!skip_put)
|
|
closure_get(bio->bi_private);
|
|
else
|
|
op->flags |= BCH_WRITE_SKIP_CLOSURE_PUT;
|
|
|
|
key_to_write = (void *) (op->insert_keys.keys_p +
|
|
key_to_write_offset);
|
|
|
|
bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
|
|
key_to_write);
|
|
} while (ret);
|
|
|
|
if (!skip_put)
|
|
continue_at(cl, bch2_write_index, index_update_wq(op));
|
|
out:
|
|
memalloc_nofs_restore(nofs_flags);
|
|
return;
|
|
err:
|
|
op->error = ret;
|
|
op->flags |= BCH_WRITE_DONE;
|
|
|
|
continue_at(cl, bch2_write_index, index_update_wq(op));
|
|
goto out;
|
|
flush_io:
|
|
/*
|
|
* If the write can't all be submitted at once, we generally want to
|
|
* block synchronously as that signals backpressure to the caller.
|
|
*
|
|
* However, if we're running out of a workqueue, we can't block here
|
|
* because we'll be blocking other work items from completing:
|
|
*/
|
|
if (current->flags & PF_WQ_WORKER) {
|
|
continue_at(cl, bch2_write_index, index_update_wq(op));
|
|
goto out;
|
|
}
|
|
|
|
closure_sync(cl);
|
|
|
|
if (!bch2_keylist_empty(&op->insert_keys)) {
|
|
__bch2_write_index(op);
|
|
|
|
if (op->error) {
|
|
op->flags |= BCH_WRITE_DONE;
|
|
continue_at_nobarrier(cl, bch2_write_done, NULL);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
goto again;
|
|
}
|
|
|
|
static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
|
|
{
|
|
struct closure *cl = &op->cl;
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bvec_iter iter;
|
|
struct bkey_i_inline_data *id;
|
|
unsigned sectors;
|
|
int ret;
|
|
|
|
bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
|
|
|
|
ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_U64s + DIV_ROUND_UP(data_len, 8));
|
|
if (ret) {
|
|
op->error = ret;
|
|
goto err;
|
|
}
|
|
|
|
sectors = bio_sectors(bio);
|
|
op->pos.offset += sectors;
|
|
|
|
id = bkey_inline_data_init(op->insert_keys.top);
|
|
id->k.p = op->pos;
|
|
id->k.version = op->version;
|
|
id->k.size = sectors;
|
|
|
|
iter = bio->bi_iter;
|
|
iter.bi_size = data_len;
|
|
memcpy_from_bio(id->v.data, bio, iter);
|
|
|
|
while (data_len & 7)
|
|
id->v.data[data_len++] = '\0';
|
|
set_bkey_val_bytes(&id->k, data_len);
|
|
bch2_keylist_push(&op->insert_keys);
|
|
|
|
op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
|
|
op->flags |= BCH_WRITE_DONE;
|
|
|
|
continue_at_nobarrier(cl, bch2_write_index, NULL);
|
|
return;
|
|
err:
|
|
bch2_write_done(&op->cl);
|
|
}
|
|
|
|
/**
|
|
* bch_write - handle a write to a cache device or flash only volume
|
|
*
|
|
* This is the starting point for any data to end up in a cache device; it could
|
|
* be from a normal write, or a writeback write, or a write to a flash only
|
|
* volume - it's also used by the moving garbage collector to compact data in
|
|
* mostly empty buckets.
|
|
*
|
|
* It first writes the data to the cache, creating a list of keys to be inserted
|
|
* (if the data won't fit in a single open bucket, there will be multiple keys);
|
|
* after the data is written it calls bch_journal, and after the keys have been
|
|
* added to the next journal write they're inserted into the btree.
|
|
*
|
|
* If op->discard is true, instead of inserting the data it invalidates the
|
|
* region of the cache represented by op->bio and op->inode.
|
|
*/
|
|
void bch2_write(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bch_fs *c = op->c;
|
|
unsigned data_len;
|
|
|
|
BUG_ON(!op->nr_replicas);
|
|
BUG_ON(!op->write_point.v);
|
|
BUG_ON(!bkey_cmp(op->pos, POS_MAX));
|
|
|
|
op->start_time = local_clock();
|
|
bch2_keylist_init(&op->insert_keys, op->inline_keys);
|
|
wbio_init(bio)->put_bio = false;
|
|
|
|
if (bio_sectors(bio) & (c->opts.block_size - 1)) {
|
|
__bcache_io_error(c, "misaligned write");
|
|
op->error = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
if (c->opts.nochanges ||
|
|
!percpu_ref_tryget(&c->writes)) {
|
|
if (!(op->flags & BCH_WRITE_FROM_INTERNAL))
|
|
__bcache_io_error(c, "read only");
|
|
op->error = -EROFS;
|
|
goto err;
|
|
}
|
|
|
|
bch2_increment_clock(c, bio_sectors(bio), WRITE);
|
|
|
|
data_len = min_t(u64, bio->bi_iter.bi_size,
|
|
op->new_i_size - (op->pos.offset << 9));
|
|
|
|
if (c->opts.inline_data &&
|
|
data_len <= min(block_bytes(c) / 2, 1024U)) {
|
|
bch2_write_data_inline(op, data_len);
|
|
return;
|
|
}
|
|
|
|
continue_at_nobarrier(cl, __bch2_write, NULL);
|
|
return;
|
|
err:
|
|
bch2_disk_reservation_put(c, &op->res);
|
|
|
|
if (op->end_io) {
|
|
EBUG_ON(cl->parent);
|
|
closure_debug_destroy(cl);
|
|
op->end_io(op);
|
|
} else {
|
|
closure_return(cl);
|
|
}
|
|
}
|
|
|
|
/* Cache promotion on read */
|
|
|
|
struct promote_op {
|
|
struct closure cl;
|
|
struct rcu_head rcu;
|
|
u64 start_time;
|
|
|
|
struct rhash_head hash;
|
|
struct bpos pos;
|
|
|
|
struct migrate_write write;
|
|
struct bio_vec bi_inline_vecs[0]; /* must be last */
|
|
};
|
|
|
|
static const struct rhashtable_params bch_promote_params = {
|
|
.head_offset = offsetof(struct promote_op, hash),
|
|
.key_offset = offsetof(struct promote_op, pos),
|
|
.key_len = sizeof(struct bpos),
|
|
};
|
|
|
|
static inline bool should_promote(struct bch_fs *c, struct bkey_s_c k,
|
|
struct bpos pos,
|
|
struct bch_io_opts opts,
|
|
unsigned flags)
|
|
{
|
|
if (!(flags & BCH_READ_MAY_PROMOTE))
|
|
return false;
|
|
|
|
if (!opts.promote_target)
|
|
return false;
|
|
|
|
if (bch2_bkey_has_target(c, k, opts.promote_target))
|
|
return false;
|
|
|
|
if (bch2_target_congested(c, opts.promote_target)) {
|
|
/* XXX trace this */
|
|
return false;
|
|
}
|
|
|
|
if (rhashtable_lookup_fast(&c->promote_table, &pos,
|
|
bch_promote_params))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void promote_free(struct bch_fs *c, struct promote_op *op)
|
|
{
|
|
int ret;
|
|
|
|
ret = rhashtable_remove_fast(&c->promote_table, &op->hash,
|
|
bch_promote_params);
|
|
BUG_ON(ret);
|
|
percpu_ref_put(&c->writes);
|
|
kfree_rcu(op, rcu);
|
|
}
|
|
|
|
static void promote_done(struct closure *cl)
|
|
{
|
|
struct promote_op *op =
|
|
container_of(cl, struct promote_op, cl);
|
|
struct bch_fs *c = op->write.op.c;
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_data_promote],
|
|
op->start_time);
|
|
|
|
bch2_bio_free_pages_pool(c, &op->write.op.wbio.bio);
|
|
promote_free(c, op);
|
|
}
|
|
|
|
static void promote_start(struct promote_op *op, struct bch_read_bio *rbio)
|
|
{
|
|
struct bch_fs *c = rbio->c;
|
|
struct closure *cl = &op->cl;
|
|
struct bio *bio = &op->write.op.wbio.bio;
|
|
|
|
trace_promote(&rbio->bio);
|
|
|
|
/* we now own pages: */
|
|
BUG_ON(!rbio->bounce);
|
|
BUG_ON(rbio->bio.bi_vcnt > bio->bi_max_vecs);
|
|
|
|
memcpy(bio->bi_io_vec, rbio->bio.bi_io_vec,
|
|
sizeof(struct bio_vec) * rbio->bio.bi_vcnt);
|
|
swap(bio->bi_vcnt, rbio->bio.bi_vcnt);
|
|
|
|
bch2_migrate_read_done(&op->write, rbio);
|
|
|
|
closure_init(cl, NULL);
|
|
closure_call(&op->write.op.cl, bch2_write, c->wq, cl);
|
|
closure_return_with_destructor(cl, promote_done);
|
|
}
|
|
|
|
static struct promote_op *__promote_alloc(struct bch_fs *c,
|
|
enum btree_id btree_id,
|
|
struct bkey_s_c k,
|
|
struct bpos pos,
|
|
struct extent_ptr_decoded *pick,
|
|
struct bch_io_opts opts,
|
|
unsigned sectors,
|
|
struct bch_read_bio **rbio)
|
|
{
|
|
struct promote_op *op = NULL;
|
|
struct bio *bio;
|
|
unsigned pages = DIV_ROUND_UP(sectors, PAGE_SECTORS);
|
|
int ret;
|
|
|
|
if (!percpu_ref_tryget(&c->writes))
|
|
return NULL;
|
|
|
|
op = kzalloc(sizeof(*op) + sizeof(struct bio_vec) * pages, GFP_NOIO);
|
|
if (!op)
|
|
goto err;
|
|
|
|
op->start_time = local_clock();
|
|
op->pos = pos;
|
|
|
|
/*
|
|
* We don't use the mempool here because extents that aren't
|
|
* checksummed or compressed can be too big for the mempool:
|
|
*/
|
|
*rbio = kzalloc(sizeof(struct bch_read_bio) +
|
|
sizeof(struct bio_vec) * pages,
|
|
GFP_NOIO);
|
|
if (!*rbio)
|
|
goto err;
|
|
|
|
rbio_init(&(*rbio)->bio, opts);
|
|
bio_init(&(*rbio)->bio, NULL, (*rbio)->bio.bi_inline_vecs, pages, 0);
|
|
|
|
if (bch2_bio_alloc_pages(&(*rbio)->bio, sectors << 9,
|
|
GFP_NOIO))
|
|
goto err;
|
|
|
|
(*rbio)->bounce = true;
|
|
(*rbio)->split = true;
|
|
(*rbio)->kmalloc = true;
|
|
|
|
if (rhashtable_lookup_insert_fast(&c->promote_table, &op->hash,
|
|
bch_promote_params))
|
|
goto err;
|
|
|
|
bio = &op->write.op.wbio.bio;
|
|
bio_init(bio, NULL, bio->bi_inline_vecs, pages, 0);
|
|
|
|
ret = bch2_migrate_write_init(c, &op->write,
|
|
writepoint_hashed((unsigned long) current),
|
|
opts,
|
|
DATA_PROMOTE,
|
|
(struct data_opts) {
|
|
.target = opts.promote_target
|
|
},
|
|
btree_id, k);
|
|
BUG_ON(ret);
|
|
|
|
return op;
|
|
err:
|
|
if (*rbio)
|
|
bio_free_pages(&(*rbio)->bio);
|
|
kfree(*rbio);
|
|
*rbio = NULL;
|
|
kfree(op);
|
|
percpu_ref_put(&c->writes);
|
|
return NULL;
|
|
}
|
|
|
|
noinline
|
|
static struct promote_op *promote_alloc(struct bch_fs *c,
|
|
struct bvec_iter iter,
|
|
struct bkey_s_c k,
|
|
struct extent_ptr_decoded *pick,
|
|
struct bch_io_opts opts,
|
|
unsigned flags,
|
|
struct bch_read_bio **rbio,
|
|
bool *bounce,
|
|
bool *read_full)
|
|
{
|
|
bool promote_full = *read_full || READ_ONCE(c->promote_whole_extents);
|
|
/* data might have to be decompressed in the write path: */
|
|
unsigned sectors = promote_full
|
|
? max(pick->crc.compressed_size, pick->crc.live_size)
|
|
: bvec_iter_sectors(iter);
|
|
struct bpos pos = promote_full
|
|
? bkey_start_pos(k.k)
|
|
: POS(k.k->p.inode, iter.bi_sector);
|
|
struct promote_op *promote;
|
|
|
|
if (!should_promote(c, k, pos, opts, flags))
|
|
return NULL;
|
|
|
|
promote = __promote_alloc(c,
|
|
k.k->type == KEY_TYPE_reflink_v
|
|
? BTREE_ID_REFLINK
|
|
: BTREE_ID_EXTENTS,
|
|
k, pos, pick, opts, sectors, rbio);
|
|
if (!promote)
|
|
return NULL;
|
|
|
|
*bounce = true;
|
|
*read_full = promote_full;
|
|
return promote;
|
|
}
|
|
|
|
/* Read */
|
|
|
|
#define READ_RETRY_AVOID 1
|
|
#define READ_RETRY 2
|
|
#define READ_ERR 3
|
|
|
|
enum rbio_context {
|
|
RBIO_CONTEXT_NULL,
|
|
RBIO_CONTEXT_HIGHPRI,
|
|
RBIO_CONTEXT_UNBOUND,
|
|
};
|
|
|
|
static inline struct bch_read_bio *
|
|
bch2_rbio_parent(struct bch_read_bio *rbio)
|
|
{
|
|
return rbio->split ? rbio->parent : rbio;
|
|
}
|
|
|
|
__always_inline
|
|
static void bch2_rbio_punt(struct bch_read_bio *rbio, work_func_t fn,
|
|
enum rbio_context context,
|
|
struct workqueue_struct *wq)
|
|
{
|
|
if (context <= rbio->context) {
|
|
fn(&rbio->work);
|
|
} else {
|
|
rbio->work.func = fn;
|
|
rbio->context = context;
|
|
queue_work(wq, &rbio->work);
|
|
}
|
|
}
|
|
|
|
static inline struct bch_read_bio *bch2_rbio_free(struct bch_read_bio *rbio)
|
|
{
|
|
BUG_ON(rbio->bounce && !rbio->split);
|
|
|
|
if (rbio->promote)
|
|
promote_free(rbio->c, rbio->promote);
|
|
rbio->promote = NULL;
|
|
|
|
if (rbio->bounce)
|
|
bch2_bio_free_pages_pool(rbio->c, &rbio->bio);
|
|
|
|
if (rbio->split) {
|
|
struct bch_read_bio *parent = rbio->parent;
|
|
|
|
if (rbio->kmalloc)
|
|
kfree(rbio);
|
|
else
|
|
bio_put(&rbio->bio);
|
|
|
|
rbio = parent;
|
|
}
|
|
|
|
return rbio;
|
|
}
|
|
|
|
/*
|
|
* Only called on a top level bch_read_bio to complete an entire read request,
|
|
* not a split:
|
|
*/
|
|
static void bch2_rbio_done(struct bch_read_bio *rbio)
|
|
{
|
|
if (rbio->start_time)
|
|
bch2_time_stats_update(&rbio->c->times[BCH_TIME_data_read],
|
|
rbio->start_time);
|
|
bio_endio(&rbio->bio);
|
|
}
|
|
|
|
static void bch2_read_retry_nodecode(struct bch_fs *c, struct bch_read_bio *rbio,
|
|
struct bvec_iter bvec_iter, u64 inode,
|
|
struct bch_io_failures *failed,
|
|
unsigned flags)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct bkey_on_stack sk;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
flags &= ~BCH_READ_LAST_FRAGMENT;
|
|
flags |= BCH_READ_MUST_CLONE;
|
|
|
|
bkey_on_stack_init(&sk);
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
|
|
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
|
|
rbio->pos, BTREE_ITER_SLOTS);
|
|
retry:
|
|
rbio->bio.bi_status = 0;
|
|
|
|
k = bch2_btree_iter_peek_slot(iter);
|
|
if (bkey_err(k))
|
|
goto err;
|
|
|
|
bkey_on_stack_reassemble(&sk, c, k);
|
|
k = bkey_i_to_s_c(sk.k);
|
|
bch2_trans_unlock(&trans);
|
|
|
|
if (!bch2_bkey_matches_ptr(c, k,
|
|
rbio->pick.ptr,
|
|
rbio->pos.offset -
|
|
rbio->pick.crc.offset)) {
|
|
/* extent we wanted to read no longer exists: */
|
|
rbio->hole = true;
|
|
goto out;
|
|
}
|
|
|
|
ret = __bch2_read_extent(c, rbio, bvec_iter, k, 0, failed, flags);
|
|
if (ret == READ_RETRY)
|
|
goto retry;
|
|
if (ret)
|
|
goto err;
|
|
out:
|
|
bch2_rbio_done(rbio);
|
|
bch2_trans_exit(&trans);
|
|
bkey_on_stack_exit(&sk, c);
|
|
return;
|
|
err:
|
|
rbio->bio.bi_status = BLK_STS_IOERR;
|
|
goto out;
|
|
}
|
|
|
|
static void bch2_read_retry(struct bch_fs *c, struct bch_read_bio *rbio,
|
|
struct bvec_iter bvec_iter, u64 inode,
|
|
struct bch_io_failures *failed, unsigned flags)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct bkey_on_stack sk;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
flags &= ~BCH_READ_LAST_FRAGMENT;
|
|
flags |= BCH_READ_MUST_CLONE;
|
|
|
|
bkey_on_stack_init(&sk);
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
retry:
|
|
bch2_trans_begin(&trans);
|
|
|
|
for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS,
|
|
POS(inode, bvec_iter.bi_sector),
|
|
BTREE_ITER_SLOTS, k, ret) {
|
|
unsigned bytes, sectors, offset_into_extent;
|
|
|
|
bkey_on_stack_reassemble(&sk, c, k);
|
|
k = bkey_i_to_s_c(sk.k);
|
|
|
|
offset_into_extent = iter->pos.offset -
|
|
bkey_start_offset(k.k);
|
|
sectors = k.k->size - offset_into_extent;
|
|
|
|
ret = bch2_read_indirect_extent(&trans,
|
|
&offset_into_extent, &sk);
|
|
if (ret)
|
|
break;
|
|
|
|
sectors = min(sectors, k.k->size - offset_into_extent);
|
|
|
|
bch2_trans_unlock(&trans);
|
|
|
|
bytes = min(sectors, bvec_iter_sectors(bvec_iter)) << 9;
|
|
swap(bvec_iter.bi_size, bytes);
|
|
|
|
ret = __bch2_read_extent(c, rbio, bvec_iter, k,
|
|
offset_into_extent, failed, flags);
|
|
switch (ret) {
|
|
case READ_RETRY:
|
|
goto retry;
|
|
case READ_ERR:
|
|
goto err;
|
|
};
|
|
|
|
if (bytes == bvec_iter.bi_size)
|
|
goto out;
|
|
|
|
swap(bvec_iter.bi_size, bytes);
|
|
bio_advance_iter(&rbio->bio, &bvec_iter, bytes);
|
|
}
|
|
|
|
if (ret == -EINTR)
|
|
goto retry;
|
|
/*
|
|
* If we get here, it better have been because there was an error
|
|
* reading a btree node
|
|
*/
|
|
BUG_ON(!ret);
|
|
__bcache_io_error(c, "btree IO error: %i", ret);
|
|
err:
|
|
rbio->bio.bi_status = BLK_STS_IOERR;
|
|
out:
|
|
bch2_trans_exit(&trans);
|
|
bkey_on_stack_exit(&sk, c);
|
|
bch2_rbio_done(rbio);
|
|
}
|
|
|
|
static void bch2_rbio_retry(struct work_struct *work)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(work, struct bch_read_bio, work);
|
|
struct bch_fs *c = rbio->c;
|
|
struct bvec_iter iter = rbio->bvec_iter;
|
|
unsigned flags = rbio->flags;
|
|
u64 inode = rbio->pos.inode;
|
|
struct bch_io_failures failed = { .nr = 0 };
|
|
|
|
trace_read_retry(&rbio->bio);
|
|
|
|
if (rbio->retry == READ_RETRY_AVOID)
|
|
bch2_mark_io_failure(&failed, &rbio->pick);
|
|
|
|
rbio->bio.bi_status = 0;
|
|
|
|
rbio = bch2_rbio_free(rbio);
|
|
|
|
flags |= BCH_READ_IN_RETRY;
|
|
flags &= ~BCH_READ_MAY_PROMOTE;
|
|
|
|
if (flags & BCH_READ_NODECODE)
|
|
bch2_read_retry_nodecode(c, rbio, iter, inode, &failed, flags);
|
|
else
|
|
bch2_read_retry(c, rbio, iter, inode, &failed, flags);
|
|
}
|
|
|
|
static void bch2_rbio_error(struct bch_read_bio *rbio, int retry,
|
|
blk_status_t error)
|
|
{
|
|
rbio->retry = retry;
|
|
|
|
if (rbio->flags & BCH_READ_IN_RETRY)
|
|
return;
|
|
|
|
if (retry == READ_ERR) {
|
|
rbio = bch2_rbio_free(rbio);
|
|
|
|
rbio->bio.bi_status = error;
|
|
bch2_rbio_done(rbio);
|
|
} else {
|
|
bch2_rbio_punt(rbio, bch2_rbio_retry,
|
|
RBIO_CONTEXT_UNBOUND, system_unbound_wq);
|
|
}
|
|
}
|
|
|
|
static int __bch2_rbio_narrow_crcs(struct btree_trans *trans,
|
|
struct bch_read_bio *rbio)
|
|
{
|
|
struct bch_fs *c = rbio->c;
|
|
u64 data_offset = rbio->pos.offset - rbio->pick.crc.offset;
|
|
struct bch_extent_crc_unpacked new_crc;
|
|
struct btree_iter *iter = NULL;
|
|
struct bkey_i *new;
|
|
struct bkey_s_c k;
|
|
int ret = 0;
|
|
|
|
if (crc_is_compressed(rbio->pick.crc))
|
|
return 0;
|
|
|
|
iter = bch2_trans_get_iter(trans, BTREE_ID_EXTENTS, rbio->pos,
|
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
|
|
if ((ret = PTR_ERR_OR_ZERO(iter)))
|
|
goto out;
|
|
|
|
k = bch2_btree_iter_peek_slot(iter);
|
|
if ((ret = bkey_err(k)))
|
|
goto out;
|
|
|
|
/*
|
|
* going to be temporarily appending another checksum entry:
|
|
*/
|
|
new = bch2_trans_kmalloc(trans, bkey_bytes(k.k) +
|
|
BKEY_EXTENT_U64s_MAX * 8);
|
|
if ((ret = PTR_ERR_OR_ZERO(new)))
|
|
goto out;
|
|
|
|
bkey_reassemble(new, k);
|
|
k = bkey_i_to_s_c(new);
|
|
|
|
if (bversion_cmp(k.k->version, rbio->version) ||
|
|
!bch2_bkey_matches_ptr(c, k, rbio->pick.ptr, data_offset))
|
|
goto out;
|
|
|
|
/* Extent was merged? */
|
|
if (bkey_start_offset(k.k) < data_offset ||
|
|
k.k->p.offset > data_offset + rbio->pick.crc.uncompressed_size)
|
|
goto out;
|
|
|
|
if (bch2_rechecksum_bio(c, &rbio->bio, rbio->version,
|
|
rbio->pick.crc, NULL, &new_crc,
|
|
bkey_start_offset(k.k) - data_offset, k.k->size,
|
|
rbio->pick.crc.csum_type)) {
|
|
bch_err(c, "error verifying existing checksum while narrowing checksum (memory corruption?)");
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!bch2_bkey_narrow_crcs(new, new_crc))
|
|
goto out;
|
|
|
|
bch2_trans_update(trans, iter, new, 0);
|
|
out:
|
|
bch2_trans_iter_put(trans, iter);
|
|
return ret;
|
|
}
|
|
|
|
static noinline void bch2_rbio_narrow_crcs(struct bch_read_bio *rbio)
|
|
{
|
|
bch2_trans_do(rbio->c, NULL, NULL, BTREE_INSERT_NOFAIL,
|
|
__bch2_rbio_narrow_crcs(&trans, rbio));
|
|
}
|
|
|
|
/* Inner part that may run in process context */
|
|
static void __bch2_read_endio(struct work_struct *work)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(work, struct bch_read_bio, work);
|
|
struct bch_fs *c = rbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev);
|
|
struct bio *src = &rbio->bio;
|
|
struct bio *dst = &bch2_rbio_parent(rbio)->bio;
|
|
struct bvec_iter dst_iter = rbio->bvec_iter;
|
|
struct bch_extent_crc_unpacked crc = rbio->pick.crc;
|
|
struct nonce nonce = extent_nonce(rbio->version, crc);
|
|
struct bch_csum csum;
|
|
|
|
/* Reset iterator for checksumming and copying bounced data: */
|
|
if (rbio->bounce) {
|
|
src->bi_iter.bi_size = crc.compressed_size << 9;
|
|
src->bi_iter.bi_idx = 0;
|
|
src->bi_iter.bi_bvec_done = 0;
|
|
} else {
|
|
src->bi_iter = rbio->bvec_iter;
|
|
}
|
|
|
|
csum = bch2_checksum_bio(c, crc.csum_type, nonce, src);
|
|
if (bch2_crc_cmp(csum, rbio->pick.crc.csum) && !c->opts.no_data_io)
|
|
goto csum_err;
|
|
|
|
if (unlikely(rbio->narrow_crcs))
|
|
bch2_rbio_narrow_crcs(rbio);
|
|
|
|
if (rbio->flags & BCH_READ_NODECODE)
|
|
goto nodecode;
|
|
|
|
/* Adjust crc to point to subset of data we want: */
|
|
crc.offset += rbio->offset_into_extent;
|
|
crc.live_size = bvec_iter_sectors(rbio->bvec_iter);
|
|
|
|
if (crc_is_compressed(crc)) {
|
|
bch2_encrypt_bio(c, crc.csum_type, nonce, src);
|
|
if (bch2_bio_uncompress(c, src, dst, dst_iter, crc))
|
|
goto decompression_err;
|
|
} else {
|
|
/* don't need to decrypt the entire bio: */
|
|
nonce = nonce_add(nonce, crc.offset << 9);
|
|
bio_advance(src, crc.offset << 9);
|
|
|
|
BUG_ON(src->bi_iter.bi_size < dst_iter.bi_size);
|
|
src->bi_iter.bi_size = dst_iter.bi_size;
|
|
|
|
bch2_encrypt_bio(c, crc.csum_type, nonce, src);
|
|
|
|
if (rbio->bounce) {
|
|
struct bvec_iter src_iter = src->bi_iter;
|
|
bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
|
|
}
|
|
}
|
|
|
|
if (rbio->promote) {
|
|
/*
|
|
* Re encrypt data we decrypted, so it's consistent with
|
|
* rbio->crc:
|
|
*/
|
|
bch2_encrypt_bio(c, crc.csum_type, nonce, src);
|
|
promote_start(rbio->promote, rbio);
|
|
rbio->promote = NULL;
|
|
}
|
|
nodecode:
|
|
if (likely(!(rbio->flags & BCH_READ_IN_RETRY))) {
|
|
rbio = bch2_rbio_free(rbio);
|
|
bch2_rbio_done(rbio);
|
|
}
|
|
return;
|
|
csum_err:
|
|
/*
|
|
* Checksum error: if the bio wasn't bounced, we may have been
|
|
* reading into buffers owned by userspace (that userspace can
|
|
* scribble over) - retry the read, bouncing it this time:
|
|
*/
|
|
if (!rbio->bounce && (rbio->flags & BCH_READ_USER_MAPPED)) {
|
|
rbio->flags |= BCH_READ_MUST_BOUNCE;
|
|
bch2_rbio_error(rbio, READ_RETRY, BLK_STS_IOERR);
|
|
return;
|
|
}
|
|
|
|
bch2_dev_io_error(ca,
|
|
"data checksum error, inode %llu offset %llu: expected %0llx:%0llx got %0llx:%0llx (type %u)",
|
|
rbio->pos.inode, (u64) rbio->bvec_iter.bi_sector,
|
|
rbio->pick.crc.csum.hi, rbio->pick.crc.csum.lo,
|
|
csum.hi, csum.lo, crc.csum_type);
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
|
|
return;
|
|
decompression_err:
|
|
__bcache_io_error(c, "decompression error, inode %llu offset %llu",
|
|
rbio->pos.inode,
|
|
(u64) rbio->bvec_iter.bi_sector);
|
|
bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR);
|
|
return;
|
|
}
|
|
|
|
static void bch2_read_endio(struct bio *bio)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(bio, struct bch_read_bio, bio);
|
|
struct bch_fs *c = rbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev);
|
|
struct workqueue_struct *wq = NULL;
|
|
enum rbio_context context = RBIO_CONTEXT_NULL;
|
|
|
|
if (rbio->have_ioref) {
|
|
bch2_latency_acct(ca, rbio->submit_time, READ);
|
|
percpu_ref_put(&ca->io_ref);
|
|
}
|
|
|
|
if (!rbio->split)
|
|
rbio->bio.bi_end_io = rbio->end_io;
|
|
|
|
if (bch2_dev_io_err_on(bio->bi_status, ca, "data read; %s",
|
|
bch2_blk_status_to_str(bio->bi_status))) {
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, bio->bi_status);
|
|
return;
|
|
}
|
|
|
|
if (rbio->pick.ptr.cached &&
|
|
(((rbio->flags & BCH_READ_RETRY_IF_STALE) && race_fault()) ||
|
|
ptr_stale(ca, &rbio->pick.ptr))) {
|
|
atomic_long_inc(&c->read_realloc_races);
|
|
|
|
if (rbio->flags & BCH_READ_RETRY_IF_STALE)
|
|
bch2_rbio_error(rbio, READ_RETRY, BLK_STS_AGAIN);
|
|
else
|
|
bch2_rbio_error(rbio, READ_ERR, BLK_STS_AGAIN);
|
|
return;
|
|
}
|
|
|
|
if (rbio->narrow_crcs ||
|
|
crc_is_compressed(rbio->pick.crc) ||
|
|
bch2_csum_type_is_encryption(rbio->pick.crc.csum_type))
|
|
context = RBIO_CONTEXT_UNBOUND, wq = system_unbound_wq;
|
|
else if (rbio->pick.crc.csum_type)
|
|
context = RBIO_CONTEXT_HIGHPRI, wq = system_highpri_wq;
|
|
|
|
bch2_rbio_punt(rbio, __bch2_read_endio, context, wq);
|
|
}
|
|
|
|
int __bch2_read_indirect_extent(struct btree_trans *trans,
|
|
unsigned *offset_into_extent,
|
|
struct bkey_on_stack *orig_k)
|
|
{
|
|
struct btree_iter *iter;
|
|
struct bkey_s_c k;
|
|
u64 reflink_offset;
|
|
int ret;
|
|
|
|
reflink_offset = le64_to_cpu(bkey_i_to_reflink_p(orig_k->k)->v.idx) +
|
|
*offset_into_extent;
|
|
|
|
iter = bch2_trans_get_iter(trans, BTREE_ID_REFLINK,
|
|
POS(0, reflink_offset),
|
|
BTREE_ITER_SLOTS);
|
|
ret = PTR_ERR_OR_ZERO(iter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
k = bch2_btree_iter_peek_slot(iter);
|
|
ret = bkey_err(k);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (k.k->type != KEY_TYPE_reflink_v) {
|
|
__bcache_io_error(trans->c,
|
|
"pointer to nonexistent indirect extent");
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
*offset_into_extent = iter->pos.offset - bkey_start_offset(k.k);
|
|
bkey_on_stack_reassemble(orig_k, trans->c, k);
|
|
err:
|
|
bch2_trans_iter_put(trans, iter);
|
|
return ret;
|
|
}
|
|
|
|
int __bch2_read_extent(struct bch_fs *c, struct bch_read_bio *orig,
|
|
struct bvec_iter iter, struct bkey_s_c k,
|
|
unsigned offset_into_extent,
|
|
struct bch_io_failures *failed, unsigned flags)
|
|
{
|
|
struct extent_ptr_decoded pick;
|
|
struct bch_read_bio *rbio = NULL;
|
|
struct bch_dev *ca;
|
|
struct promote_op *promote = NULL;
|
|
bool bounce = false, read_full = false, narrow_crcs = false;
|
|
struct bpos pos = bkey_start_pos(k.k);
|
|
int pick_ret;
|
|
|
|
if (k.k->type == KEY_TYPE_inline_data) {
|
|
struct bkey_s_c_inline_data d = bkey_s_c_to_inline_data(k);
|
|
unsigned bytes = min_t(unsigned, iter.bi_size,
|
|
bkey_val_bytes(d.k));
|
|
|
|
swap(iter.bi_size, bytes);
|
|
memcpy_to_bio(&orig->bio, iter, d.v->data);
|
|
swap(iter.bi_size, bytes);
|
|
bio_advance_iter(&orig->bio, &iter, bytes);
|
|
zero_fill_bio_iter(&orig->bio, iter);
|
|
goto out_read_done;
|
|
}
|
|
|
|
pick_ret = bch2_bkey_pick_read_device(c, k, failed, &pick);
|
|
|
|
/* hole or reservation - just zero fill: */
|
|
if (!pick_ret)
|
|
goto hole;
|
|
|
|
if (pick_ret < 0) {
|
|
__bcache_io_error(c, "no device to read from");
|
|
goto err;
|
|
}
|
|
|
|
if (pick_ret > 0)
|
|
ca = bch_dev_bkey_exists(c, pick.ptr.dev);
|
|
|
|
if (flags & BCH_READ_NODECODE) {
|
|
/*
|
|
* can happen if we retry, and the extent we were going to read
|
|
* has been merged in the meantime:
|
|
*/
|
|
if (pick.crc.compressed_size > orig->bio.bi_vcnt * PAGE_SECTORS)
|
|
goto hole;
|
|
|
|
iter.bi_size = pick.crc.compressed_size << 9;
|
|
goto get_bio;
|
|
}
|
|
|
|
if (!(flags & BCH_READ_LAST_FRAGMENT) ||
|
|
bio_flagged(&orig->bio, BIO_CHAIN))
|
|
flags |= BCH_READ_MUST_CLONE;
|
|
|
|
narrow_crcs = !(flags & BCH_READ_IN_RETRY) &&
|
|
bch2_can_narrow_extent_crcs(k, pick.crc);
|
|
|
|
if (narrow_crcs && (flags & BCH_READ_USER_MAPPED))
|
|
flags |= BCH_READ_MUST_BOUNCE;
|
|
|
|
EBUG_ON(offset_into_extent + bvec_iter_sectors(iter) > k.k->size);
|
|
|
|
if (crc_is_compressed(pick.crc) ||
|
|
(pick.crc.csum_type != BCH_CSUM_NONE &&
|
|
(bvec_iter_sectors(iter) != pick.crc.uncompressed_size ||
|
|
(bch2_csum_type_is_encryption(pick.crc.csum_type) &&
|
|
(flags & BCH_READ_USER_MAPPED)) ||
|
|
(flags & BCH_READ_MUST_BOUNCE)))) {
|
|
read_full = true;
|
|
bounce = true;
|
|
}
|
|
|
|
if (orig->opts.promote_target)
|
|
promote = promote_alloc(c, iter, k, &pick, orig->opts, flags,
|
|
&rbio, &bounce, &read_full);
|
|
|
|
if (!read_full) {
|
|
EBUG_ON(crc_is_compressed(pick.crc));
|
|
EBUG_ON(pick.crc.csum_type &&
|
|
(bvec_iter_sectors(iter) != pick.crc.uncompressed_size ||
|
|
bvec_iter_sectors(iter) != pick.crc.live_size ||
|
|
pick.crc.offset ||
|
|
offset_into_extent));
|
|
|
|
pos.offset += offset_into_extent;
|
|
pick.ptr.offset += pick.crc.offset +
|
|
offset_into_extent;
|
|
offset_into_extent = 0;
|
|
pick.crc.compressed_size = bvec_iter_sectors(iter);
|
|
pick.crc.uncompressed_size = bvec_iter_sectors(iter);
|
|
pick.crc.offset = 0;
|
|
pick.crc.live_size = bvec_iter_sectors(iter);
|
|
offset_into_extent = 0;
|
|
}
|
|
get_bio:
|
|
if (rbio) {
|
|
/*
|
|
* promote already allocated bounce rbio:
|
|
* promote needs to allocate a bio big enough for uncompressing
|
|
* data in the write path, but we're not going to use it all
|
|
* here:
|
|
*/
|
|
EBUG_ON(rbio->bio.bi_iter.bi_size <
|
|
pick.crc.compressed_size << 9);
|
|
rbio->bio.bi_iter.bi_size =
|
|
pick.crc.compressed_size << 9;
|
|
} else if (bounce) {
|
|
unsigned sectors = pick.crc.compressed_size;
|
|
|
|
rbio = rbio_init(bio_alloc_bioset(NULL,
|
|
DIV_ROUND_UP(sectors, PAGE_SECTORS),
|
|
0,
|
|
GFP_NOIO,
|
|
&c->bio_read_split),
|
|
orig->opts);
|
|
|
|
bch2_bio_alloc_pages_pool(c, &rbio->bio, sectors << 9);
|
|
rbio->bounce = true;
|
|
rbio->split = true;
|
|
} else if (flags & BCH_READ_MUST_CLONE) {
|
|
/*
|
|
* Have to clone if there were any splits, due to error
|
|
* reporting issues (if a split errored, and retrying didn't
|
|
* work, when it reports the error to its parent (us) we don't
|
|
* know if the error was from our bio, and we should retry, or
|
|
* from the whole bio, in which case we don't want to retry and
|
|
* lose the error)
|
|
*/
|
|
rbio = rbio_init(bio_alloc_clone(NULL, &orig->bio, GFP_NOIO,
|
|
&c->bio_read_split),
|
|
orig->opts);
|
|
rbio->bio.bi_iter = iter;
|
|
rbio->split = true;
|
|
} else {
|
|
rbio = orig;
|
|
rbio->bio.bi_iter = iter;
|
|
EBUG_ON(bio_flagged(&rbio->bio, BIO_CHAIN));
|
|
}
|
|
|
|
EBUG_ON(bio_sectors(&rbio->bio) != pick.crc.compressed_size);
|
|
|
|
rbio->c = c;
|
|
rbio->submit_time = local_clock();
|
|
if (rbio->split)
|
|
rbio->parent = orig;
|
|
else
|
|
rbio->end_io = orig->bio.bi_end_io;
|
|
rbio->bvec_iter = iter;
|
|
rbio->offset_into_extent= offset_into_extent;
|
|
rbio->flags = flags;
|
|
rbio->have_ioref = pick_ret > 0 && bch2_dev_get_ioref(ca, READ);
|
|
rbio->narrow_crcs = narrow_crcs;
|
|
rbio->hole = 0;
|
|
rbio->retry = 0;
|
|
rbio->context = 0;
|
|
/* XXX: only initialize this if needed */
|
|
rbio->devs_have = bch2_bkey_devs(k);
|
|
rbio->pick = pick;
|
|
rbio->pos = pos;
|
|
rbio->version = k.k->version;
|
|
rbio->promote = promote;
|
|
INIT_WORK(&rbio->work, NULL);
|
|
|
|
rbio->bio.bi_opf = orig->bio.bi_opf;
|
|
rbio->bio.bi_iter.bi_sector = pick.ptr.offset;
|
|
rbio->bio.bi_end_io = bch2_read_endio;
|
|
|
|
if (rbio->bounce)
|
|
trace_read_bounce(&rbio->bio);
|
|
|
|
bch2_increment_clock(c, bio_sectors(&rbio->bio), READ);
|
|
|
|
rcu_read_lock();
|
|
bucket_io_clock_reset(c, ca, PTR_BUCKET_NR(ca, &pick.ptr), READ);
|
|
rcu_read_unlock();
|
|
|
|
if (!(flags & (BCH_READ_IN_RETRY|BCH_READ_LAST_FRAGMENT))) {
|
|
bio_inc_remaining(&orig->bio);
|
|
trace_read_split(&orig->bio);
|
|
}
|
|
|
|
if (!rbio->pick.idx) {
|
|
if (!rbio->have_ioref) {
|
|
__bcache_io_error(c, "no device to read from");
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
|
|
goto out;
|
|
}
|
|
|
|
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_user],
|
|
bio_sectors(&rbio->bio));
|
|
bio_set_dev(&rbio->bio, ca->disk_sb.bdev);
|
|
|
|
if (unlikely(c->opts.no_data_io)) {
|
|
if (likely(!(flags & BCH_READ_IN_RETRY)))
|
|
bio_endio(&rbio->bio);
|
|
} else {
|
|
if (likely(!(flags & BCH_READ_IN_RETRY)))
|
|
submit_bio(&rbio->bio);
|
|
else
|
|
submit_bio_wait(&rbio->bio);
|
|
}
|
|
} else {
|
|
/* Attempting reconstruct read: */
|
|
if (bch2_ec_read_extent(c, rbio)) {
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
|
|
goto out;
|
|
}
|
|
|
|
if (likely(!(flags & BCH_READ_IN_RETRY)))
|
|
bio_endio(&rbio->bio);
|
|
}
|
|
out:
|
|
if (likely(!(flags & BCH_READ_IN_RETRY))) {
|
|
return 0;
|
|
} else {
|
|
int ret;
|
|
|
|
rbio->context = RBIO_CONTEXT_UNBOUND;
|
|
bch2_read_endio(&rbio->bio);
|
|
|
|
ret = rbio->retry;
|
|
rbio = bch2_rbio_free(rbio);
|
|
|
|
if (ret == READ_RETRY_AVOID) {
|
|
bch2_mark_io_failure(failed, &pick);
|
|
ret = READ_RETRY;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
err:
|
|
if (flags & BCH_READ_IN_RETRY)
|
|
return READ_ERR;
|
|
|
|
orig->bio.bi_status = BLK_STS_IOERR;
|
|
goto out_read_done;
|
|
|
|
hole:
|
|
/*
|
|
* won't normally happen in the BCH_READ_NODECODE
|
|
* (bch2_move_extent()) path, but if we retry and the extent we wanted
|
|
* to read no longer exists we have to signal that:
|
|
*/
|
|
if (flags & BCH_READ_NODECODE)
|
|
orig->hole = true;
|
|
|
|
zero_fill_bio_iter(&orig->bio, iter);
|
|
out_read_done:
|
|
if (flags & BCH_READ_LAST_FRAGMENT)
|
|
bch2_rbio_done(orig);
|
|
return 0;
|
|
}
|
|
|
|
void bch2_read(struct bch_fs *c, struct bch_read_bio *rbio, u64 inode)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct bkey_on_stack sk;
|
|
struct bkey_s_c k;
|
|
unsigned flags = BCH_READ_RETRY_IF_STALE|
|
|
BCH_READ_MAY_PROMOTE|
|
|
BCH_READ_USER_MAPPED;
|
|
int ret;
|
|
|
|
BUG_ON(rbio->_state);
|
|
BUG_ON(flags & BCH_READ_NODECODE);
|
|
BUG_ON(flags & BCH_READ_IN_RETRY);
|
|
|
|
rbio->c = c;
|
|
rbio->start_time = local_clock();
|
|
|
|
bkey_on_stack_init(&sk);
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
retry:
|
|
bch2_trans_begin(&trans);
|
|
|
|
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
|
|
POS(inode, rbio->bio.bi_iter.bi_sector),
|
|
BTREE_ITER_SLOTS);
|
|
while (1) {
|
|
unsigned bytes, sectors, offset_into_extent;
|
|
|
|
bch2_btree_iter_set_pos(iter,
|
|
POS(inode, rbio->bio.bi_iter.bi_sector));
|
|
|
|
k = bch2_btree_iter_peek_slot(iter);
|
|
ret = bkey_err(k);
|
|
if (ret)
|
|
goto err;
|
|
|
|
offset_into_extent = iter->pos.offset -
|
|
bkey_start_offset(k.k);
|
|
sectors = k.k->size - offset_into_extent;
|
|
|
|
bkey_on_stack_reassemble(&sk, c, k);
|
|
k = bkey_i_to_s_c(sk.k);
|
|
|
|
ret = bch2_read_indirect_extent(&trans,
|
|
&offset_into_extent, &sk);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/*
|
|
* With indirect extents, the amount of data to read is the min
|
|
* of the original extent and the indirect extent:
|
|
*/
|
|
sectors = min(sectors, k.k->size - offset_into_extent);
|
|
|
|
/*
|
|
* Unlock the iterator while the btree node's lock is still in
|
|
* cache, before doing the IO:
|
|
*/
|
|
bch2_trans_unlock(&trans);
|
|
|
|
bytes = min(sectors, bio_sectors(&rbio->bio)) << 9;
|
|
swap(rbio->bio.bi_iter.bi_size, bytes);
|
|
|
|
if (rbio->bio.bi_iter.bi_size == bytes)
|
|
flags |= BCH_READ_LAST_FRAGMENT;
|
|
|
|
bch2_read_extent(c, rbio, k, offset_into_extent, flags);
|
|
|
|
if (flags & BCH_READ_LAST_FRAGMENT)
|
|
break;
|
|
|
|
swap(rbio->bio.bi_iter.bi_size, bytes);
|
|
bio_advance(&rbio->bio, bytes);
|
|
}
|
|
out:
|
|
bch2_trans_exit(&trans);
|
|
bkey_on_stack_exit(&sk, c);
|
|
return;
|
|
err:
|
|
if (ret == -EINTR)
|
|
goto retry;
|
|
|
|
bcache_io_error(c, &rbio->bio, "btree IO error: %i", ret);
|
|
bch2_rbio_done(rbio);
|
|
goto out;
|
|
}
|
|
|
|
void bch2_fs_io_exit(struct bch_fs *c)
|
|
{
|
|
if (c->promote_table.tbl)
|
|
rhashtable_destroy(&c->promote_table);
|
|
mempool_exit(&c->bio_bounce_pages);
|
|
bioset_exit(&c->bio_write);
|
|
bioset_exit(&c->bio_read_split);
|
|
bioset_exit(&c->bio_read);
|
|
}
|
|
|
|
int bch2_fs_io_init(struct bch_fs *c)
|
|
{
|
|
if (bioset_init(&c->bio_read, 1, offsetof(struct bch_read_bio, bio),
|
|
BIOSET_NEED_BVECS) ||
|
|
bioset_init(&c->bio_read_split, 1, offsetof(struct bch_read_bio, bio),
|
|
BIOSET_NEED_BVECS) ||
|
|
bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
|
|
BIOSET_NEED_BVECS) ||
|
|
mempool_init_page_pool(&c->bio_bounce_pages,
|
|
max_t(unsigned,
|
|
c->opts.btree_node_size,
|
|
c->sb.encoded_extent_max) /
|
|
PAGE_SECTORS, 0) ||
|
|
rhashtable_init(&c->promote_table, &bch_promote_params))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|