linux/net/ipv4/ip_output.c
Linus Torvalds 9ff9b0d392 networking changes for the 5.10 merge window
Add redirect_neigh() BPF packet redirect helper, allowing to limit stack
 traversal in common container configs and improving TCP back-pressure.
 Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.
 
 Expand netlink policy support and improve policy export to user space.
 (Ge)netlink core performs request validation according to declared
 policies. Expand the expressiveness of those policies (min/max length
 and bitmasks). Allow dumping policies for particular commands.
 This is used for feature discovery by user space (instead of kernel
 version parsing or trial and error).
 
 Support IGMPv3/MLDv2 multicast listener discovery protocols in bridge.
 
 Allow more than 255 IPv4 multicast interfaces.
 
 Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
 packets of TCPv6.
 
 In Multi-patch TCP (MPTCP) support concurrent transmission of data
 on multiple subflows in a load balancing scenario. Enhance advertising
 addresses via the RM_ADDR/ADD_ADDR options.
 
 Support SMC-Dv2 version of SMC, which enables multi-subnet deployments.
 
 Allow more calls to same peer in RxRPC.
 
 Support two new Controller Area Network (CAN) protocols -
 CAN-FD and ISO 15765-2:2016.
 
 Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit
 kernel problem.
 
 Add TC actions for implementing MPLS L2 VPNs.
 
 Improve nexthop code - e.g. handle various corner cases when nexthop
 objects are removed from groups better, skip unnecessary notifications
 and make it easier to offload nexthops into HW by converting
 to a blocking notifier.
 
 Support adding and consuming TCP header options by BPF programs,
 opening the doors for easy experimental and deployment-specific
 TCP option use.
 
 Reorganize TCP congestion control (CC) initialization to simplify life
 of TCP CC implemented in BPF.
 
 Add support for shipping BPF programs with the kernel and loading them
 early on boot via the User Mode Driver mechanism, hence reusing all the
 user space infra we have.
 
 Support sleepable BPF programs, initially targeting LSM and tracing.
 
 Add bpf_d_path() helper for returning full path for given 'struct path'.
 
 Make bpf_tail_call compatible with bpf-to-bpf calls.
 
 Allow BPF programs to call map_update_elem on sockmaps.
 
 Add BPF Type Format (BTF) support for type and enum discovery, as
 well as support for using BTF within the kernel itself (current use
 is for pretty printing structures).
 
 Support listing and getting information about bpf_links via the bpf
 syscall.
 
 Enhance kernel interfaces around NIC firmware update. Allow specifying
 overwrite mask to control if settings etc. are reset during update;
 report expected max time operation may take to users; support firmware
 activation without machine reboot incl. limits of how much impact
 reset may have (e.g. dropping link or not).
 
 Extend ethtool configuration interface to report IEEE-standard
 counters, to limit the need for per-vendor logic in user space.
 
 Adopt or extend devlink use for debug, monitoring, fw update
 in many drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw,
 mv88e6xxx, dpaa2-eth).
 
 In mlxsw expose critical and emergency SFP module temperature alarms.
 Refactor port buffer handling to make the defaults more suitable and
 support setting these values explicitly via the DCBNL interface.
 
 Add XDP support for Intel's igb driver.
 
 Support offloading TC flower classification and filtering rules to
 mscc_ocelot switches.
 
 Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as
 fixed interval period pulse generator and one-step timestamping in
 dpaa-eth.
 
 Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3)
 offload.
 
 Add Lynx PHY/PCS MDIO module, and convert various drivers which have
 this HW to use it. Convert mvpp2 to split PCS.
 
 Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as
 7-port Mediatek MT7531 IP.
 
 Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver,
 and wcn3680 support in wcn36xx.
 
 Improve performance for packets which don't require much offloads
 on recent Mellanox NICs by 20% by making multiple packets share
 a descriptor entry.
 
 Move chelsio inline crypto drivers (for TLS and IPsec) from the crypto
 subtree to drivers/net. Move MDIO drivers out of the phy directory.
 
 Clean up a lot of W=1 warnings, reportedly the actively developed
 subsections of networking drivers should now build W=1 warning free.
 
 Make sure drivers don't use in_interrupt() to dynamically adapt their
 code. Convert tasklets to use new tasklet_setup API (sadly this
 conversion is not yet complete).
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAl+ItRwACgkQMUZtbf5S
 IrtTMg//UxpdR/MirT1DatBU0K/UGAZY82hV7F/UC8tPgjfHZeHvWlDFxfi3YP81
 PtPKbhRZ7DhwBXefUp6nY3UdvjftrJK2lJm8prJUPSsZRye8Wlcb7y65q7/P2y2U
 Efucyopg6RUrmrM0DUsIGYGJgylQLHnMYUl/keCsD4t5Bp4ksyi9R2t5eitGoWzh
 r3QGdbSa0AuWx4iu0i+tqp6Tj0ekMBMXLVb35dtU1t0joj2KTNEnSgABN3prOa8E
 iWYf2erOau68Ogp3yU3miCy0ZU4p/7qGHTtzbcp677692P/ekak6+zmfHLT9/Pjy
 2Stq2z6GoKuVxdktr91D9pA3jxG4LxSJmr0TImcGnXbvkMP3Ez3g9RrpV5fn8j6F
 mZCH8TKZAoD5aJrAJAMkhZmLYE1pvDa7KolSk8WogXrbCnTEb5Nv8FHTS1Qnk3yl
 wSKXuvutFVNLMEHCnWQLtODbTST9DI/aOi6EctPpuOA/ZyL1v3pl+gfp37S+LUTe
 owMnT/7TdvKaTD0+gIyU53M6rAWTtr5YyRQorX9awIu/4Ha0F0gYD7BJZQUGtegp
 HzKt59NiSrFdbSH7UdyemdBF4LuCgIhS7rgfeoUXMXmuPHq7eHXyHZt5dzPPa/xP
 81P0MAvdpFVwg8ij2yp2sHS7sISIRKq17fd1tIewUabxQbjXqPc=
 =bc1U
 -----END PGP SIGNATURE-----

Merge tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Jakub Kicinski:

 - Add redirect_neigh() BPF packet redirect helper, allowing to limit
   stack traversal in common container configs and improving TCP
   back-pressure.

   Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.

 - Expand netlink policy support and improve policy export to user
   space. (Ge)netlink core performs request validation according to
   declared policies. Expand the expressiveness of those policies
   (min/max length and bitmasks). Allow dumping policies for particular
   commands. This is used for feature discovery by user space (instead
   of kernel version parsing or trial and error).

 - Support IGMPv3/MLDv2 multicast listener discovery protocols in
   bridge.

 - Allow more than 255 IPv4 multicast interfaces.

 - Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
   packets of TCPv6.

 - In Multi-patch TCP (MPTCP) support concurrent transmission of data on
   multiple subflows in a load balancing scenario. Enhance advertising
   addresses via the RM_ADDR/ADD_ADDR options.

 - Support SMC-Dv2 version of SMC, which enables multi-subnet
   deployments.

 - Allow more calls to same peer in RxRPC.

 - Support two new Controller Area Network (CAN) protocols - CAN-FD and
   ISO 15765-2:2016.

 - Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit
   kernel problem.

 - Add TC actions for implementing MPLS L2 VPNs.

 - Improve nexthop code - e.g. handle various corner cases when nexthop
   objects are removed from groups better, skip unnecessary
   notifications and make it easier to offload nexthops into HW by
   converting to a blocking notifier.

 - Support adding and consuming TCP header options by BPF programs,
   opening the doors for easy experimental and deployment-specific TCP
   option use.

 - Reorganize TCP congestion control (CC) initialization to simplify
   life of TCP CC implemented in BPF.

 - Add support for shipping BPF programs with the kernel and loading
   them early on boot via the User Mode Driver mechanism, hence reusing
   all the user space infra we have.

 - Support sleepable BPF programs, initially targeting LSM and tracing.

 - Add bpf_d_path() helper for returning full path for given 'struct
   path'.

 - Make bpf_tail_call compatible with bpf-to-bpf calls.

 - Allow BPF programs to call map_update_elem on sockmaps.

 - Add BPF Type Format (BTF) support for type and enum discovery, as
   well as support for using BTF within the kernel itself (current use
   is for pretty printing structures).

 - Support listing and getting information about bpf_links via the bpf
   syscall.

 - Enhance kernel interfaces around NIC firmware update. Allow
   specifying overwrite mask to control if settings etc. are reset
   during update; report expected max time operation may take to users;
   support firmware activation without machine reboot incl. limits of
   how much impact reset may have (e.g. dropping link or not).

 - Extend ethtool configuration interface to report IEEE-standard
   counters, to limit the need for per-vendor logic in user space.

 - Adopt or extend devlink use for debug, monitoring, fw update in many
   drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw, mv88e6xxx,
   dpaa2-eth).

 - In mlxsw expose critical and emergency SFP module temperature alarms.
   Refactor port buffer handling to make the defaults more suitable and
   support setting these values explicitly via the DCBNL interface.

 - Add XDP support for Intel's igb driver.

 - Support offloading TC flower classification and filtering rules to
   mscc_ocelot switches.

 - Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as
   fixed interval period pulse generator and one-step timestamping in
   dpaa-eth.

 - Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3)
   offload.

 - Add Lynx PHY/PCS MDIO module, and convert various drivers which have
   this HW to use it. Convert mvpp2 to split PCS.

 - Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as
   7-port Mediatek MT7531 IP.

 - Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver,
   and wcn3680 support in wcn36xx.

 - Improve performance for packets which don't require much offloads on
   recent Mellanox NICs by 20% by making multiple packets share a
   descriptor entry.

 - Move chelsio inline crypto drivers (for TLS and IPsec) from the
   crypto subtree to drivers/net. Move MDIO drivers out of the phy
   directory.

 - Clean up a lot of W=1 warnings, reportedly the actively developed
   subsections of networking drivers should now build W=1 warning free.

 - Make sure drivers don't use in_interrupt() to dynamically adapt their
   code. Convert tasklets to use new tasklet_setup API (sadly this
   conversion is not yet complete).

* tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2583 commits)
  Revert "bpfilter: Fix build error with CONFIG_BPFILTER_UMH"
  net, sockmap: Don't call bpf_prog_put() on NULL pointer
  bpf, selftest: Fix flaky tcp_hdr_options test when adding addr to lo
  bpf, sockmap: Add locking annotations to iterator
  netfilter: nftables: allow re-computing sctp CRC-32C in 'payload' statements
  net: fix pos incrementment in ipv6_route_seq_next
  net/smc: fix invalid return code in smcd_new_buf_create()
  net/smc: fix valid DMBE buffer sizes
  net/smc: fix use-after-free of delayed events
  bpfilter: Fix build error with CONFIG_BPFILTER_UMH
  cxgb4/ch_ipsec: Replace the module name to ch_ipsec from chcr
  net: sched: Fix suspicious RCU usage while accessing tcf_tunnel_info
  bpf: Fix register equivalence tracking.
  rxrpc: Fix loss of final ack on shutdown
  rxrpc: Fix bundle counting for exclusive connections
  netfilter: restore NF_INET_NUMHOOKS
  ibmveth: Identify ingress large send packets.
  ibmveth: Switch order of ibmveth_helper calls.
  cxgb4: handle 4-tuple PEDIT to NAT mode translation
  selftests: Add VRF route leaking tests
  ...
2020-10-15 18:42:13 -07:00

1742 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* The Internet Protocol (IP) output module.
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Donald Becker, <becker@super.org>
* Alan Cox, <Alan.Cox@linux.org>
* Richard Underwood
* Stefan Becker, <stefanb@yello.ping.de>
* Jorge Cwik, <jorge@laser.satlink.net>
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
* Hirokazu Takahashi, <taka@valinux.co.jp>
*
* See ip_input.c for original log
*
* Fixes:
* Alan Cox : Missing nonblock feature in ip_build_xmit.
* Mike Kilburn : htons() missing in ip_build_xmit.
* Bradford Johnson: Fix faulty handling of some frames when
* no route is found.
* Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
* (in case if packet not accepted by
* output firewall rules)
* Mike McLagan : Routing by source
* Alexey Kuznetsov: use new route cache
* Andi Kleen: Fix broken PMTU recovery and remove
* some redundant tests.
* Vitaly E. Lavrov : Transparent proxy revived after year coma.
* Andi Kleen : Replace ip_reply with ip_send_reply.
* Andi Kleen : Split fast and slow ip_build_xmit path
* for decreased register pressure on x86
* and more readibility.
* Marc Boucher : When call_out_firewall returns FW_QUEUE,
* silently drop skb instead of failing with -EPERM.
* Detlev Wengorz : Copy protocol for fragments.
* Hirokazu Takahashi: HW checksumming for outgoing UDP
* datagrams.
* Hirokazu Takahashi: sendfile() on UDP works now.
*/
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <net/snmp.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/xfrm.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/arp.h>
#include <net/icmp.h>
#include <net/checksum.h>
#include <net/inetpeer.h>
#include <net/inet_ecn.h>
#include <net/lwtunnel.h>
#include <linux/bpf-cgroup.h>
#include <linux/igmp.h>
#include <linux/netfilter_ipv4.h>
#include <linux/netfilter_bridge.h>
#include <linux/netlink.h>
#include <linux/tcp.h>
static int
ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
unsigned int mtu,
int (*output)(struct net *, struct sock *, struct sk_buff *));
/* Generate a checksum for an outgoing IP datagram. */
void ip_send_check(struct iphdr *iph)
{
iph->check = 0;
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
}
EXPORT_SYMBOL(ip_send_check);
int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = htons(skb->len);
ip_send_check(iph);
/* if egress device is enslaved to an L3 master device pass the
* skb to its handler for processing
*/
skb = l3mdev_ip_out(sk, skb);
if (unlikely(!skb))
return 0;
skb->protocol = htons(ETH_P_IP);
return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
net, sk, skb, NULL, skb_dst(skb)->dev,
dst_output);
}
int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
{
int err;
err = __ip_local_out(net, sk, skb);
if (likely(err == 1))
err = dst_output(net, sk, skb);
return err;
}
EXPORT_SYMBOL_GPL(ip_local_out);
static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
{
int ttl = inet->uc_ttl;
if (ttl < 0)
ttl = ip4_dst_hoplimit(dst);
return ttl;
}
/*
* Add an ip header to a skbuff and send it out.
*
*/
int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
__be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
u8 tos)
{
struct inet_sock *inet = inet_sk(sk);
struct rtable *rt = skb_rtable(skb);
struct net *net = sock_net(sk);
struct iphdr *iph;
/* Build the IP header. */
skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
iph->version = 4;
iph->ihl = 5;
iph->tos = tos;
iph->ttl = ip_select_ttl(inet, &rt->dst);
iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
iph->saddr = saddr;
iph->protocol = sk->sk_protocol;
if (ip_dont_fragment(sk, &rt->dst)) {
iph->frag_off = htons(IP_DF);
iph->id = 0;
} else {
iph->frag_off = 0;
__ip_select_ident(net, iph, 1);
}
if (opt && opt->opt.optlen) {
iph->ihl += opt->opt.optlen>>2;
ip_options_build(skb, &opt->opt, daddr, rt, 0);
}
skb->priority = sk->sk_priority;
if (!skb->mark)
skb->mark = sk->sk_mark;
/* Send it out. */
return ip_local_out(net, skb->sk, skb);
}
EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct rtable *rt = (struct rtable *)dst;
struct net_device *dev = dst->dev;
unsigned int hh_len = LL_RESERVED_SPACE(dev);
struct neighbour *neigh;
bool is_v6gw = false;
if (rt->rt_type == RTN_MULTICAST) {
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
} else if (rt->rt_type == RTN_BROADCAST)
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
/* Be paranoid, rather than too clever. */
if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
struct sk_buff *skb2;
skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
if (!skb2) {
kfree_skb(skb);
return -ENOMEM;
}
if (skb->sk)
skb_set_owner_w(skb2, skb->sk);
consume_skb(skb);
skb = skb2;
}
if (lwtunnel_xmit_redirect(dst->lwtstate)) {
int res = lwtunnel_xmit(skb);
if (res < 0 || res == LWTUNNEL_XMIT_DONE)
return res;
}
rcu_read_lock_bh();
neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
if (!IS_ERR(neigh)) {
int res;
sock_confirm_neigh(skb, neigh);
/* if crossing protocols, can not use the cached header */
res = neigh_output(neigh, skb, is_v6gw);
rcu_read_unlock_bh();
return res;
}
rcu_read_unlock_bh();
net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
__func__);
kfree_skb(skb);
return -EINVAL;
}
static int ip_finish_output_gso(struct net *net, struct sock *sk,
struct sk_buff *skb, unsigned int mtu)
{
struct sk_buff *segs, *nskb;
netdev_features_t features;
int ret = 0;
/* common case: seglen is <= mtu
*/
if (skb_gso_validate_network_len(skb, mtu))
return ip_finish_output2(net, sk, skb);
/* Slowpath - GSO segment length exceeds the egress MTU.
*
* This can happen in several cases:
* - Forwarding of a TCP GRO skb, when DF flag is not set.
* - Forwarding of an skb that arrived on a virtualization interface
* (virtio-net/vhost/tap) with TSO/GSO size set by other network
* stack.
* - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
* interface with a smaller MTU.
* - Arriving GRO skb (or GSO skb in a virtualized environment) that is
* bridged to a NETIF_F_TSO tunnel stacked over an interface with an
* insufficent MTU.
*/
features = netif_skb_features(skb);
BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
if (IS_ERR_OR_NULL(segs)) {
kfree_skb(skb);
return -ENOMEM;
}
consume_skb(skb);
skb_list_walk_safe(segs, segs, nskb) {
int err;
skb_mark_not_on_list(segs);
err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
if (err && ret == 0)
ret = err;
}
return ret;
}
static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
unsigned int mtu;
#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
/* Policy lookup after SNAT yielded a new policy */
if (skb_dst(skb)->xfrm) {
IPCB(skb)->flags |= IPSKB_REROUTED;
return dst_output(net, sk, skb);
}
#endif
mtu = ip_skb_dst_mtu(sk, skb);
if (skb_is_gso(skb))
return ip_finish_output_gso(net, sk, skb, mtu);
if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
return ip_finish_output2(net, sk, skb);
}
static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
int ret;
ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
switch (ret) {
case NET_XMIT_SUCCESS:
return __ip_finish_output(net, sk, skb);
case NET_XMIT_CN:
return __ip_finish_output(net, sk, skb) ? : ret;
default:
kfree_skb(skb);
return ret;
}
}
static int ip_mc_finish_output(struct net *net, struct sock *sk,
struct sk_buff *skb)
{
struct rtable *new_rt;
bool do_cn = false;
int ret, err;
ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
switch (ret) {
case NET_XMIT_CN:
do_cn = true;
fallthrough;
case NET_XMIT_SUCCESS:
break;
default:
kfree_skb(skb);
return ret;
}
/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
* this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
* see ipv4_pktinfo_prepare().
*/
new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
if (new_rt) {
new_rt->rt_iif = 0;
skb_dst_drop(skb);
skb_dst_set(skb, &new_rt->dst);
}
err = dev_loopback_xmit(net, sk, skb);
return (do_cn && err) ? ret : err;
}
int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct rtable *rt = skb_rtable(skb);
struct net_device *dev = rt->dst.dev;
/*
* If the indicated interface is up and running, send the packet.
*/
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
skb->dev = dev;
skb->protocol = htons(ETH_P_IP);
/*
* Multicasts are looped back for other local users
*/
if (rt->rt_flags&RTCF_MULTICAST) {
if (sk_mc_loop(sk)
#ifdef CONFIG_IP_MROUTE
/* Small optimization: do not loopback not local frames,
which returned after forwarding; they will be dropped
by ip_mr_input in any case.
Note, that local frames are looped back to be delivered
to local recipients.
This check is duplicated in ip_mr_input at the moment.
*/
&&
((rt->rt_flags & RTCF_LOCAL) ||
!(IPCB(skb)->flags & IPSKB_FORWARDED))
#endif
) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
if (newskb)
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, newskb, NULL, newskb->dev,
ip_mc_finish_output);
}
/* Multicasts with ttl 0 must not go beyond the host */
if (ip_hdr(skb)->ttl == 0) {
kfree_skb(skb);
return 0;
}
}
if (rt->rt_flags&RTCF_BROADCAST) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
if (newskb)
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, newskb, NULL, newskb->dev,
ip_mc_finish_output);
}
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, skb, NULL, skb->dev,
ip_finish_output,
!(IPCB(skb)->flags & IPSKB_REROUTED));
}
int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
skb->dev = dev;
skb->protocol = htons(ETH_P_IP);
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, skb, indev, dev,
ip_finish_output,
!(IPCB(skb)->flags & IPSKB_REROUTED));
}
/*
* copy saddr and daddr, possibly using 64bit load/stores
* Equivalent to :
* iph->saddr = fl4->saddr;
* iph->daddr = fl4->daddr;
*/
static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
{
BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
memcpy(&iph->saddr, &fl4->saddr,
sizeof(fl4->saddr) + sizeof(fl4->daddr));
}
/* Note: skb->sk can be different from sk, in case of tunnels */
int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
__u8 tos)
{
struct inet_sock *inet = inet_sk(sk);
struct net *net = sock_net(sk);
struct ip_options_rcu *inet_opt;
struct flowi4 *fl4;
struct rtable *rt;
struct iphdr *iph;
int res;
/* Skip all of this if the packet is already routed,
* f.e. by something like SCTP.
*/
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
fl4 = &fl->u.ip4;
rt = skb_rtable(skb);
if (rt)
goto packet_routed;
/* Make sure we can route this packet. */
rt = (struct rtable *)__sk_dst_check(sk, 0);
if (!rt) {
__be32 daddr;
/* Use correct destination address if we have options. */
daddr = inet->inet_daddr;
if (inet_opt && inet_opt->opt.srr)
daddr = inet_opt->opt.faddr;
/* If this fails, retransmit mechanism of transport layer will
* keep trying until route appears or the connection times
* itself out.
*/
rt = ip_route_output_ports(net, fl4, sk,
daddr, inet->inet_saddr,
inet->inet_dport,
inet->inet_sport,
sk->sk_protocol,
RT_CONN_FLAGS_TOS(sk, tos),
sk->sk_bound_dev_if);
if (IS_ERR(rt))
goto no_route;
sk_setup_caps(sk, &rt->dst);
}
skb_dst_set_noref(skb, &rt->dst);
packet_routed:
if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
goto no_route;
/* OK, we know where to send it, allocate and build IP header. */
skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
iph->frag_off = htons(IP_DF);
else
iph->frag_off = 0;
iph->ttl = ip_select_ttl(inet, &rt->dst);
iph->protocol = sk->sk_protocol;
ip_copy_addrs(iph, fl4);
/* Transport layer set skb->h.foo itself. */
if (inet_opt && inet_opt->opt.optlen) {
iph->ihl += inet_opt->opt.optlen >> 2;
ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
}
ip_select_ident_segs(net, skb, sk,
skb_shinfo(skb)->gso_segs ?: 1);
/* TODO : should we use skb->sk here instead of sk ? */
skb->priority = sk->sk_priority;
skb->mark = sk->sk_mark;
res = ip_local_out(net, sk, skb);
rcu_read_unlock();
return res;
no_route:
rcu_read_unlock();
IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
kfree_skb(skb);
return -EHOSTUNREACH;
}
EXPORT_SYMBOL(__ip_queue_xmit);
int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
{
return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
}
EXPORT_SYMBOL(ip_queue_xmit);
static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
{
to->pkt_type = from->pkt_type;
to->priority = from->priority;
to->protocol = from->protocol;
to->skb_iif = from->skb_iif;
skb_dst_drop(to);
skb_dst_copy(to, from);
to->dev = from->dev;
to->mark = from->mark;
skb_copy_hash(to, from);
#ifdef CONFIG_NET_SCHED
to->tc_index = from->tc_index;
#endif
nf_copy(to, from);
skb_ext_copy(to, from);
#if IS_ENABLED(CONFIG_IP_VS)
to->ipvs_property = from->ipvs_property;
#endif
skb_copy_secmark(to, from);
}
static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
unsigned int mtu,
int (*output)(struct net *, struct sock *, struct sk_buff *))
{
struct iphdr *iph = ip_hdr(skb);
if ((iph->frag_off & htons(IP_DF)) == 0)
return ip_do_fragment(net, sk, skb, output);
if (unlikely(!skb->ignore_df ||
(IPCB(skb)->frag_max_size &&
IPCB(skb)->frag_max_size > mtu))) {
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
htonl(mtu));
kfree_skb(skb);
return -EMSGSIZE;
}
return ip_do_fragment(net, sk, skb, output);
}
void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
unsigned int hlen, struct ip_fraglist_iter *iter)
{
unsigned int first_len = skb_pagelen(skb);
iter->frag = skb_shinfo(skb)->frag_list;
skb_frag_list_init(skb);
iter->offset = 0;
iter->iph = iph;
iter->hlen = hlen;
skb->data_len = first_len - skb_headlen(skb);
skb->len = first_len;
iph->tot_len = htons(first_len);
iph->frag_off = htons(IP_MF);
ip_send_check(iph);
}
EXPORT_SYMBOL(ip_fraglist_init);
static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
struct ip_fraglist_iter *iter)
{
struct sk_buff *to = iter->frag;
/* Copy the flags to each fragment. */
IPCB(to)->flags = IPCB(skb)->flags;
if (iter->offset == 0)
ip_options_fragment(to);
}
void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
{
unsigned int hlen = iter->hlen;
struct iphdr *iph = iter->iph;
struct sk_buff *frag;
frag = iter->frag;
frag->ip_summed = CHECKSUM_NONE;
skb_reset_transport_header(frag);
__skb_push(frag, hlen);
skb_reset_network_header(frag);
memcpy(skb_network_header(frag), iph, hlen);
iter->iph = ip_hdr(frag);
iph = iter->iph;
iph->tot_len = htons(frag->len);
ip_copy_metadata(frag, skb);
iter->offset += skb->len - hlen;
iph->frag_off = htons(iter->offset >> 3);
if (frag->next)
iph->frag_off |= htons(IP_MF);
/* Ready, complete checksum */
ip_send_check(iph);
}
EXPORT_SYMBOL(ip_fraglist_prepare);
void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
unsigned int ll_rs, unsigned int mtu, bool DF,
struct ip_frag_state *state)
{
struct iphdr *iph = ip_hdr(skb);
state->DF = DF;
state->hlen = hlen;
state->ll_rs = ll_rs;
state->mtu = mtu;
state->left = skb->len - hlen; /* Space per frame */
state->ptr = hlen; /* Where to start from */
state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
state->not_last_frag = iph->frag_off & htons(IP_MF);
}
EXPORT_SYMBOL(ip_frag_init);
static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
bool first_frag, struct ip_frag_state *state)
{
/* Copy the flags to each fragment. */
IPCB(to)->flags = IPCB(from)->flags;
/* ANK: dirty, but effective trick. Upgrade options only if
* the segment to be fragmented was THE FIRST (otherwise,
* options are already fixed) and make it ONCE
* on the initial skb, so that all the following fragments
* will inherit fixed options.
*/
if (first_frag)
ip_options_fragment(from);
}
struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
{
unsigned int len = state->left;
struct sk_buff *skb2;
struct iphdr *iph;
len = state->left;
/* IF: it doesn't fit, use 'mtu' - the data space left */
if (len > state->mtu)
len = state->mtu;
/* IF: we are not sending up to and including the packet end
then align the next start on an eight byte boundary */
if (len < state->left) {
len &= ~7;
}
/* Allocate buffer */
skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
if (!skb2)
return ERR_PTR(-ENOMEM);
/*
* Set up data on packet
*/
ip_copy_metadata(skb2, skb);
skb_reserve(skb2, state->ll_rs);
skb_put(skb2, len + state->hlen);
skb_reset_network_header(skb2);
skb2->transport_header = skb2->network_header + state->hlen;
/*
* Charge the memory for the fragment to any owner
* it might possess
*/
if (skb->sk)
skb_set_owner_w(skb2, skb->sk);
/*
* Copy the packet header into the new buffer.
*/
skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
/*
* Copy a block of the IP datagram.
*/
if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
BUG();
state->left -= len;
/*
* Fill in the new header fields.
*/
iph = ip_hdr(skb2);
iph->frag_off = htons((state->offset >> 3));
if (state->DF)
iph->frag_off |= htons(IP_DF);
/*
* Added AC : If we are fragmenting a fragment that's not the
* last fragment then keep MF on each bit
*/
if (state->left > 0 || state->not_last_frag)
iph->frag_off |= htons(IP_MF);
state->ptr += len;
state->offset += len;
iph->tot_len = htons(len + state->hlen);
ip_send_check(iph);
return skb2;
}
EXPORT_SYMBOL(ip_frag_next);
/*
* This IP datagram is too large to be sent in one piece. Break it up into
* smaller pieces (each of size equal to IP header plus
* a block of the data of the original IP data part) that will yet fit in a
* single device frame, and queue such a frame for sending.
*/
int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
int (*output)(struct net *, struct sock *, struct sk_buff *))
{
struct iphdr *iph;
struct sk_buff *skb2;
struct rtable *rt = skb_rtable(skb);
unsigned int mtu, hlen, ll_rs;
struct ip_fraglist_iter iter;
ktime_t tstamp = skb->tstamp;
struct ip_frag_state state;
int err = 0;
/* for offloaded checksums cleanup checksum before fragmentation */
if (skb->ip_summed == CHECKSUM_PARTIAL &&
(err = skb_checksum_help(skb)))
goto fail;
/*
* Point into the IP datagram header.
*/
iph = ip_hdr(skb);
mtu = ip_skb_dst_mtu(sk, skb);
if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
mtu = IPCB(skb)->frag_max_size;
/*
* Setup starting values.
*/
hlen = iph->ihl * 4;
mtu = mtu - hlen; /* Size of data space */
IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
/* When frag_list is given, use it. First, check its validity:
* some transformers could create wrong frag_list or break existing
* one, it is not prohibited. In this case fall back to copying.
*
* LATER: this step can be merged to real generation of fragments,
* we can switch to copy when see the first bad fragment.
*/
if (skb_has_frag_list(skb)) {
struct sk_buff *frag, *frag2;
unsigned int first_len = skb_pagelen(skb);
if (first_len - hlen > mtu ||
((first_len - hlen) & 7) ||
ip_is_fragment(iph) ||
skb_cloned(skb) ||
skb_headroom(skb) < ll_rs)
goto slow_path;
skb_walk_frags(skb, frag) {
/* Correct geometry. */
if (frag->len > mtu ||
((frag->len & 7) && frag->next) ||
skb_headroom(frag) < hlen + ll_rs)
goto slow_path_clean;
/* Partially cloned skb? */
if (skb_shared(frag))
goto slow_path_clean;
BUG_ON(frag->sk);
if (skb->sk) {
frag->sk = skb->sk;
frag->destructor = sock_wfree;
}
skb->truesize -= frag->truesize;
}
/* Everything is OK. Generate! */
ip_fraglist_init(skb, iph, hlen, &iter);
for (;;) {
/* Prepare header of the next frame,
* before previous one went down. */
if (iter.frag) {
ip_fraglist_ipcb_prepare(skb, &iter);
ip_fraglist_prepare(skb, &iter);
}
skb->tstamp = tstamp;
err = output(net, sk, skb);
if (!err)
IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
if (err || !iter.frag)
break;
skb = ip_fraglist_next(&iter);
}
if (err == 0) {
IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
return 0;
}
kfree_skb_list(iter.frag);
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
return err;
slow_path_clean:
skb_walk_frags(skb, frag2) {
if (frag2 == frag)
break;
frag2->sk = NULL;
frag2->destructor = NULL;
skb->truesize += frag2->truesize;
}
}
slow_path:
/*
* Fragment the datagram.
*/
ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
&state);
/*
* Keep copying data until we run out.
*/
while (state.left > 0) {
bool first_frag = (state.offset == 0);
skb2 = ip_frag_next(skb, &state);
if (IS_ERR(skb2)) {
err = PTR_ERR(skb2);
goto fail;
}
ip_frag_ipcb(skb, skb2, first_frag, &state);
/*
* Put this fragment into the sending queue.
*/
skb2->tstamp = tstamp;
err = output(net, sk, skb2);
if (err)
goto fail;
IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
}
consume_skb(skb);
IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
return err;
fail:
kfree_skb(skb);
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
return err;
}
EXPORT_SYMBOL(ip_do_fragment);
int
ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
{
struct msghdr *msg = from;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (!copy_from_iter_full(to, len, &msg->msg_iter))
return -EFAULT;
} else {
__wsum csum = 0;
if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
return -EFAULT;
skb->csum = csum_block_add(skb->csum, csum, odd);
}
return 0;
}
EXPORT_SYMBOL(ip_generic_getfrag);
static inline __wsum
csum_page(struct page *page, int offset, int copy)
{
char *kaddr;
__wsum csum;
kaddr = kmap(page);
csum = csum_partial(kaddr + offset, copy, 0);
kunmap(page);
return csum;
}
static int __ip_append_data(struct sock *sk,
struct flowi4 *fl4,
struct sk_buff_head *queue,
struct inet_cork *cork,
struct page_frag *pfrag,
int getfrag(void *from, char *to, int offset,
int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
unsigned int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct ubuf_info *uarg = NULL;
struct sk_buff *skb;
struct ip_options *opt = cork->opt;
int hh_len;
int exthdrlen;
int mtu;
int copy;
int err;
int offset = 0;
unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
int csummode = CHECKSUM_NONE;
struct rtable *rt = (struct rtable *)cork->dst;
unsigned int wmem_alloc_delta = 0;
bool paged, extra_uref = false;
u32 tskey = 0;
skb = skb_peek_tail(queue);
exthdrlen = !skb ? rt->dst.header_len : 0;
mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
paged = !!cork->gso_size;
if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
tskey = sk->sk_tskey++;
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
if (cork->length + length > maxnonfragsize - fragheaderlen) {
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
mtu - (opt ? opt->optlen : 0));
return -EMSGSIZE;
}
/*
* transhdrlen > 0 means that this is the first fragment and we wish
* it won't be fragmented in the future.
*/
if (transhdrlen &&
length + fragheaderlen <= mtu &&
rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
(!(flags & MSG_MORE) || cork->gso_size) &&
(!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
csummode = CHECKSUM_PARTIAL;
if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
if (!uarg)
return -ENOBUFS;
extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
if (rt->dst.dev->features & NETIF_F_SG &&
csummode == CHECKSUM_PARTIAL) {
paged = true;
} else {
uarg->zerocopy = 0;
skb_zcopy_set(skb, uarg, &extra_uref);
}
}
cork->length += length;
/* So, what's going on in the loop below?
*
* We use calculated fragment length to generate chained skb,
* each of segments is IP fragment ready for sending to network after
* adding appropriate IP header.
*/
if (!skb)
goto alloc_new_skb;
while (length > 0) {
/* Check if the remaining data fits into current packet. */
copy = mtu - skb->len;
if (copy < length)
copy = maxfraglen - skb->len;
if (copy <= 0) {
char *data;
unsigned int datalen;
unsigned int fraglen;
unsigned int fraggap;
unsigned int alloclen;
unsigned int pagedlen;
struct sk_buff *skb_prev;
alloc_new_skb:
skb_prev = skb;
if (skb_prev)
fraggap = skb_prev->len - maxfraglen;
else
fraggap = 0;
/*
* If remaining data exceeds the mtu,
* we know we need more fragment(s).
*/
datalen = length + fraggap;
if (datalen > mtu - fragheaderlen)
datalen = maxfraglen - fragheaderlen;
fraglen = datalen + fragheaderlen;
pagedlen = 0;
if ((flags & MSG_MORE) &&
!(rt->dst.dev->features&NETIF_F_SG))
alloclen = mtu;
else if (!paged)
alloclen = fraglen;
else {
alloclen = min_t(int, fraglen, MAX_HEADER);
pagedlen = fraglen - alloclen;
}
alloclen += exthdrlen;
/* The last fragment gets additional space at tail.
* Note, with MSG_MORE we overallocate on fragments,
* because we have no idea what fragment will be
* the last.
*/
if (datalen == length + fraggap)
alloclen += rt->dst.trailer_len;
if (transhdrlen) {
skb = sock_alloc_send_skb(sk,
alloclen + hh_len + 15,
(flags & MSG_DONTWAIT), &err);
} else {
skb = NULL;
if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
2 * sk->sk_sndbuf)
skb = alloc_skb(alloclen + hh_len + 15,
sk->sk_allocation);
if (unlikely(!skb))
err = -ENOBUFS;
}
if (!skb)
goto error;
/*
* Fill in the control structures
*/
skb->ip_summed = csummode;
skb->csum = 0;
skb_reserve(skb, hh_len);
/*
* Find where to start putting bytes.
*/
data = skb_put(skb, fraglen + exthdrlen - pagedlen);
skb_set_network_header(skb, exthdrlen);
skb->transport_header = (skb->network_header +
fragheaderlen);
data += fragheaderlen + exthdrlen;
if (fraggap) {
skb->csum = skb_copy_and_csum_bits(
skb_prev, maxfraglen,
data + transhdrlen, fraggap);
skb_prev->csum = csum_sub(skb_prev->csum,
skb->csum);
data += fraggap;
pskb_trim_unique(skb_prev, maxfraglen);
}
copy = datalen - transhdrlen - fraggap - pagedlen;
if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
err = -EFAULT;
kfree_skb(skb);
goto error;
}
offset += copy;
length -= copy + transhdrlen;
transhdrlen = 0;
exthdrlen = 0;
csummode = CHECKSUM_NONE;
/* only the initial fragment is time stamped */
skb_shinfo(skb)->tx_flags = cork->tx_flags;
cork->tx_flags = 0;
skb_shinfo(skb)->tskey = tskey;
tskey = 0;
skb_zcopy_set(skb, uarg, &extra_uref);
if ((flags & MSG_CONFIRM) && !skb_prev)
skb_set_dst_pending_confirm(skb, 1);
/*
* Put the packet on the pending queue.
*/
if (!skb->destructor) {
skb->destructor = sock_wfree;
skb->sk = sk;
wmem_alloc_delta += skb->truesize;
}
__skb_queue_tail(queue, skb);
continue;
}
if (copy > length)
copy = length;
if (!(rt->dst.dev->features&NETIF_F_SG) &&
skb_tailroom(skb) >= copy) {
unsigned int off;
off = skb->len;
if (getfrag(from, skb_put(skb, copy),
offset, copy, off, skb) < 0) {
__skb_trim(skb, off);
err = -EFAULT;
goto error;
}
} else if (!uarg || !uarg->zerocopy) {
int i = skb_shinfo(skb)->nr_frags;
err = -ENOMEM;
if (!sk_page_frag_refill(sk, pfrag))
goto error;
if (!skb_can_coalesce(skb, i, pfrag->page,
pfrag->offset)) {
err = -EMSGSIZE;
if (i == MAX_SKB_FRAGS)
goto error;
__skb_fill_page_desc(skb, i, pfrag->page,
pfrag->offset, 0);
skb_shinfo(skb)->nr_frags = ++i;
get_page(pfrag->page);
}
copy = min_t(int, copy, pfrag->size - pfrag->offset);
if (getfrag(from,
page_address(pfrag->page) + pfrag->offset,
offset, copy, skb->len, skb) < 0)
goto error_efault;
pfrag->offset += copy;
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
wmem_alloc_delta += copy;
} else {
err = skb_zerocopy_iter_dgram(skb, from, copy);
if (err < 0)
goto error;
}
offset += copy;
length -= copy;
}
if (wmem_alloc_delta)
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
return 0;
error_efault:
err = -EFAULT;
error:
if (uarg)
sock_zerocopy_put_abort(uarg, extra_uref);
cork->length -= length;
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
return err;
}
static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
struct ipcm_cookie *ipc, struct rtable **rtp)
{
struct ip_options_rcu *opt;
struct rtable *rt;
rt = *rtp;
if (unlikely(!rt))
return -EFAULT;
/*
* setup for corking.
*/
opt = ipc->opt;
if (opt) {
if (!cork->opt) {
cork->opt = kmalloc(sizeof(struct ip_options) + 40,
sk->sk_allocation);
if (unlikely(!cork->opt))
return -ENOBUFS;
}
memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
cork->flags |= IPCORK_OPT;
cork->addr = ipc->addr;
}
cork->fragsize = ip_sk_use_pmtu(sk) ?
dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
if (!inetdev_valid_mtu(cork->fragsize))
return -ENETUNREACH;
cork->gso_size = ipc->gso_size;
cork->dst = &rt->dst;
/* We stole this route, caller should not release it. */
*rtp = NULL;
cork->length = 0;
cork->ttl = ipc->ttl;
cork->tos = ipc->tos;
cork->mark = ipc->sockc.mark;
cork->priority = ipc->priority;
cork->transmit_time = ipc->sockc.transmit_time;
cork->tx_flags = 0;
sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
return 0;
}
/*
* ip_append_data() and ip_append_page() can make one large IP datagram
* from many pieces of data. Each pieces will be holded on the socket
* until ip_push_pending_frames() is called. Each piece can be a page
* or non-page data.
*
* Not only UDP, other transport protocols - e.g. raw sockets - can use
* this interface potentially.
*
* LATER: length must be adjusted by pad at tail, when it is required.
*/
int ip_append_data(struct sock *sk, struct flowi4 *fl4,
int getfrag(void *from, char *to, int offset, int len,
int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm_cookie *ipc, struct rtable **rtp,
unsigned int flags)
{
struct inet_sock *inet = inet_sk(sk);
int err;
if (flags&MSG_PROBE)
return 0;
if (skb_queue_empty(&sk->sk_write_queue)) {
err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
if (err)
return err;
} else {
transhdrlen = 0;
}
return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
sk_page_frag(sk), getfrag,
from, length, transhdrlen, flags);
}
ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
int offset, size_t size, int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct sk_buff *skb;
struct rtable *rt;
struct ip_options *opt = NULL;
struct inet_cork *cork;
int hh_len;
int mtu;
int len;
int err;
unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
if (inet->hdrincl)
return -EPERM;
if (flags&MSG_PROBE)
return 0;
if (skb_queue_empty(&sk->sk_write_queue))
return -EINVAL;
cork = &inet->cork.base;
rt = (struct rtable *)cork->dst;
if (cork->flags & IPCORK_OPT)
opt = cork->opt;
if (!(rt->dst.dev->features & NETIF_F_SG))
return -EOPNOTSUPP;
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
if (cork->length + size > maxnonfragsize - fragheaderlen) {
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
mtu - (opt ? opt->optlen : 0));
return -EMSGSIZE;
}
skb = skb_peek_tail(&sk->sk_write_queue);
if (!skb)
return -EINVAL;
cork->length += size;
while (size > 0) {
/* Check if the remaining data fits into current packet. */
len = mtu - skb->len;
if (len < size)
len = maxfraglen - skb->len;
if (len <= 0) {
struct sk_buff *skb_prev;
int alloclen;
skb_prev = skb;
fraggap = skb_prev->len - maxfraglen;
alloclen = fragheaderlen + hh_len + fraggap + 15;
skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
if (unlikely(!skb)) {
err = -ENOBUFS;
goto error;
}
/*
* Fill in the control structures
*/
skb->ip_summed = CHECKSUM_NONE;
skb->csum = 0;
skb_reserve(skb, hh_len);
/*
* Find where to start putting bytes.
*/
skb_put(skb, fragheaderlen + fraggap);
skb_reset_network_header(skb);
skb->transport_header = (skb->network_header +
fragheaderlen);
if (fraggap) {
skb->csum = skb_copy_and_csum_bits(skb_prev,
maxfraglen,
skb_transport_header(skb),
fraggap);
skb_prev->csum = csum_sub(skb_prev->csum,
skb->csum);
pskb_trim_unique(skb_prev, maxfraglen);
}
/*
* Put the packet on the pending queue.
*/
__skb_queue_tail(&sk->sk_write_queue, skb);
continue;
}
if (len > size)
len = size;
if (skb_append_pagefrags(skb, page, offset, len)) {
err = -EMSGSIZE;
goto error;
}
if (skb->ip_summed == CHECKSUM_NONE) {
__wsum csum;
csum = csum_page(page, offset, len);
skb->csum = csum_block_add(skb->csum, csum, skb->len);
}
skb->len += len;
skb->data_len += len;
skb->truesize += len;
refcount_add(len, &sk->sk_wmem_alloc);
offset += len;
size -= len;
}
return 0;
error:
cork->length -= size;
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
return err;
}
static void ip_cork_release(struct inet_cork *cork)
{
cork->flags &= ~IPCORK_OPT;
kfree(cork->opt);
cork->opt = NULL;
dst_release(cork->dst);
cork->dst = NULL;
}
/*
* Combined all pending IP fragments on the socket as one IP datagram
* and push them out.
*/
struct sk_buff *__ip_make_skb(struct sock *sk,
struct flowi4 *fl4,
struct sk_buff_head *queue,
struct inet_cork *cork)
{
struct sk_buff *skb, *tmp_skb;
struct sk_buff **tail_skb;
struct inet_sock *inet = inet_sk(sk);
struct net *net = sock_net(sk);
struct ip_options *opt = NULL;
struct rtable *rt = (struct rtable *)cork->dst;
struct iphdr *iph;
__be16 df = 0;
__u8 ttl;
skb = __skb_dequeue(queue);
if (!skb)
goto out;
tail_skb = &(skb_shinfo(skb)->frag_list);
/* move skb->data to ip header from ext header */
if (skb->data < skb_network_header(skb))
__skb_pull(skb, skb_network_offset(skb));
while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
__skb_pull(tmp_skb, skb_network_header_len(skb));
*tail_skb = tmp_skb;
tail_skb = &(tmp_skb->next);
skb->len += tmp_skb->len;
skb->data_len += tmp_skb->len;
skb->truesize += tmp_skb->truesize;
tmp_skb->destructor = NULL;
tmp_skb->sk = NULL;
}
/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
* to fragment the frame generated here. No matter, what transforms
* how transforms change size of the packet, it will come out.
*/
skb->ignore_df = ip_sk_ignore_df(sk);
/* DF bit is set when we want to see DF on outgoing frames.
* If ignore_df is set too, we still allow to fragment this frame
* locally. */
if (inet->pmtudisc == IP_PMTUDISC_DO ||
inet->pmtudisc == IP_PMTUDISC_PROBE ||
(skb->len <= dst_mtu(&rt->dst) &&
ip_dont_fragment(sk, &rt->dst)))
df = htons(IP_DF);
if (cork->flags & IPCORK_OPT)
opt = cork->opt;
if (cork->ttl != 0)
ttl = cork->ttl;
else if (rt->rt_type == RTN_MULTICAST)
ttl = inet->mc_ttl;
else
ttl = ip_select_ttl(inet, &rt->dst);
iph = ip_hdr(skb);
iph->version = 4;
iph->ihl = 5;
iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
iph->frag_off = df;
iph->ttl = ttl;
iph->protocol = sk->sk_protocol;
ip_copy_addrs(iph, fl4);
ip_select_ident(net, skb, sk);
if (opt) {
iph->ihl += opt->optlen >> 2;
ip_options_build(skb, opt, cork->addr, rt, 0);
}
skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
skb->mark = cork->mark;
skb->tstamp = cork->transmit_time;
/*
* Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
* on dst refcount
*/
cork->dst = NULL;
skb_dst_set(skb, &rt->dst);
if (iph->protocol == IPPROTO_ICMP)
icmp_out_count(net, ((struct icmphdr *)
skb_transport_header(skb))->type);
ip_cork_release(cork);
out:
return skb;
}
int ip_send_skb(struct net *net, struct sk_buff *skb)
{
int err;
err = ip_local_out(net, skb->sk, skb);
if (err) {
if (err > 0)
err = net_xmit_errno(err);
if (err)
IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
}
return err;
}
int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
{
struct sk_buff *skb;
skb = ip_finish_skb(sk, fl4);
if (!skb)
return 0;
/* Netfilter gets whole the not fragmented skb. */
return ip_send_skb(sock_net(sk), skb);
}
/*
* Throw away all pending data on the socket.
*/
static void __ip_flush_pending_frames(struct sock *sk,
struct sk_buff_head *queue,
struct inet_cork *cork)
{
struct sk_buff *skb;
while ((skb = __skb_dequeue_tail(queue)) != NULL)
kfree_skb(skb);
ip_cork_release(cork);
}
void ip_flush_pending_frames(struct sock *sk)
{
__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
}
struct sk_buff *ip_make_skb(struct sock *sk,
struct flowi4 *fl4,
int getfrag(void *from, char *to, int offset,
int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm_cookie *ipc, struct rtable **rtp,
struct inet_cork *cork, unsigned int flags)
{
struct sk_buff_head queue;
int err;
if (flags & MSG_PROBE)
return NULL;
__skb_queue_head_init(&queue);
cork->flags = 0;
cork->addr = 0;
cork->opt = NULL;
err = ip_setup_cork(sk, cork, ipc, rtp);
if (err)
return ERR_PTR(err);
err = __ip_append_data(sk, fl4, &queue, cork,
&current->task_frag, getfrag,
from, length, transhdrlen, flags);
if (err) {
__ip_flush_pending_frames(sk, &queue, cork);
return ERR_PTR(err);
}
return __ip_make_skb(sk, fl4, &queue, cork);
}
/*
* Fetch data from kernel space and fill in checksum if needed.
*/
static int ip_reply_glue_bits(void *dptr, char *to, int offset,
int len, int odd, struct sk_buff *skb)
{
__wsum csum;
csum = csum_partial_copy_nocheck(dptr+offset, to, len);
skb->csum = csum_block_add(skb->csum, csum, odd);
return 0;
}
/*
* Generic function to send a packet as reply to another packet.
* Used to send some TCP resets/acks so far.
*/
void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
const struct ip_options *sopt,
__be32 daddr, __be32 saddr,
const struct ip_reply_arg *arg,
unsigned int len, u64 transmit_time)
{
struct ip_options_data replyopts;
struct ipcm_cookie ipc;
struct flowi4 fl4;
struct rtable *rt = skb_rtable(skb);
struct net *net = sock_net(sk);
struct sk_buff *nskb;
int err;
int oif;
if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
return;
ipcm_init(&ipc);
ipc.addr = daddr;
ipc.sockc.transmit_time = transmit_time;
if (replyopts.opt.opt.optlen) {
ipc.opt = &replyopts.opt;
if (replyopts.opt.opt.srr)
daddr = replyopts.opt.opt.faddr;
}
oif = arg->bound_dev_if;
if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
oif = skb->skb_iif;
flowi4_init_output(&fl4, oif,
IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
RT_TOS(arg->tos),
RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
ip_reply_arg_flowi_flags(arg),
daddr, saddr,
tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
arg->uid);
security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
rt = ip_route_output_key(net, &fl4);
if (IS_ERR(rt))
return;
inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK;
sk->sk_protocol = ip_hdr(skb)->protocol;
sk->sk_bound_dev_if = arg->bound_dev_if;
sk->sk_sndbuf = sysctl_wmem_default;
ipc.sockc.mark = fl4.flowi4_mark;
err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
len, 0, &ipc, &rt, MSG_DONTWAIT);
if (unlikely(err)) {
ip_flush_pending_frames(sk);
goto out;
}
nskb = skb_peek(&sk->sk_write_queue);
if (nskb) {
if (arg->csumoffset >= 0)
*((__sum16 *)skb_transport_header(nskb) +
arg->csumoffset) = csum_fold(csum_add(nskb->csum,
arg->csum));
nskb->ip_summed = CHECKSUM_NONE;
ip_push_pending_frames(sk, &fl4);
}
out:
ip_rt_put(rt);
}
void __init ip_init(void)
{
ip_rt_init();
inet_initpeers();
#if defined(CONFIG_IP_MULTICAST)
igmp_mc_init();
#endif
}