linux/fs/btrfs/block-group.c
Boris Burkov af456a2c0a btrfs: skip space_cache v1 setup when not using it
If we are not using space cache v1, we should not create the free space
object or free space inodes. This comes up when we delete the existing
free space objects/inodes when migrating to v2, only to see them get
recreated for every dirtied block group.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-09 19:16:09 +01:00

3404 lines
96 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "misc.h"
#include "ctree.h"
#include "block-group.h"
#include "space-info.h"
#include "disk-io.h"
#include "free-space-cache.h"
#include "free-space-tree.h"
#include "volumes.h"
#include "transaction.h"
#include "ref-verify.h"
#include "sysfs.h"
#include "tree-log.h"
#include "delalloc-space.h"
#include "discard.h"
#include "raid56.h"
/*
* Return target flags in extended format or 0 if restripe for this chunk_type
* is not in progress
*
* Should be called with balance_lock held
*/
static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
{
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
u64 target = 0;
if (!bctl)
return 0;
if (flags & BTRFS_BLOCK_GROUP_DATA &&
bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
}
return target;
}
/*
* @flags: available profiles in extended format (see ctree.h)
*
* Return reduced profile in chunk format. If profile changing is in progress
* (either running or paused) picks the target profile (if it's already
* available), otherwise falls back to plain reducing.
*/
static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
{
u64 num_devices = fs_info->fs_devices->rw_devices;
u64 target;
u64 raid_type;
u64 allowed = 0;
/*
* See if restripe for this chunk_type is in progress, if so try to
* reduce to the target profile
*/
spin_lock(&fs_info->balance_lock);
target = get_restripe_target(fs_info, flags);
if (target) {
spin_unlock(&fs_info->balance_lock);
return extended_to_chunk(target);
}
spin_unlock(&fs_info->balance_lock);
/* First, mask out the RAID levels which aren't possible */
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
if (num_devices >= btrfs_raid_array[raid_type].devs_min)
allowed |= btrfs_raid_array[raid_type].bg_flag;
}
allowed &= flags;
if (allowed & BTRFS_BLOCK_GROUP_RAID6)
allowed = BTRFS_BLOCK_GROUP_RAID6;
else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
allowed = BTRFS_BLOCK_GROUP_RAID5;
else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
allowed = BTRFS_BLOCK_GROUP_RAID10;
else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
allowed = BTRFS_BLOCK_GROUP_RAID1;
else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
allowed = BTRFS_BLOCK_GROUP_RAID0;
flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
return extended_to_chunk(flags | allowed);
}
u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
{
unsigned seq;
u64 flags;
do {
flags = orig_flags;
seq = read_seqbegin(&fs_info->profiles_lock);
if (flags & BTRFS_BLOCK_GROUP_DATA)
flags |= fs_info->avail_data_alloc_bits;
else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
flags |= fs_info->avail_system_alloc_bits;
else if (flags & BTRFS_BLOCK_GROUP_METADATA)
flags |= fs_info->avail_metadata_alloc_bits;
} while (read_seqretry(&fs_info->profiles_lock, seq));
return btrfs_reduce_alloc_profile(fs_info, flags);
}
void btrfs_get_block_group(struct btrfs_block_group *cache)
{
refcount_inc(&cache->refs);
}
void btrfs_put_block_group(struct btrfs_block_group *cache)
{
if (refcount_dec_and_test(&cache->refs)) {
WARN_ON(cache->pinned > 0);
WARN_ON(cache->reserved > 0);
/*
* A block_group shouldn't be on the discard_list anymore.
* Remove the block_group from the discard_list to prevent us
* from causing a panic due to NULL pointer dereference.
*/
if (WARN_ON(!list_empty(&cache->discard_list)))
btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
cache);
/*
* If not empty, someone is still holding mutex of
* full_stripe_lock, which can only be released by caller.
* And it will definitely cause use-after-free when caller
* tries to release full stripe lock.
*
* No better way to resolve, but only to warn.
*/
WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
kfree(cache->free_space_ctl);
kfree(cache);
}
}
/*
* This adds the block group to the fs_info rb tree for the block group cache
*/
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
struct btrfs_block_group *block_group)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct btrfs_block_group *cache;
ASSERT(block_group->length != 0);
spin_lock(&info->block_group_cache_lock);
p = &info->block_group_cache_tree.rb_node;
while (*p) {
parent = *p;
cache = rb_entry(parent, struct btrfs_block_group, cache_node);
if (block_group->start < cache->start) {
p = &(*p)->rb_left;
} else if (block_group->start > cache->start) {
p = &(*p)->rb_right;
} else {
spin_unlock(&info->block_group_cache_lock);
return -EEXIST;
}
}
rb_link_node(&block_group->cache_node, parent, p);
rb_insert_color(&block_group->cache_node,
&info->block_group_cache_tree);
if (info->first_logical_byte > block_group->start)
info->first_logical_byte = block_group->start;
spin_unlock(&info->block_group_cache_lock);
return 0;
}
/*
* This will return the block group at or after bytenr if contains is 0, else
* it will return the block group that contains the bytenr
*/
static struct btrfs_block_group *block_group_cache_tree_search(
struct btrfs_fs_info *info, u64 bytenr, int contains)
{
struct btrfs_block_group *cache, *ret = NULL;
struct rb_node *n;
u64 end, start;
spin_lock(&info->block_group_cache_lock);
n = info->block_group_cache_tree.rb_node;
while (n) {
cache = rb_entry(n, struct btrfs_block_group, cache_node);
end = cache->start + cache->length - 1;
start = cache->start;
if (bytenr < start) {
if (!contains && (!ret || start < ret->start))
ret = cache;
n = n->rb_left;
} else if (bytenr > start) {
if (contains && bytenr <= end) {
ret = cache;
break;
}
n = n->rb_right;
} else {
ret = cache;
break;
}
}
if (ret) {
btrfs_get_block_group(ret);
if (bytenr == 0 && info->first_logical_byte > ret->start)
info->first_logical_byte = ret->start;
}
spin_unlock(&info->block_group_cache_lock);
return ret;
}
/*
* Return the block group that starts at or after bytenr
*/
struct btrfs_block_group *btrfs_lookup_first_block_group(
struct btrfs_fs_info *info, u64 bytenr)
{
return block_group_cache_tree_search(info, bytenr, 0);
}
/*
* Return the block group that contains the given bytenr
*/
struct btrfs_block_group *btrfs_lookup_block_group(
struct btrfs_fs_info *info, u64 bytenr)
{
return block_group_cache_tree_search(info, bytenr, 1);
}
struct btrfs_block_group *btrfs_next_block_group(
struct btrfs_block_group *cache)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
struct rb_node *node;
spin_lock(&fs_info->block_group_cache_lock);
/* If our block group was removed, we need a full search. */
if (RB_EMPTY_NODE(&cache->cache_node)) {
const u64 next_bytenr = cache->start + cache->length;
spin_unlock(&fs_info->block_group_cache_lock);
btrfs_put_block_group(cache);
cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
}
node = rb_next(&cache->cache_node);
btrfs_put_block_group(cache);
if (node) {
cache = rb_entry(node, struct btrfs_block_group, cache_node);
btrfs_get_block_group(cache);
} else
cache = NULL;
spin_unlock(&fs_info->block_group_cache_lock);
return cache;
}
bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_block_group *bg;
bool ret = true;
bg = btrfs_lookup_block_group(fs_info, bytenr);
if (!bg)
return false;
spin_lock(&bg->lock);
if (bg->ro)
ret = false;
else
atomic_inc(&bg->nocow_writers);
spin_unlock(&bg->lock);
/* No put on block group, done by btrfs_dec_nocow_writers */
if (!ret)
btrfs_put_block_group(bg);
return ret;
}
void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_block_group *bg;
bg = btrfs_lookup_block_group(fs_info, bytenr);
ASSERT(bg);
if (atomic_dec_and_test(&bg->nocow_writers))
wake_up_var(&bg->nocow_writers);
/*
* Once for our lookup and once for the lookup done by a previous call
* to btrfs_inc_nocow_writers()
*/
btrfs_put_block_group(bg);
btrfs_put_block_group(bg);
}
void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
{
wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
}
void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
const u64 start)
{
struct btrfs_block_group *bg;
bg = btrfs_lookup_block_group(fs_info, start);
ASSERT(bg);
if (atomic_dec_and_test(&bg->reservations))
wake_up_var(&bg->reservations);
btrfs_put_block_group(bg);
}
void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
{
struct btrfs_space_info *space_info = bg->space_info;
ASSERT(bg->ro);
if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
return;
/*
* Our block group is read only but before we set it to read only,
* some task might have had allocated an extent from it already, but it
* has not yet created a respective ordered extent (and added it to a
* root's list of ordered extents).
* Therefore wait for any task currently allocating extents, since the
* block group's reservations counter is incremented while a read lock
* on the groups' semaphore is held and decremented after releasing
* the read access on that semaphore and creating the ordered extent.
*/
down_write(&space_info->groups_sem);
up_write(&space_info->groups_sem);
wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
}
struct btrfs_caching_control *btrfs_get_caching_control(
struct btrfs_block_group *cache)
{
struct btrfs_caching_control *ctl;
spin_lock(&cache->lock);
if (!cache->caching_ctl) {
spin_unlock(&cache->lock);
return NULL;
}
ctl = cache->caching_ctl;
refcount_inc(&ctl->count);
spin_unlock(&cache->lock);
return ctl;
}
void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
{
if (refcount_dec_and_test(&ctl->count))
kfree(ctl);
}
/*
* When we wait for progress in the block group caching, its because our
* allocation attempt failed at least once. So, we must sleep and let some
* progress happen before we try again.
*
* This function will sleep at least once waiting for new free space to show
* up, and then it will check the block group free space numbers for our min
* num_bytes. Another option is to have it go ahead and look in the rbtree for
* a free extent of a given size, but this is a good start.
*
* Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
* any of the information in this block group.
*/
void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
u64 num_bytes)
{
struct btrfs_caching_control *caching_ctl;
caching_ctl = btrfs_get_caching_control(cache);
if (!caching_ctl)
return;
wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
(cache->free_space_ctl->free_space >= num_bytes));
btrfs_put_caching_control(caching_ctl);
}
int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
{
struct btrfs_caching_control *caching_ctl;
int ret = 0;
caching_ctl = btrfs_get_caching_control(cache);
if (!caching_ctl)
return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
if (cache->cached == BTRFS_CACHE_ERROR)
ret = -EIO;
btrfs_put_caching_control(caching_ctl);
return ret;
}
static bool space_cache_v1_done(struct btrfs_block_group *cache)
{
bool ret;
spin_lock(&cache->lock);
ret = cache->cached != BTRFS_CACHE_FAST;
spin_unlock(&cache->lock);
return ret;
}
void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
struct btrfs_caching_control *caching_ctl)
{
wait_event(caching_ctl->wait, space_cache_v1_done(cache));
}
#ifdef CONFIG_BTRFS_DEBUG
static void fragment_free_space(struct btrfs_block_group *block_group)
{
struct btrfs_fs_info *fs_info = block_group->fs_info;
u64 start = block_group->start;
u64 len = block_group->length;
u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
fs_info->nodesize : fs_info->sectorsize;
u64 step = chunk << 1;
while (len > chunk) {
btrfs_remove_free_space(block_group, start, chunk);
start += step;
if (len < step)
len = 0;
else
len -= step;
}
}
#endif
/*
* This is only called by btrfs_cache_block_group, since we could have freed
* extents we need to check the pinned_extents for any extents that can't be
* used yet since their free space will be released as soon as the transaction
* commits.
*/
u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
{
struct btrfs_fs_info *info = block_group->fs_info;
u64 extent_start, extent_end, size, total_added = 0;
int ret;
while (start < end) {
ret = find_first_extent_bit(&info->excluded_extents, start,
&extent_start, &extent_end,
EXTENT_DIRTY | EXTENT_UPTODATE,
NULL);
if (ret)
break;
if (extent_start <= start) {
start = extent_end + 1;
} else if (extent_start > start && extent_start < end) {
size = extent_start - start;
total_added += size;
ret = btrfs_add_free_space_async_trimmed(block_group,
start, size);
BUG_ON(ret); /* -ENOMEM or logic error */
start = extent_end + 1;
} else {
break;
}
}
if (start < end) {
size = end - start;
total_added += size;
ret = btrfs_add_free_space_async_trimmed(block_group, start,
size);
BUG_ON(ret); /* -ENOMEM or logic error */
}
return total_added;
}
static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
{
struct btrfs_block_group *block_group = caching_ctl->block_group;
struct btrfs_fs_info *fs_info = block_group->fs_info;
struct btrfs_root *extent_root = fs_info->extent_root;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key key;
u64 total_found = 0;
u64 last = 0;
u32 nritems;
int ret;
bool wakeup = true;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
#ifdef CONFIG_BTRFS_DEBUG
/*
* If we're fragmenting we don't want to make anybody think we can
* allocate from this block group until we've had a chance to fragment
* the free space.
*/
if (btrfs_should_fragment_free_space(block_group))
wakeup = false;
#endif
/*
* We don't want to deadlock with somebody trying to allocate a new
* extent for the extent root while also trying to search the extent
* root to add free space. So we skip locking and search the commit
* root, since its read-only
*/
path->skip_locking = 1;
path->search_commit_root = 1;
path->reada = READA_FORWARD;
key.objectid = last;
key.offset = 0;
key.type = BTRFS_EXTENT_ITEM_KEY;
next:
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
while (1) {
if (btrfs_fs_closing(fs_info) > 1) {
last = (u64)-1;
break;
}
if (path->slots[0] < nritems) {
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
} else {
ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
if (ret)
break;
if (need_resched() ||
rwsem_is_contended(&fs_info->commit_root_sem)) {
if (wakeup)
caching_ctl->progress = last;
btrfs_release_path(path);
up_read(&fs_info->commit_root_sem);
mutex_unlock(&caching_ctl->mutex);
cond_resched();
mutex_lock(&caching_ctl->mutex);
down_read(&fs_info->commit_root_sem);
goto next;
}
ret = btrfs_next_leaf(extent_root, path);
if (ret < 0)
goto out;
if (ret)
break;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
continue;
}
if (key.objectid < last) {
key.objectid = last;
key.offset = 0;
key.type = BTRFS_EXTENT_ITEM_KEY;
if (wakeup)
caching_ctl->progress = last;
btrfs_release_path(path);
goto next;
}
if (key.objectid < block_group->start) {
path->slots[0]++;
continue;
}
if (key.objectid >= block_group->start + block_group->length)
break;
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
key.type == BTRFS_METADATA_ITEM_KEY) {
total_found += add_new_free_space(block_group, last,
key.objectid);
if (key.type == BTRFS_METADATA_ITEM_KEY)
last = key.objectid +
fs_info->nodesize;
else
last = key.objectid + key.offset;
if (total_found > CACHING_CTL_WAKE_UP) {
total_found = 0;
if (wakeup)
wake_up(&caching_ctl->wait);
}
}
path->slots[0]++;
}
ret = 0;
total_found += add_new_free_space(block_group, last,
block_group->start + block_group->length);
caching_ctl->progress = (u64)-1;
out:
btrfs_free_path(path);
return ret;
}
static noinline void caching_thread(struct btrfs_work *work)
{
struct btrfs_block_group *block_group;
struct btrfs_fs_info *fs_info;
struct btrfs_caching_control *caching_ctl;
int ret;
caching_ctl = container_of(work, struct btrfs_caching_control, work);
block_group = caching_ctl->block_group;
fs_info = block_group->fs_info;
mutex_lock(&caching_ctl->mutex);
down_read(&fs_info->commit_root_sem);
if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
ret = load_free_space_cache(block_group);
if (ret == 1) {
ret = 0;
goto done;
}
/*
* We failed to load the space cache, set ourselves to
* CACHE_STARTED and carry on.
*/
spin_lock(&block_group->lock);
block_group->cached = BTRFS_CACHE_STARTED;
spin_unlock(&block_group->lock);
wake_up(&caching_ctl->wait);
}
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
ret = load_free_space_tree(caching_ctl);
else
ret = load_extent_tree_free(caching_ctl);
done:
spin_lock(&block_group->lock);
block_group->caching_ctl = NULL;
block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
spin_unlock(&block_group->lock);
#ifdef CONFIG_BTRFS_DEBUG
if (btrfs_should_fragment_free_space(block_group)) {
u64 bytes_used;
spin_lock(&block_group->space_info->lock);
spin_lock(&block_group->lock);
bytes_used = block_group->length - block_group->used;
block_group->space_info->bytes_used += bytes_used >> 1;
spin_unlock(&block_group->lock);
spin_unlock(&block_group->space_info->lock);
fragment_free_space(block_group);
}
#endif
caching_ctl->progress = (u64)-1;
up_read(&fs_info->commit_root_sem);
btrfs_free_excluded_extents(block_group);
mutex_unlock(&caching_ctl->mutex);
wake_up(&caching_ctl->wait);
btrfs_put_caching_control(caching_ctl);
btrfs_put_block_group(block_group);
}
int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
{
DEFINE_WAIT(wait);
struct btrfs_fs_info *fs_info = cache->fs_info;
struct btrfs_caching_control *caching_ctl = NULL;
int ret = 0;
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
if (!caching_ctl)
return -ENOMEM;
INIT_LIST_HEAD(&caching_ctl->list);
mutex_init(&caching_ctl->mutex);
init_waitqueue_head(&caching_ctl->wait);
caching_ctl->block_group = cache;
caching_ctl->progress = cache->start;
refcount_set(&caching_ctl->count, 2);
btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
spin_lock(&cache->lock);
if (cache->cached != BTRFS_CACHE_NO) {
kfree(caching_ctl);
caching_ctl = cache->caching_ctl;
if (caching_ctl)
refcount_inc(&caching_ctl->count);
spin_unlock(&cache->lock);
goto out;
}
WARN_ON(cache->caching_ctl);
cache->caching_ctl = caching_ctl;
if (btrfs_test_opt(fs_info, SPACE_CACHE))
cache->cached = BTRFS_CACHE_FAST;
else
cache->cached = BTRFS_CACHE_STARTED;
cache->has_caching_ctl = 1;
spin_unlock(&cache->lock);
spin_lock(&fs_info->block_group_cache_lock);
refcount_inc(&caching_ctl->count);
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
spin_unlock(&fs_info->block_group_cache_lock);
btrfs_get_block_group(cache);
btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
out:
if (load_cache_only && caching_ctl)
btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
if (caching_ctl)
btrfs_put_caching_control(caching_ctl);
return ret;
}
static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
u64 extra_flags = chunk_to_extended(flags) &
BTRFS_EXTENDED_PROFILE_MASK;
write_seqlock(&fs_info->profiles_lock);
if (flags & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits &= ~extra_flags;
if (flags & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits &= ~extra_flags;
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits &= ~extra_flags;
write_sequnlock(&fs_info->profiles_lock);
}
/*
* Clear incompat bits for the following feature(s):
*
* - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
* in the whole filesystem
*
* - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
*/
static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
bool found_raid56 = false;
bool found_raid1c34 = false;
if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
(flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
(flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
struct list_head *head = &fs_info->space_info;
struct btrfs_space_info *sinfo;
list_for_each_entry_rcu(sinfo, head, list) {
down_read(&sinfo->groups_sem);
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
found_raid56 = true;
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
found_raid56 = true;
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
found_raid1c34 = true;
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
found_raid1c34 = true;
up_read(&sinfo->groups_sem);
}
if (!found_raid56)
btrfs_clear_fs_incompat(fs_info, RAID56);
if (!found_raid1c34)
btrfs_clear_fs_incompat(fs_info, RAID1C34);
}
}
static int remove_block_group_item(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_block_group *block_group)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root;
struct btrfs_key key;
int ret;
root = fs_info->extent_root;
key.objectid = block_group->start;
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
key.offset = block_group->length;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -ENOENT;
if (ret < 0)
return ret;
ret = btrfs_del_item(trans, root, path);
return ret;
}
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
u64 group_start, struct extent_map *em)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_path *path;
struct btrfs_block_group *block_group;
struct btrfs_free_cluster *cluster;
struct inode *inode;
struct kobject *kobj = NULL;
int ret;
int index;
int factor;
struct btrfs_caching_control *caching_ctl = NULL;
bool remove_em;
bool remove_rsv = false;
block_group = btrfs_lookup_block_group(fs_info, group_start);
BUG_ON(!block_group);
BUG_ON(!block_group->ro);
trace_btrfs_remove_block_group(block_group);
/*
* Free the reserved super bytes from this block group before
* remove it.
*/
btrfs_free_excluded_extents(block_group);
btrfs_free_ref_tree_range(fs_info, block_group->start,
block_group->length);
index = btrfs_bg_flags_to_raid_index(block_group->flags);
factor = btrfs_bg_type_to_factor(block_group->flags);
/* make sure this block group isn't part of an allocation cluster */
cluster = &fs_info->data_alloc_cluster;
spin_lock(&cluster->refill_lock);
btrfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
/*
* make sure this block group isn't part of a metadata
* allocation cluster
*/
cluster = &fs_info->meta_alloc_cluster;
spin_lock(&cluster->refill_lock);
btrfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
/*
* get the inode first so any iput calls done for the io_list
* aren't the final iput (no unlinks allowed now)
*/
inode = lookup_free_space_inode(block_group, path);
mutex_lock(&trans->transaction->cache_write_mutex);
/*
* Make sure our free space cache IO is done before removing the
* free space inode
*/
spin_lock(&trans->transaction->dirty_bgs_lock);
if (!list_empty(&block_group->io_list)) {
list_del_init(&block_group->io_list);
WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
spin_unlock(&trans->transaction->dirty_bgs_lock);
btrfs_wait_cache_io(trans, block_group, path);
btrfs_put_block_group(block_group);
spin_lock(&trans->transaction->dirty_bgs_lock);
}
if (!list_empty(&block_group->dirty_list)) {
list_del_init(&block_group->dirty_list);
remove_rsv = true;
btrfs_put_block_group(block_group);
}
spin_unlock(&trans->transaction->dirty_bgs_lock);
mutex_unlock(&trans->transaction->cache_write_mutex);
ret = btrfs_remove_free_space_inode(trans, inode, block_group);
if (ret)
goto out;
spin_lock(&fs_info->block_group_cache_lock);
rb_erase(&block_group->cache_node,
&fs_info->block_group_cache_tree);
RB_CLEAR_NODE(&block_group->cache_node);
/* Once for the block groups rbtree */
btrfs_put_block_group(block_group);
if (fs_info->first_logical_byte == block_group->start)
fs_info->first_logical_byte = (u64)-1;
spin_unlock(&fs_info->block_group_cache_lock);
down_write(&block_group->space_info->groups_sem);
/*
* we must use list_del_init so people can check to see if they
* are still on the list after taking the semaphore
*/
list_del_init(&block_group->list);
if (list_empty(&block_group->space_info->block_groups[index])) {
kobj = block_group->space_info->block_group_kobjs[index];
block_group->space_info->block_group_kobjs[index] = NULL;
clear_avail_alloc_bits(fs_info, block_group->flags);
}
up_write(&block_group->space_info->groups_sem);
clear_incompat_bg_bits(fs_info, block_group->flags);
if (kobj) {
kobject_del(kobj);
kobject_put(kobj);
}
if (block_group->has_caching_ctl)
caching_ctl = btrfs_get_caching_control(block_group);
if (block_group->cached == BTRFS_CACHE_STARTED)
btrfs_wait_block_group_cache_done(block_group);
if (block_group->has_caching_ctl) {
spin_lock(&fs_info->block_group_cache_lock);
if (!caching_ctl) {
struct btrfs_caching_control *ctl;
list_for_each_entry(ctl,
&fs_info->caching_block_groups, list)
if (ctl->block_group == block_group) {
caching_ctl = ctl;
refcount_inc(&caching_ctl->count);
break;
}
}
if (caching_ctl)
list_del_init(&caching_ctl->list);
spin_unlock(&fs_info->block_group_cache_lock);
if (caching_ctl) {
/* Once for the caching bgs list and once for us. */
btrfs_put_caching_control(caching_ctl);
btrfs_put_caching_control(caching_ctl);
}
}
spin_lock(&trans->transaction->dirty_bgs_lock);
WARN_ON(!list_empty(&block_group->dirty_list));
WARN_ON(!list_empty(&block_group->io_list));
spin_unlock(&trans->transaction->dirty_bgs_lock);
btrfs_remove_free_space_cache(block_group);
spin_lock(&block_group->space_info->lock);
list_del_init(&block_group->ro_list);
if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
WARN_ON(block_group->space_info->total_bytes
< block_group->length);
WARN_ON(block_group->space_info->bytes_readonly
< block_group->length);
WARN_ON(block_group->space_info->disk_total
< block_group->length * factor);
}
block_group->space_info->total_bytes -= block_group->length;
block_group->space_info->bytes_readonly -= block_group->length;
block_group->space_info->disk_total -= block_group->length * factor;
spin_unlock(&block_group->space_info->lock);
/*
* Remove the free space for the block group from the free space tree
* and the block group's item from the extent tree before marking the
* block group as removed. This is to prevent races with tasks that
* freeze and unfreeze a block group, this task and another task
* allocating a new block group - the unfreeze task ends up removing
* the block group's extent map before the task calling this function
* deletes the block group item from the extent tree, allowing for
* another task to attempt to create another block group with the same
* item key (and failing with -EEXIST and a transaction abort).
*/
ret = remove_block_group_free_space(trans, block_group);
if (ret)
goto out;
ret = remove_block_group_item(trans, path, block_group);
if (ret < 0)
goto out;
spin_lock(&block_group->lock);
block_group->removed = 1;
/*
* At this point trimming or scrub can't start on this block group,
* because we removed the block group from the rbtree
* fs_info->block_group_cache_tree so no one can't find it anymore and
* even if someone already got this block group before we removed it
* from the rbtree, they have already incremented block_group->frozen -
* if they didn't, for the trimming case they won't find any free space
* entries because we already removed them all when we called
* btrfs_remove_free_space_cache().
*
* And we must not remove the extent map from the fs_info->mapping_tree
* to prevent the same logical address range and physical device space
* ranges from being reused for a new block group. This is needed to
* avoid races with trimming and scrub.
*
* An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
* completely transactionless, so while it is trimming a range the
* currently running transaction might finish and a new one start,
* allowing for new block groups to be created that can reuse the same
* physical device locations unless we take this special care.
*
* There may also be an implicit trim operation if the file system
* is mounted with -odiscard. The same protections must remain
* in place until the extents have been discarded completely when
* the transaction commit has completed.
*/
remove_em = (atomic_read(&block_group->frozen) == 0);
spin_unlock(&block_group->lock);
if (remove_em) {
struct extent_map_tree *em_tree;
em_tree = &fs_info->mapping_tree;
write_lock(&em_tree->lock);
remove_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
/* once for the tree */
free_extent_map(em);
}
out:
/* Once for the lookup reference */
btrfs_put_block_group(block_group);
if (remove_rsv)
btrfs_delayed_refs_rsv_release(fs_info, 1);
btrfs_free_path(path);
return ret;
}
struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
struct btrfs_fs_info *fs_info, const u64 chunk_offset)
{
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
struct extent_map *em;
struct map_lookup *map;
unsigned int num_items;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, chunk_offset, 1);
read_unlock(&em_tree->lock);
ASSERT(em && em->start == chunk_offset);
/*
* We need to reserve 3 + N units from the metadata space info in order
* to remove a block group (done at btrfs_remove_chunk() and at
* btrfs_remove_block_group()), which are used for:
*
* 1 unit for adding the free space inode's orphan (located in the tree
* of tree roots).
* 1 unit for deleting the block group item (located in the extent
* tree).
* 1 unit for deleting the free space item (located in tree of tree
* roots).
* N units for deleting N device extent items corresponding to each
* stripe (located in the device tree).
*
* In order to remove a block group we also need to reserve units in the
* system space info in order to update the chunk tree (update one or
* more device items and remove one chunk item), but this is done at
* btrfs_remove_chunk() through a call to check_system_chunk().
*/
map = em->map_lookup;
num_items = 3 + map->num_stripes;
free_extent_map(em);
return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
num_items);
}
/*
* Mark block group @cache read-only, so later write won't happen to block
* group @cache.
*
* If @force is not set, this function will only mark the block group readonly
* if we have enough free space (1M) in other metadata/system block groups.
* If @force is not set, this function will mark the block group readonly
* without checking free space.
*
* NOTE: This function doesn't care if other block groups can contain all the
* data in this block group. That check should be done by relocation routine,
* not this function.
*/
static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
{
struct btrfs_space_info *sinfo = cache->space_info;
u64 num_bytes;
int ret = -ENOSPC;
spin_lock(&sinfo->lock);
spin_lock(&cache->lock);
if (cache->ro) {
cache->ro++;
ret = 0;
goto out;
}
num_bytes = cache->length - cache->reserved - cache->pinned -
cache->bytes_super - cache->used;
/*
* Data never overcommits, even in mixed mode, so do just the straight
* check of left over space in how much we have allocated.
*/
if (force) {
ret = 0;
} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
u64 sinfo_used = btrfs_space_info_used(sinfo, true);
/*
* Here we make sure if we mark this bg RO, we still have enough
* free space as buffer.
*/
if (sinfo_used + num_bytes <= sinfo->total_bytes)
ret = 0;
} else {
/*
* We overcommit metadata, so we need to do the
* btrfs_can_overcommit check here, and we need to pass in
* BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
* leeway to allow us to mark this block group as read only.
*/
if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
BTRFS_RESERVE_NO_FLUSH))
ret = 0;
}
if (!ret) {
sinfo->bytes_readonly += num_bytes;
cache->ro++;
list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
}
out:
spin_unlock(&cache->lock);
spin_unlock(&sinfo->lock);
if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
btrfs_info(cache->fs_info,
"unable to make block group %llu ro", cache->start);
btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
}
return ret;
}
static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
struct btrfs_block_group *bg)
{
struct btrfs_fs_info *fs_info = bg->fs_info;
struct btrfs_transaction *prev_trans = NULL;
const u64 start = bg->start;
const u64 end = start + bg->length - 1;
int ret;
spin_lock(&fs_info->trans_lock);
if (trans->transaction->list.prev != &fs_info->trans_list) {
prev_trans = list_last_entry(&trans->transaction->list,
struct btrfs_transaction, list);
refcount_inc(&prev_trans->use_count);
}
spin_unlock(&fs_info->trans_lock);
/*
* Hold the unused_bg_unpin_mutex lock to avoid racing with
* btrfs_finish_extent_commit(). If we are at transaction N, another
* task might be running finish_extent_commit() for the previous
* transaction N - 1, and have seen a range belonging to the block
* group in pinned_extents before we were able to clear the whole block
* group range from pinned_extents. This means that task can lookup for
* the block group after we unpinned it from pinned_extents and removed
* it, leading to a BUG_ON() at unpin_extent_range().
*/
mutex_lock(&fs_info->unused_bg_unpin_mutex);
if (prev_trans) {
ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
EXTENT_DIRTY);
if (ret)
goto out;
}
ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
EXTENT_DIRTY);
out:
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
if (prev_trans)
btrfs_put_transaction(prev_trans);
return ret == 0;
}
/*
* Process the unused_bgs list and remove any that don't have any allocated
* space inside of them.
*/
void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
{
struct btrfs_block_group *block_group;
struct btrfs_space_info *space_info;
struct btrfs_trans_handle *trans;
const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
int ret = 0;
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
return;
spin_lock(&fs_info->unused_bgs_lock);
while (!list_empty(&fs_info->unused_bgs)) {
int trimming;
block_group = list_first_entry(&fs_info->unused_bgs,
struct btrfs_block_group,
bg_list);
list_del_init(&block_group->bg_list);
space_info = block_group->space_info;
if (ret || btrfs_mixed_space_info(space_info)) {
btrfs_put_block_group(block_group);
continue;
}
spin_unlock(&fs_info->unused_bgs_lock);
btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
mutex_lock(&fs_info->delete_unused_bgs_mutex);
/* Don't want to race with allocators so take the groups_sem */
down_write(&space_info->groups_sem);
/*
* Async discard moves the final block group discard to be prior
* to the unused_bgs code path. Therefore, if it's not fully
* trimmed, punt it back to the async discard lists.
*/
if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
!btrfs_is_free_space_trimmed(block_group)) {
trace_btrfs_skip_unused_block_group(block_group);
up_write(&space_info->groups_sem);
/* Requeue if we failed because of async discard */
btrfs_discard_queue_work(&fs_info->discard_ctl,
block_group);
goto next;
}
spin_lock(&block_group->lock);
if (block_group->reserved || block_group->pinned ||
block_group->used || block_group->ro ||
list_is_singular(&block_group->list)) {
/*
* We want to bail if we made new allocations or have
* outstanding allocations in this block group. We do
* the ro check in case balance is currently acting on
* this block group.
*/
trace_btrfs_skip_unused_block_group(block_group);
spin_unlock(&block_group->lock);
up_write(&space_info->groups_sem);
goto next;
}
spin_unlock(&block_group->lock);
/* We don't want to force the issue, only flip if it's ok. */
ret = inc_block_group_ro(block_group, 0);
up_write(&space_info->groups_sem);
if (ret < 0) {
ret = 0;
goto next;
}
/*
* Want to do this before we do anything else so we can recover
* properly if we fail to join the transaction.
*/
trans = btrfs_start_trans_remove_block_group(fs_info,
block_group->start);
if (IS_ERR(trans)) {
btrfs_dec_block_group_ro(block_group);
ret = PTR_ERR(trans);
goto next;
}
/*
* We could have pending pinned extents for this block group,
* just delete them, we don't care about them anymore.
*/
if (!clean_pinned_extents(trans, block_group)) {
btrfs_dec_block_group_ro(block_group);
goto end_trans;
}
/*
* At this point, the block_group is read only and should fail
* new allocations. However, btrfs_finish_extent_commit() can
* cause this block_group to be placed back on the discard
* lists because now the block_group isn't fully discarded.
* Bail here and try again later after discarding everything.
*/
spin_lock(&fs_info->discard_ctl.lock);
if (!list_empty(&block_group->discard_list)) {
spin_unlock(&fs_info->discard_ctl.lock);
btrfs_dec_block_group_ro(block_group);
btrfs_discard_queue_work(&fs_info->discard_ctl,
block_group);
goto end_trans;
}
spin_unlock(&fs_info->discard_ctl.lock);
/* Reset pinned so btrfs_put_block_group doesn't complain */
spin_lock(&space_info->lock);
spin_lock(&block_group->lock);
btrfs_space_info_update_bytes_pinned(fs_info, space_info,
-block_group->pinned);
space_info->bytes_readonly += block_group->pinned;
percpu_counter_add_batch(&space_info->total_bytes_pinned,
-block_group->pinned,
BTRFS_TOTAL_BYTES_PINNED_BATCH);
block_group->pinned = 0;
spin_unlock(&block_group->lock);
spin_unlock(&space_info->lock);
/*
* The normal path here is an unused block group is passed here,
* then trimming is handled in the transaction commit path.
* Async discard interposes before this to do the trimming
* before coming down the unused block group path as trimming
* will no longer be done later in the transaction commit path.
*/
if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
goto flip_async;
/* DISCARD can flip during remount */
trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
/* Implicit trim during transaction commit. */
if (trimming)
btrfs_freeze_block_group(block_group);
/*
* Btrfs_remove_chunk will abort the transaction if things go
* horribly wrong.
*/
ret = btrfs_remove_chunk(trans, block_group->start);
if (ret) {
if (trimming)
btrfs_unfreeze_block_group(block_group);
goto end_trans;
}
/*
* If we're not mounted with -odiscard, we can just forget
* about this block group. Otherwise we'll need to wait
* until transaction commit to do the actual discard.
*/
if (trimming) {
spin_lock(&fs_info->unused_bgs_lock);
/*
* A concurrent scrub might have added us to the list
* fs_info->unused_bgs, so use a list_move operation
* to add the block group to the deleted_bgs list.
*/
list_move(&block_group->bg_list,
&trans->transaction->deleted_bgs);
spin_unlock(&fs_info->unused_bgs_lock);
btrfs_get_block_group(block_group);
}
end_trans:
btrfs_end_transaction(trans);
next:
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
btrfs_put_block_group(block_group);
spin_lock(&fs_info->unused_bgs_lock);
}
spin_unlock(&fs_info->unused_bgs_lock);
return;
flip_async:
btrfs_end_transaction(trans);
mutex_unlock(&fs_info->delete_unused_bgs_mutex);
btrfs_put_block_group(block_group);
btrfs_discard_punt_unused_bgs_list(fs_info);
}
void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
{
struct btrfs_fs_info *fs_info = bg->fs_info;
spin_lock(&fs_info->unused_bgs_lock);
if (list_empty(&bg->bg_list)) {
btrfs_get_block_group(bg);
trace_btrfs_add_unused_block_group(bg);
list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
}
spin_unlock(&fs_info->unused_bgs_lock);
}
static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
struct btrfs_path *path)
{
struct extent_map_tree *em_tree;
struct extent_map *em;
struct btrfs_block_group_item bg;
struct extent_buffer *leaf;
int slot;
u64 flags;
int ret = 0;
slot = path->slots[0];
leaf = path->nodes[0];
em_tree = &fs_info->mapping_tree;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
read_unlock(&em_tree->lock);
if (!em) {
btrfs_err(fs_info,
"logical %llu len %llu found bg but no related chunk",
key->objectid, key->offset);
return -ENOENT;
}
if (em->start != key->objectid || em->len != key->offset) {
btrfs_err(fs_info,
"block group %llu len %llu mismatch with chunk %llu len %llu",
key->objectid, key->offset, em->start, em->len);
ret = -EUCLEAN;
goto out_free_em;
}
read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
sizeof(bg));
flags = btrfs_stack_block_group_flags(&bg) &
BTRFS_BLOCK_GROUP_TYPE_MASK;
if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
btrfs_err(fs_info,
"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
key->objectid, key->offset, flags,
(BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
ret = -EUCLEAN;
}
out_free_em:
free_extent_map(em);
return ret;
}
static int find_first_block_group(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
struct btrfs_key *key)
{
struct btrfs_root *root = fs_info->extent_root;
int ret;
struct btrfs_key found_key;
struct extent_buffer *leaf;
int slot;
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret < 0)
return ret;
while (1) {
slot = path->slots[0];
leaf = path->nodes[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto out;
break;
}
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.objectid >= key->objectid &&
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
ret = read_bg_from_eb(fs_info, &found_key, path);
break;
}
path->slots[0]++;
}
out:
return ret;
}
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
u64 extra_flags = chunk_to_extended(flags) &
BTRFS_EXTENDED_PROFILE_MASK;
write_seqlock(&fs_info->profiles_lock);
if (flags & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits |= extra_flags;
write_sequnlock(&fs_info->profiles_lock);
}
/**
* btrfs_rmap_block - Map a physical disk address to a list of logical addresses
* @chunk_start: logical address of block group
* @physical: physical address to map to logical addresses
* @logical: return array of logical addresses which map to @physical
* @naddrs: length of @logical
* @stripe_len: size of IO stripe for the given block group
*
* Maps a particular @physical disk address to a list of @logical addresses.
* Used primarily to exclude those portions of a block group that contain super
* block copies.
*/
EXPORT_FOR_TESTS
int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
u64 physical, u64 **logical, int *naddrs, int *stripe_len)
{
struct extent_map *em;
struct map_lookup *map;
u64 *buf;
u64 bytenr;
u64 data_stripe_length;
u64 io_stripe_size;
int i, nr = 0;
int ret = 0;
em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
if (IS_ERR(em))
return -EIO;
map = em->map_lookup;
data_stripe_length = em->orig_block_len;
io_stripe_size = map->stripe_len;
/* For RAID5/6 adjust to a full IO stripe length */
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
io_stripe_size = map->stripe_len * nr_data_stripes(map);
buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
if (!buf) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < map->num_stripes; i++) {
bool already_inserted = false;
u64 stripe_nr;
int j;
if (!in_range(physical, map->stripes[i].physical,
data_stripe_length))
continue;
stripe_nr = physical - map->stripes[i].physical;
stripe_nr = div64_u64(stripe_nr, map->stripe_len);
if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
stripe_nr = stripe_nr * map->num_stripes + i;
stripe_nr = div_u64(stripe_nr, map->sub_stripes);
} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
stripe_nr = stripe_nr * map->num_stripes + i;
}
/*
* The remaining case would be for RAID56, multiply by
* nr_data_stripes(). Alternatively, just use rmap_len below
* instead of map->stripe_len
*/
bytenr = chunk_start + stripe_nr * io_stripe_size;
/* Ensure we don't add duplicate addresses */
for (j = 0; j < nr; j++) {
if (buf[j] == bytenr) {
already_inserted = true;
break;
}
}
if (!already_inserted)
buf[nr++] = bytenr;
}
*logical = buf;
*naddrs = nr;
*stripe_len = io_stripe_size;
out:
free_extent_map(em);
return ret;
}
static int exclude_super_stripes(struct btrfs_block_group *cache)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
const bool zoned = btrfs_is_zoned(fs_info);
u64 bytenr;
u64 *logical;
int stripe_len;
int i, nr, ret;
if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
cache->bytes_super += stripe_len;
ret = btrfs_add_excluded_extent(fs_info, cache->start,
stripe_len);
if (ret)
return ret;
}
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
ret = btrfs_rmap_block(fs_info, cache->start,
bytenr, &logical, &nr, &stripe_len);
if (ret)
return ret;
/* Shouldn't have super stripes in sequential zones */
if (zoned && nr) {
btrfs_err(fs_info,
"zoned: block group %llu must not contain super block",
cache->start);
return -EUCLEAN;
}
while (nr--) {
u64 len = min_t(u64, stripe_len,
cache->start + cache->length - logical[nr]);
cache->bytes_super += len;
ret = btrfs_add_excluded_extent(fs_info, logical[nr],
len);
if (ret) {
kfree(logical);
return ret;
}
}
kfree(logical);
}
return 0;
}
static void link_block_group(struct btrfs_block_group *cache)
{
struct btrfs_space_info *space_info = cache->space_info;
int index = btrfs_bg_flags_to_raid_index(cache->flags);
down_write(&space_info->groups_sem);
list_add_tail(&cache->list, &space_info->block_groups[index]);
up_write(&space_info->groups_sem);
}
static struct btrfs_block_group *btrfs_create_block_group_cache(
struct btrfs_fs_info *fs_info, u64 start)
{
struct btrfs_block_group *cache;
cache = kzalloc(sizeof(*cache), GFP_NOFS);
if (!cache)
return NULL;
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
GFP_NOFS);
if (!cache->free_space_ctl) {
kfree(cache);
return NULL;
}
cache->start = start;
cache->fs_info = fs_info;
cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
refcount_set(&cache->refs, 1);
spin_lock_init(&cache->lock);
init_rwsem(&cache->data_rwsem);
INIT_LIST_HEAD(&cache->list);
INIT_LIST_HEAD(&cache->cluster_list);
INIT_LIST_HEAD(&cache->bg_list);
INIT_LIST_HEAD(&cache->ro_list);
INIT_LIST_HEAD(&cache->discard_list);
INIT_LIST_HEAD(&cache->dirty_list);
INIT_LIST_HEAD(&cache->io_list);
btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
atomic_set(&cache->frozen, 0);
mutex_init(&cache->free_space_lock);
btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
return cache;
}
/*
* Iterate all chunks and verify that each of them has the corresponding block
* group
*/
static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
{
struct extent_map_tree *map_tree = &fs_info->mapping_tree;
struct extent_map *em;
struct btrfs_block_group *bg;
u64 start = 0;
int ret = 0;
while (1) {
read_lock(&map_tree->lock);
/*
* lookup_extent_mapping will return the first extent map
* intersecting the range, so setting @len to 1 is enough to
* get the first chunk.
*/
em = lookup_extent_mapping(map_tree, start, 1);
read_unlock(&map_tree->lock);
if (!em)
break;
bg = btrfs_lookup_block_group(fs_info, em->start);
if (!bg) {
btrfs_err(fs_info,
"chunk start=%llu len=%llu doesn't have corresponding block group",
em->start, em->len);
ret = -EUCLEAN;
free_extent_map(em);
break;
}
if (bg->start != em->start || bg->length != em->len ||
(bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
(em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
btrfs_err(fs_info,
"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
em->start, em->len,
em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
bg->start, bg->length,
bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
ret = -EUCLEAN;
free_extent_map(em);
btrfs_put_block_group(bg);
break;
}
start = em->start + em->len;
free_extent_map(em);
btrfs_put_block_group(bg);
}
return ret;
}
static void read_block_group_item(struct btrfs_block_group *cache,
struct btrfs_path *path,
const struct btrfs_key *key)
{
struct extent_buffer *leaf = path->nodes[0];
struct btrfs_block_group_item bgi;
int slot = path->slots[0];
cache->length = key->offset;
read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
sizeof(bgi));
cache->used = btrfs_stack_block_group_used(&bgi);
cache->flags = btrfs_stack_block_group_flags(&bgi);
}
static int read_one_block_group(struct btrfs_fs_info *info,
struct btrfs_path *path,
const struct btrfs_key *key,
int need_clear)
{
struct btrfs_block_group *cache;
struct btrfs_space_info *space_info;
const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
int ret;
ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
cache = btrfs_create_block_group_cache(info, key->objectid);
if (!cache)
return -ENOMEM;
read_block_group_item(cache, path, key);
set_free_space_tree_thresholds(cache);
if (need_clear) {
/*
* When we mount with old space cache, we need to
* set BTRFS_DC_CLEAR and set dirty flag.
*
* a) Setting 'BTRFS_DC_CLEAR' makes sure that we
* truncate the old free space cache inode and
* setup a new one.
* b) Setting 'dirty flag' makes sure that we flush
* the new space cache info onto disk.
*/
if (btrfs_test_opt(info, SPACE_CACHE))
cache->disk_cache_state = BTRFS_DC_CLEAR;
}
if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
(cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
btrfs_err(info,
"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
cache->start);
ret = -EINVAL;
goto error;
}
/*
* We need to exclude the super stripes now so that the space info has
* super bytes accounted for, otherwise we'll think we have more space
* than we actually do.
*/
ret = exclude_super_stripes(cache);
if (ret) {
/* We may have excluded something, so call this just in case. */
btrfs_free_excluded_extents(cache);
goto error;
}
/*
* Check for two cases, either we are full, and therefore don't need
* to bother with the caching work since we won't find any space, or we
* are empty, and we can just add all the space in and be done with it.
* This saves us _a_lot_ of time, particularly in the full case.
*/
if (cache->length == cache->used) {
cache->last_byte_to_unpin = (u64)-1;
cache->cached = BTRFS_CACHE_FINISHED;
btrfs_free_excluded_extents(cache);
} else if (cache->used == 0) {
cache->last_byte_to_unpin = (u64)-1;
cache->cached = BTRFS_CACHE_FINISHED;
add_new_free_space(cache, cache->start,
cache->start + cache->length);
btrfs_free_excluded_extents(cache);
}
ret = btrfs_add_block_group_cache(info, cache);
if (ret) {
btrfs_remove_free_space_cache(cache);
goto error;
}
trace_btrfs_add_block_group(info, cache, 0);
btrfs_update_space_info(info, cache->flags, cache->length,
cache->used, cache->bytes_super, &space_info);
cache->space_info = space_info;
link_block_group(cache);
set_avail_alloc_bits(info, cache->flags);
if (btrfs_chunk_readonly(info, cache->start)) {
inc_block_group_ro(cache, 1);
} else if (cache->used == 0) {
ASSERT(list_empty(&cache->bg_list));
if (btrfs_test_opt(info, DISCARD_ASYNC))
btrfs_discard_queue_work(&info->discard_ctl, cache);
else
btrfs_mark_bg_unused(cache);
}
return 0;
error:
btrfs_put_block_group(cache);
return ret;
}
static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
{
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
struct btrfs_space_info *space_info;
struct rb_node *node;
int ret = 0;
for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
struct extent_map *em;
struct map_lookup *map;
struct btrfs_block_group *bg;
em = rb_entry(node, struct extent_map, rb_node);
map = em->map_lookup;
bg = btrfs_create_block_group_cache(fs_info, em->start);
if (!bg) {
ret = -ENOMEM;
break;
}
/* Fill dummy cache as FULL */
bg->length = em->len;
bg->flags = map->type;
bg->last_byte_to_unpin = (u64)-1;
bg->cached = BTRFS_CACHE_FINISHED;
bg->used = em->len;
bg->flags = map->type;
ret = btrfs_add_block_group_cache(fs_info, bg);
if (ret) {
btrfs_remove_free_space_cache(bg);
btrfs_put_block_group(bg);
break;
}
btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
0, &space_info);
bg->space_info = space_info;
link_block_group(bg);
set_avail_alloc_bits(fs_info, bg->flags);
}
if (!ret)
btrfs_init_global_block_rsv(fs_info);
return ret;
}
int btrfs_read_block_groups(struct btrfs_fs_info *info)
{
struct btrfs_path *path;
int ret;
struct btrfs_block_group *cache;
struct btrfs_space_info *space_info;
struct btrfs_key key;
int need_clear = 0;
u64 cache_gen;
if (!info->extent_root)
return fill_dummy_bgs(info);
key.objectid = 0;
key.offset = 0;
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
cache_gen = btrfs_super_cache_generation(info->super_copy);
if (btrfs_test_opt(info, SPACE_CACHE) &&
btrfs_super_generation(info->super_copy) != cache_gen)
need_clear = 1;
if (btrfs_test_opt(info, CLEAR_CACHE))
need_clear = 1;
while (1) {
ret = find_first_block_group(info, path, &key);
if (ret > 0)
break;
if (ret != 0)
goto error;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
ret = read_one_block_group(info, path, &key, need_clear);
if (ret < 0)
goto error;
key.objectid += key.offset;
key.offset = 0;
btrfs_release_path(path);
}
btrfs_release_path(path);
list_for_each_entry(space_info, &info->space_info, list) {
int i;
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
if (list_empty(&space_info->block_groups[i]))
continue;
cache = list_first_entry(&space_info->block_groups[i],
struct btrfs_block_group,
list);
btrfs_sysfs_add_block_group_type(cache);
}
if (!(btrfs_get_alloc_profile(info, space_info->flags) &
(BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_RAID1_MASK |
BTRFS_BLOCK_GROUP_RAID56_MASK |
BTRFS_BLOCK_GROUP_DUP)))
continue;
/*
* Avoid allocating from un-mirrored block group if there are
* mirrored block groups.
*/
list_for_each_entry(cache,
&space_info->block_groups[BTRFS_RAID_RAID0],
list)
inc_block_group_ro(cache, 1);
list_for_each_entry(cache,
&space_info->block_groups[BTRFS_RAID_SINGLE],
list)
inc_block_group_ro(cache, 1);
}
btrfs_init_global_block_rsv(info);
ret = check_chunk_block_group_mappings(info);
error:
btrfs_free_path(path);
return ret;
}
static int insert_block_group_item(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group_item bgi;
struct btrfs_root *root;
struct btrfs_key key;
spin_lock(&block_group->lock);
btrfs_set_stack_block_group_used(&bgi, block_group->used);
btrfs_set_stack_block_group_chunk_objectid(&bgi,
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
key.objectid = block_group->start;
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
key.offset = block_group->length;
spin_unlock(&block_group->lock);
root = fs_info->extent_root;
return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
}
void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group *block_group;
int ret = 0;
if (!trans->can_flush_pending_bgs)
return;
while (!list_empty(&trans->new_bgs)) {
int index;
block_group = list_first_entry(&trans->new_bgs,
struct btrfs_block_group,
bg_list);
if (ret)
goto next;
index = btrfs_bg_flags_to_raid_index(block_group->flags);
ret = insert_block_group_item(trans, block_group);
if (ret)
btrfs_abort_transaction(trans, ret);
ret = btrfs_finish_chunk_alloc(trans, block_group->start,
block_group->length);
if (ret)
btrfs_abort_transaction(trans, ret);
add_block_group_free_space(trans, block_group);
/*
* If we restriped during balance, we may have added a new raid
* type, so now add the sysfs entries when it is safe to do so.
* We don't have to worry about locking here as it's handled in
* btrfs_sysfs_add_block_group_type.
*/
if (block_group->space_info->block_group_kobjs[index] == NULL)
btrfs_sysfs_add_block_group_type(block_group);
/* Already aborted the transaction if it failed. */
next:
btrfs_delayed_refs_rsv_release(fs_info, 1);
list_del_init(&block_group->bg_list);
}
btrfs_trans_release_chunk_metadata(trans);
}
int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
u64 type, u64 chunk_offset, u64 size)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group *cache;
int ret;
btrfs_set_log_full_commit(trans);
cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
if (!cache)
return -ENOMEM;
cache->length = size;
set_free_space_tree_thresholds(cache);
cache->used = bytes_used;
cache->flags = type;
cache->last_byte_to_unpin = (u64)-1;
cache->cached = BTRFS_CACHE_FINISHED;
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
cache->needs_free_space = 1;
ret = exclude_super_stripes(cache);
if (ret) {
/* We may have excluded something, so call this just in case */
btrfs_free_excluded_extents(cache);
btrfs_put_block_group(cache);
return ret;
}
add_new_free_space(cache, chunk_offset, chunk_offset + size);
btrfs_free_excluded_extents(cache);
#ifdef CONFIG_BTRFS_DEBUG
if (btrfs_should_fragment_free_space(cache)) {
u64 new_bytes_used = size - bytes_used;
bytes_used += new_bytes_used >> 1;
fragment_free_space(cache);
}
#endif
/*
* Ensure the corresponding space_info object is created and
* assigned to our block group. We want our bg to be added to the rbtree
* with its ->space_info set.
*/
cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
ASSERT(cache->space_info);
ret = btrfs_add_block_group_cache(fs_info, cache);
if (ret) {
btrfs_remove_free_space_cache(cache);
btrfs_put_block_group(cache);
return ret;
}
/*
* Now that our block group has its ->space_info set and is inserted in
* the rbtree, update the space info's counters.
*/
trace_btrfs_add_block_group(fs_info, cache, 1);
btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
cache->bytes_super, &cache->space_info);
btrfs_update_global_block_rsv(fs_info);
link_block_group(cache);
list_add_tail(&cache->bg_list, &trans->new_bgs);
trans->delayed_ref_updates++;
btrfs_update_delayed_refs_rsv(trans);
set_avail_alloc_bits(fs_info, type);
return 0;
}
/*
* Mark one block group RO, can be called several times for the same block
* group.
*
* @cache: the destination block group
* @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
* ensure we still have some free space after marking this
* block group RO.
*/
int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
bool do_chunk_alloc)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
struct btrfs_trans_handle *trans;
u64 alloc_flags;
int ret;
again:
trans = btrfs_join_transaction(fs_info->extent_root);
if (IS_ERR(trans))
return PTR_ERR(trans);
/*
* we're not allowed to set block groups readonly after the dirty
* block groups cache has started writing. If it already started,
* back off and let this transaction commit
*/
mutex_lock(&fs_info->ro_block_group_mutex);
if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
u64 transid = trans->transid;
mutex_unlock(&fs_info->ro_block_group_mutex);
btrfs_end_transaction(trans);
ret = btrfs_wait_for_commit(fs_info, transid);
if (ret)
return ret;
goto again;
}
if (do_chunk_alloc) {
/*
* If we are changing raid levels, try to allocate a
* corresponding block group with the new raid level.
*/
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
if (alloc_flags != cache->flags) {
ret = btrfs_chunk_alloc(trans, alloc_flags,
CHUNK_ALLOC_FORCE);
/*
* ENOSPC is allowed here, we may have enough space
* already allocated at the new raid level to carry on
*/
if (ret == -ENOSPC)
ret = 0;
if (ret < 0)
goto out;
}
}
ret = inc_block_group_ro(cache, 0);
if (!do_chunk_alloc)
goto unlock_out;
if (!ret)
goto out;
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
if (ret < 0)
goto out;
ret = inc_block_group_ro(cache, 0);
out:
if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
mutex_lock(&fs_info->chunk_mutex);
check_system_chunk(trans, alloc_flags);
mutex_unlock(&fs_info->chunk_mutex);
}
unlock_out:
mutex_unlock(&fs_info->ro_block_group_mutex);
btrfs_end_transaction(trans);
return ret;
}
void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
{
struct btrfs_space_info *sinfo = cache->space_info;
u64 num_bytes;
BUG_ON(!cache->ro);
spin_lock(&sinfo->lock);
spin_lock(&cache->lock);
if (!--cache->ro) {
num_bytes = cache->length - cache->reserved -
cache->pinned - cache->bytes_super - cache->used;
sinfo->bytes_readonly -= num_bytes;
list_del_init(&cache->ro_list);
}
spin_unlock(&cache->lock);
spin_unlock(&sinfo->lock);
}
static int update_block_group_item(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_block_group *cache)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret;
struct btrfs_root *root = fs_info->extent_root;
unsigned long bi;
struct extent_buffer *leaf;
struct btrfs_block_group_item bgi;
struct btrfs_key key;
key.objectid = cache->start;
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
key.offset = cache->length;
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (ret) {
if (ret > 0)
ret = -ENOENT;
goto fail;
}
leaf = path->nodes[0];
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
btrfs_set_stack_block_group_used(&bgi, cache->used);
btrfs_set_stack_block_group_chunk_objectid(&bgi,
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_stack_block_group_flags(&bgi, cache->flags);
write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
btrfs_mark_buffer_dirty(leaf);
fail:
btrfs_release_path(path);
return ret;
}
static int cache_save_setup(struct btrfs_block_group *block_group,
struct btrfs_trans_handle *trans,
struct btrfs_path *path)
{
struct btrfs_fs_info *fs_info = block_group->fs_info;
struct btrfs_root *root = fs_info->tree_root;
struct inode *inode = NULL;
struct extent_changeset *data_reserved = NULL;
u64 alloc_hint = 0;
int dcs = BTRFS_DC_ERROR;
u64 num_pages = 0;
int retries = 0;
int ret = 0;
if (!btrfs_test_opt(fs_info, SPACE_CACHE))
return 0;
/*
* If this block group is smaller than 100 megs don't bother caching the
* block group.
*/
if (block_group->length < (100 * SZ_1M)) {
spin_lock(&block_group->lock);
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
spin_unlock(&block_group->lock);
return 0;
}
if (TRANS_ABORTED(trans))
return 0;
again:
inode = lookup_free_space_inode(block_group, path);
if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
ret = PTR_ERR(inode);
btrfs_release_path(path);
goto out;
}
if (IS_ERR(inode)) {
BUG_ON(retries);
retries++;
if (block_group->ro)
goto out_free;
ret = create_free_space_inode(trans, block_group, path);
if (ret)
goto out_free;
goto again;
}
/*
* We want to set the generation to 0, that way if anything goes wrong
* from here on out we know not to trust this cache when we load up next
* time.
*/
BTRFS_I(inode)->generation = 0;
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
if (ret) {
/*
* So theoretically we could recover from this, simply set the
* super cache generation to 0 so we know to invalidate the
* cache, but then we'd have to keep track of the block groups
* that fail this way so we know we _have_ to reset this cache
* before the next commit or risk reading stale cache. So to
* limit our exposure to horrible edge cases lets just abort the
* transaction, this only happens in really bad situations
* anyway.
*/
btrfs_abort_transaction(trans, ret);
goto out_put;
}
WARN_ON(ret);
/* We've already setup this transaction, go ahead and exit */
if (block_group->cache_generation == trans->transid &&
i_size_read(inode)) {
dcs = BTRFS_DC_SETUP;
goto out_put;
}
if (i_size_read(inode) > 0) {
ret = btrfs_check_trunc_cache_free_space(fs_info,
&fs_info->global_block_rsv);
if (ret)
goto out_put;
ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
if (ret)
goto out_put;
}
spin_lock(&block_group->lock);
if (block_group->cached != BTRFS_CACHE_FINISHED ||
!btrfs_test_opt(fs_info, SPACE_CACHE)) {
/*
* don't bother trying to write stuff out _if_
* a) we're not cached,
* b) we're with nospace_cache mount option,
* c) we're with v2 space_cache (FREE_SPACE_TREE).
*/
dcs = BTRFS_DC_WRITTEN;
spin_unlock(&block_group->lock);
goto out_put;
}
spin_unlock(&block_group->lock);
/*
* We hit an ENOSPC when setting up the cache in this transaction, just
* skip doing the setup, we've already cleared the cache so we're safe.
*/
if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
ret = -ENOSPC;
goto out_put;
}
/*
* Try to preallocate enough space based on how big the block group is.
* Keep in mind this has to include any pinned space which could end up
* taking up quite a bit since it's not folded into the other space
* cache.
*/
num_pages = div_u64(block_group->length, SZ_256M);
if (!num_pages)
num_pages = 1;
num_pages *= 16;
num_pages *= PAGE_SIZE;
ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
num_pages);
if (ret)
goto out_put;
ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
num_pages, num_pages,
&alloc_hint);
/*
* Our cache requires contiguous chunks so that we don't modify a bunch
* of metadata or split extents when writing the cache out, which means
* we can enospc if we are heavily fragmented in addition to just normal
* out of space conditions. So if we hit this just skip setting up any
* other block groups for this transaction, maybe we'll unpin enough
* space the next time around.
*/
if (!ret)
dcs = BTRFS_DC_SETUP;
else if (ret == -ENOSPC)
set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
out_put:
iput(inode);
out_free:
btrfs_release_path(path);
out:
spin_lock(&block_group->lock);
if (!ret && dcs == BTRFS_DC_SETUP)
block_group->cache_generation = trans->transid;
block_group->disk_cache_state = dcs;
spin_unlock(&block_group->lock);
extent_changeset_free(data_reserved);
return ret;
}
int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group *cache, *tmp;
struct btrfs_transaction *cur_trans = trans->transaction;
struct btrfs_path *path;
if (list_empty(&cur_trans->dirty_bgs) ||
!btrfs_test_opt(fs_info, SPACE_CACHE))
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/* Could add new block groups, use _safe just in case */
list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
dirty_list) {
if (cache->disk_cache_state == BTRFS_DC_CLEAR)
cache_save_setup(cache, trans, path);
}
btrfs_free_path(path);
return 0;
}
/*
* Transaction commit does final block group cache writeback during a critical
* section where nothing is allowed to change the FS. This is required in
* order for the cache to actually match the block group, but can introduce a
* lot of latency into the commit.
*
* So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
* There's a chance we'll have to redo some of it if the block group changes
* again during the commit, but it greatly reduces the commit latency by
* getting rid of the easy block groups while we're still allowing others to
* join the commit.
*/
int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group *cache;
struct btrfs_transaction *cur_trans = trans->transaction;
int ret = 0;
int should_put;
struct btrfs_path *path = NULL;
LIST_HEAD(dirty);
struct list_head *io = &cur_trans->io_bgs;
int num_started = 0;
int loops = 0;
spin_lock(&cur_trans->dirty_bgs_lock);
if (list_empty(&cur_trans->dirty_bgs)) {
spin_unlock(&cur_trans->dirty_bgs_lock);
return 0;
}
list_splice_init(&cur_trans->dirty_bgs, &dirty);
spin_unlock(&cur_trans->dirty_bgs_lock);
again:
/* Make sure all the block groups on our dirty list actually exist */
btrfs_create_pending_block_groups(trans);
if (!path) {
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
}
/*
* cache_write_mutex is here only to save us from balance or automatic
* removal of empty block groups deleting this block group while we are
* writing out the cache
*/
mutex_lock(&trans->transaction->cache_write_mutex);
while (!list_empty(&dirty)) {
bool drop_reserve = true;
cache = list_first_entry(&dirty, struct btrfs_block_group,
dirty_list);
/*
* This can happen if something re-dirties a block group that
* is already under IO. Just wait for it to finish and then do
* it all again
*/
if (!list_empty(&cache->io_list)) {
list_del_init(&cache->io_list);
btrfs_wait_cache_io(trans, cache, path);
btrfs_put_block_group(cache);
}
/*
* btrfs_wait_cache_io uses the cache->dirty_list to decide if
* it should update the cache_state. Don't delete until after
* we wait.
*
* Since we're not running in the commit critical section
* we need the dirty_bgs_lock to protect from update_block_group
*/
spin_lock(&cur_trans->dirty_bgs_lock);
list_del_init(&cache->dirty_list);
spin_unlock(&cur_trans->dirty_bgs_lock);
should_put = 1;
cache_save_setup(cache, trans, path);
if (cache->disk_cache_state == BTRFS_DC_SETUP) {
cache->io_ctl.inode = NULL;
ret = btrfs_write_out_cache(trans, cache, path);
if (ret == 0 && cache->io_ctl.inode) {
num_started++;
should_put = 0;
/*
* The cache_write_mutex is protecting the
* io_list, also refer to the definition of
* btrfs_transaction::io_bgs for more details
*/
list_add_tail(&cache->io_list, io);
} else {
/*
* If we failed to write the cache, the
* generation will be bad and life goes on
*/
ret = 0;
}
}
if (!ret) {
ret = update_block_group_item(trans, path, cache);
/*
* Our block group might still be attached to the list
* of new block groups in the transaction handle of some
* other task (struct btrfs_trans_handle->new_bgs). This
* means its block group item isn't yet in the extent
* tree. If this happens ignore the error, as we will
* try again later in the critical section of the
* transaction commit.
*/
if (ret == -ENOENT) {
ret = 0;
spin_lock(&cur_trans->dirty_bgs_lock);
if (list_empty(&cache->dirty_list)) {
list_add_tail(&cache->dirty_list,
&cur_trans->dirty_bgs);
btrfs_get_block_group(cache);
drop_reserve = false;
}
spin_unlock(&cur_trans->dirty_bgs_lock);
} else if (ret) {
btrfs_abort_transaction(trans, ret);
}
}
/* If it's not on the io list, we need to put the block group */
if (should_put)
btrfs_put_block_group(cache);
if (drop_reserve)
btrfs_delayed_refs_rsv_release(fs_info, 1);
if (ret)
break;
/*
* Avoid blocking other tasks for too long. It might even save
* us from writing caches for block groups that are going to be
* removed.
*/
mutex_unlock(&trans->transaction->cache_write_mutex);
mutex_lock(&trans->transaction->cache_write_mutex);
}
mutex_unlock(&trans->transaction->cache_write_mutex);
/*
* Go through delayed refs for all the stuff we've just kicked off
* and then loop back (just once)
*/
ret = btrfs_run_delayed_refs(trans, 0);
if (!ret && loops == 0) {
loops++;
spin_lock(&cur_trans->dirty_bgs_lock);
list_splice_init(&cur_trans->dirty_bgs, &dirty);
/*
* dirty_bgs_lock protects us from concurrent block group
* deletes too (not just cache_write_mutex).
*/
if (!list_empty(&dirty)) {
spin_unlock(&cur_trans->dirty_bgs_lock);
goto again;
}
spin_unlock(&cur_trans->dirty_bgs_lock);
} else if (ret < 0) {
btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
}
btrfs_free_path(path);
return ret;
}
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group *cache;
struct btrfs_transaction *cur_trans = trans->transaction;
int ret = 0;
int should_put;
struct btrfs_path *path;
struct list_head *io = &cur_trans->io_bgs;
int num_started = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/*
* Even though we are in the critical section of the transaction commit,
* we can still have concurrent tasks adding elements to this
* transaction's list of dirty block groups. These tasks correspond to
* endio free space workers started when writeback finishes for a
* space cache, which run inode.c:btrfs_finish_ordered_io(), and can
* allocate new block groups as a result of COWing nodes of the root
* tree when updating the free space inode. The writeback for the space
* caches is triggered by an earlier call to
* btrfs_start_dirty_block_groups() and iterations of the following
* loop.
* Also we want to do the cache_save_setup first and then run the
* delayed refs to make sure we have the best chance at doing this all
* in one shot.
*/
spin_lock(&cur_trans->dirty_bgs_lock);
while (!list_empty(&cur_trans->dirty_bgs)) {
cache = list_first_entry(&cur_trans->dirty_bgs,
struct btrfs_block_group,
dirty_list);
/*
* This can happen if cache_save_setup re-dirties a block group
* that is already under IO. Just wait for it to finish and
* then do it all again
*/
if (!list_empty(&cache->io_list)) {
spin_unlock(&cur_trans->dirty_bgs_lock);
list_del_init(&cache->io_list);
btrfs_wait_cache_io(trans, cache, path);
btrfs_put_block_group(cache);
spin_lock(&cur_trans->dirty_bgs_lock);
}
/*
* Don't remove from the dirty list until after we've waited on
* any pending IO
*/
list_del_init(&cache->dirty_list);
spin_unlock(&cur_trans->dirty_bgs_lock);
should_put = 1;
cache_save_setup(cache, trans, path);
if (!ret)
ret = btrfs_run_delayed_refs(trans,
(unsigned long) -1);
if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
cache->io_ctl.inode = NULL;
ret = btrfs_write_out_cache(trans, cache, path);
if (ret == 0 && cache->io_ctl.inode) {
num_started++;
should_put = 0;
list_add_tail(&cache->io_list, io);
} else {
/*
* If we failed to write the cache, the
* generation will be bad and life goes on
*/
ret = 0;
}
}
if (!ret) {
ret = update_block_group_item(trans, path, cache);
/*
* One of the free space endio workers might have
* created a new block group while updating a free space
* cache's inode (at inode.c:btrfs_finish_ordered_io())
* and hasn't released its transaction handle yet, in
* which case the new block group is still attached to
* its transaction handle and its creation has not
* finished yet (no block group item in the extent tree
* yet, etc). If this is the case, wait for all free
* space endio workers to finish and retry. This is a
* very rare case so no need for a more efficient and
* complex approach.
*/
if (ret == -ENOENT) {
wait_event(cur_trans->writer_wait,
atomic_read(&cur_trans->num_writers) == 1);
ret = update_block_group_item(trans, path, cache);
}
if (ret)
btrfs_abort_transaction(trans, ret);
}
/* If its not on the io list, we need to put the block group */
if (should_put)
btrfs_put_block_group(cache);
btrfs_delayed_refs_rsv_release(fs_info, 1);
spin_lock(&cur_trans->dirty_bgs_lock);
}
spin_unlock(&cur_trans->dirty_bgs_lock);
/*
* Refer to the definition of io_bgs member for details why it's safe
* to use it without any locking
*/
while (!list_empty(io)) {
cache = list_first_entry(io, struct btrfs_block_group,
io_list);
list_del_init(&cache->io_list);
btrfs_wait_cache_io(trans, cache, path);
btrfs_put_block_group(cache);
}
btrfs_free_path(path);
return ret;
}
int btrfs_update_block_group(struct btrfs_trans_handle *trans,
u64 bytenr, u64 num_bytes, int alloc)
{
struct btrfs_fs_info *info = trans->fs_info;
struct btrfs_block_group *cache = NULL;
u64 total = num_bytes;
u64 old_val;
u64 byte_in_group;
int factor;
int ret = 0;
/* Block accounting for super block */
spin_lock(&info->delalloc_root_lock);
old_val = btrfs_super_bytes_used(info->super_copy);
if (alloc)
old_val += num_bytes;
else
old_val -= num_bytes;
btrfs_set_super_bytes_used(info->super_copy, old_val);
spin_unlock(&info->delalloc_root_lock);
while (total) {
cache = btrfs_lookup_block_group(info, bytenr);
if (!cache) {
ret = -ENOENT;
break;
}
factor = btrfs_bg_type_to_factor(cache->flags);
/*
* If this block group has free space cache written out, we
* need to make sure to load it if we are removing space. This
* is because we need the unpinning stage to actually add the
* space back to the block group, otherwise we will leak space.
*/
if (!alloc && !btrfs_block_group_done(cache))
btrfs_cache_block_group(cache, 1);
byte_in_group = bytenr - cache->start;
WARN_ON(byte_in_group > cache->length);
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
if (btrfs_test_opt(info, SPACE_CACHE) &&
cache->disk_cache_state < BTRFS_DC_CLEAR)
cache->disk_cache_state = BTRFS_DC_CLEAR;
old_val = cache->used;
num_bytes = min(total, cache->length - byte_in_group);
if (alloc) {
old_val += num_bytes;
cache->used = old_val;
cache->reserved -= num_bytes;
cache->space_info->bytes_reserved -= num_bytes;
cache->space_info->bytes_used += num_bytes;
cache->space_info->disk_used += num_bytes * factor;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
} else {
old_val -= num_bytes;
cache->used = old_val;
cache->pinned += num_bytes;
btrfs_space_info_update_bytes_pinned(info,
cache->space_info, num_bytes);
cache->space_info->bytes_used -= num_bytes;
cache->space_info->disk_used -= num_bytes * factor;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
percpu_counter_add_batch(
&cache->space_info->total_bytes_pinned,
num_bytes,
BTRFS_TOTAL_BYTES_PINNED_BATCH);
set_extent_dirty(&trans->transaction->pinned_extents,
bytenr, bytenr + num_bytes - 1,
GFP_NOFS | __GFP_NOFAIL);
}
spin_lock(&trans->transaction->dirty_bgs_lock);
if (list_empty(&cache->dirty_list)) {
list_add_tail(&cache->dirty_list,
&trans->transaction->dirty_bgs);
trans->delayed_ref_updates++;
btrfs_get_block_group(cache);
}
spin_unlock(&trans->transaction->dirty_bgs_lock);
/*
* No longer have used bytes in this block group, queue it for
* deletion. We do this after adding the block group to the
* dirty list to avoid races between cleaner kthread and space
* cache writeout.
*/
if (!alloc && old_val == 0) {
if (!btrfs_test_opt(info, DISCARD_ASYNC))
btrfs_mark_bg_unused(cache);
}
btrfs_put_block_group(cache);
total -= num_bytes;
bytenr += num_bytes;
}
/* Modified block groups are accounted for in the delayed_refs_rsv. */
btrfs_update_delayed_refs_rsv(trans);
return ret;
}
/**
* btrfs_add_reserved_bytes - update the block_group and space info counters
* @cache: The cache we are manipulating
* @ram_bytes: The number of bytes of file content, and will be same to
* @num_bytes except for the compress path.
* @num_bytes: The number of bytes in question
* @delalloc: The blocks are allocated for the delalloc write
*
* This is called by the allocator when it reserves space. If this is a
* reservation and the block group has become read only we cannot make the
* reservation and return -EAGAIN, otherwise this function always succeeds.
*/
int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
u64 ram_bytes, u64 num_bytes, int delalloc)
{
struct btrfs_space_info *space_info = cache->space_info;
int ret = 0;
spin_lock(&space_info->lock);
spin_lock(&cache->lock);
if (cache->ro) {
ret = -EAGAIN;
} else {
cache->reserved += num_bytes;
space_info->bytes_reserved += num_bytes;
trace_btrfs_space_reservation(cache->fs_info, "space_info",
space_info->flags, num_bytes, 1);
btrfs_space_info_update_bytes_may_use(cache->fs_info,
space_info, -ram_bytes);
if (delalloc)
cache->delalloc_bytes += num_bytes;
/*
* Compression can use less space than we reserved, so wake
* tickets if that happens
*/
if (num_bytes < ram_bytes)
btrfs_try_granting_tickets(cache->fs_info, space_info);
}
spin_unlock(&cache->lock);
spin_unlock(&space_info->lock);
return ret;
}
/**
* btrfs_free_reserved_bytes - update the block_group and space info counters
* @cache: The cache we are manipulating
* @num_bytes: The number of bytes in question
* @delalloc: The blocks are allocated for the delalloc write
*
* This is called by somebody who is freeing space that was never actually used
* on disk. For example if you reserve some space for a new leaf in transaction
* A and before transaction A commits you free that leaf, you call this with
* reserve set to 0 in order to clear the reservation.
*/
void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
u64 num_bytes, int delalloc)
{
struct btrfs_space_info *space_info = cache->space_info;
spin_lock(&space_info->lock);
spin_lock(&cache->lock);
if (cache->ro)
space_info->bytes_readonly += num_bytes;
cache->reserved -= num_bytes;
space_info->bytes_reserved -= num_bytes;
space_info->max_extent_size = 0;
if (delalloc)
cache->delalloc_bytes -= num_bytes;
spin_unlock(&cache->lock);
btrfs_try_granting_tickets(cache->fs_info, space_info);
spin_unlock(&space_info->lock);
}
static void force_metadata_allocation(struct btrfs_fs_info *info)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
list_for_each_entry(found, head, list) {
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
found->force_alloc = CHUNK_ALLOC_FORCE;
}
}
static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *sinfo, int force)
{
u64 bytes_used = btrfs_space_info_used(sinfo, false);
u64 thresh;
if (force == CHUNK_ALLOC_FORCE)
return 1;
/*
* in limited mode, we want to have some free space up to
* about 1% of the FS size.
*/
if (force == CHUNK_ALLOC_LIMITED) {
thresh = btrfs_super_total_bytes(fs_info->super_copy);
thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
if (sinfo->total_bytes - bytes_used < thresh)
return 1;
}
if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
return 0;
return 1;
}
int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
{
u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
}
/*
* If force is CHUNK_ALLOC_FORCE:
* - return 1 if it successfully allocates a chunk,
* - return errors including -ENOSPC otherwise.
* If force is NOT CHUNK_ALLOC_FORCE:
* - return 0 if it doesn't need to allocate a new chunk,
* - return 1 if it successfully allocates a chunk,
* - return errors including -ENOSPC otherwise.
*/
int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
enum btrfs_chunk_alloc_enum force)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_space_info *space_info;
bool wait_for_alloc = false;
bool should_alloc = false;
int ret = 0;
/* Don't re-enter if we're already allocating a chunk */
if (trans->allocating_chunk)
return -ENOSPC;
space_info = btrfs_find_space_info(fs_info, flags);
ASSERT(space_info);
do {
spin_lock(&space_info->lock);
if (force < space_info->force_alloc)
force = space_info->force_alloc;
should_alloc = should_alloc_chunk(fs_info, space_info, force);
if (space_info->full) {
/* No more free physical space */
if (should_alloc)
ret = -ENOSPC;
else
ret = 0;
spin_unlock(&space_info->lock);
return ret;
} else if (!should_alloc) {
spin_unlock(&space_info->lock);
return 0;
} else if (space_info->chunk_alloc) {
/*
* Someone is already allocating, so we need to block
* until this someone is finished and then loop to
* recheck if we should continue with our allocation
* attempt.
*/
wait_for_alloc = true;
spin_unlock(&space_info->lock);
mutex_lock(&fs_info->chunk_mutex);
mutex_unlock(&fs_info->chunk_mutex);
} else {
/* Proceed with allocation */
space_info->chunk_alloc = 1;
wait_for_alloc = false;
spin_unlock(&space_info->lock);
}
cond_resched();
} while (wait_for_alloc);
mutex_lock(&fs_info->chunk_mutex);
trans->allocating_chunk = true;
/*
* If we have mixed data/metadata chunks we want to make sure we keep
* allocating mixed chunks instead of individual chunks.
*/
if (btrfs_mixed_space_info(space_info))
flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
/*
* if we're doing a data chunk, go ahead and make sure that
* we keep a reasonable number of metadata chunks allocated in the
* FS as well.
*/
if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
fs_info->data_chunk_allocations++;
if (!(fs_info->data_chunk_allocations %
fs_info->metadata_ratio))
force_metadata_allocation(fs_info);
}
/*
* Check if we have enough space in SYSTEM chunk because we may need
* to update devices.
*/
check_system_chunk(trans, flags);
ret = btrfs_alloc_chunk(trans, flags);
trans->allocating_chunk = false;
spin_lock(&space_info->lock);
if (ret < 0) {
if (ret == -ENOSPC)
space_info->full = 1;
else
goto out;
} else {
ret = 1;
space_info->max_extent_size = 0;
}
space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
out:
space_info->chunk_alloc = 0;
spin_unlock(&space_info->lock);
mutex_unlock(&fs_info->chunk_mutex);
/*
* When we allocate a new chunk we reserve space in the chunk block
* reserve to make sure we can COW nodes/leafs in the chunk tree or
* add new nodes/leafs to it if we end up needing to do it when
* inserting the chunk item and updating device items as part of the
* second phase of chunk allocation, performed by
* btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
* large number of new block groups to create in our transaction
* handle's new_bgs list to avoid exhausting the chunk block reserve
* in extreme cases - like having a single transaction create many new
* block groups when starting to write out the free space caches of all
* the block groups that were made dirty during the lifetime of the
* transaction.
*/
if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
btrfs_create_pending_block_groups(trans);
return ret;
}
static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
{
u64 num_dev;
num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
if (!num_dev)
num_dev = fs_info->fs_devices->rw_devices;
return num_dev;
}
/*
* Reserve space in the system space for allocating or removing a chunk
*/
void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_space_info *info;
u64 left;
u64 thresh;
int ret = 0;
u64 num_devs;
/*
* Needed because we can end up allocating a system chunk and for an
* atomic and race free space reservation in the chunk block reserve.
*/
lockdep_assert_held(&fs_info->chunk_mutex);
info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
spin_lock(&info->lock);
left = info->total_bytes - btrfs_space_info_used(info, true);
spin_unlock(&info->lock);
num_devs = get_profile_num_devs(fs_info, type);
/* num_devs device items to update and 1 chunk item to add or remove */
thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
btrfs_calc_insert_metadata_size(fs_info, 1);
if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
left, thresh, type);
btrfs_dump_space_info(fs_info, info, 0, 0);
}
if (left < thresh) {
u64 flags = btrfs_system_alloc_profile(fs_info);
/*
* Ignore failure to create system chunk. We might end up not
* needing it, as we might not need to COW all nodes/leafs from
* the paths we visit in the chunk tree (they were already COWed
* or created in the current transaction for example).
*/
ret = btrfs_alloc_chunk(trans, flags);
}
if (!ret) {
ret = btrfs_block_rsv_add(fs_info->chunk_root,
&fs_info->chunk_block_rsv,
thresh, BTRFS_RESERVE_NO_FLUSH);
if (!ret)
trans->chunk_bytes_reserved += thresh;
}
}
void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
{
struct btrfs_block_group *block_group;
u64 last = 0;
while (1) {
struct inode *inode;
block_group = btrfs_lookup_first_block_group(info, last);
while (block_group) {
btrfs_wait_block_group_cache_done(block_group);
spin_lock(&block_group->lock);
if (block_group->iref)
break;
spin_unlock(&block_group->lock);
block_group = btrfs_next_block_group(block_group);
}
if (!block_group) {
if (last == 0)
break;
last = 0;
continue;
}
inode = block_group->inode;
block_group->iref = 0;
block_group->inode = NULL;
spin_unlock(&block_group->lock);
ASSERT(block_group->io_ctl.inode == NULL);
iput(inode);
last = block_group->start + block_group->length;
btrfs_put_block_group(block_group);
}
}
/*
* Must be called only after stopping all workers, since we could have block
* group caching kthreads running, and therefore they could race with us if we
* freed the block groups before stopping them.
*/
int btrfs_free_block_groups(struct btrfs_fs_info *info)
{
struct btrfs_block_group *block_group;
struct btrfs_space_info *space_info;
struct btrfs_caching_control *caching_ctl;
struct rb_node *n;
spin_lock(&info->block_group_cache_lock);
while (!list_empty(&info->caching_block_groups)) {
caching_ctl = list_entry(info->caching_block_groups.next,
struct btrfs_caching_control, list);
list_del(&caching_ctl->list);
btrfs_put_caching_control(caching_ctl);
}
spin_unlock(&info->block_group_cache_lock);
spin_lock(&info->unused_bgs_lock);
while (!list_empty(&info->unused_bgs)) {
block_group = list_first_entry(&info->unused_bgs,
struct btrfs_block_group,
bg_list);
list_del_init(&block_group->bg_list);
btrfs_put_block_group(block_group);
}
spin_unlock(&info->unused_bgs_lock);
spin_lock(&info->block_group_cache_lock);
while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
block_group = rb_entry(n, struct btrfs_block_group,
cache_node);
rb_erase(&block_group->cache_node,
&info->block_group_cache_tree);
RB_CLEAR_NODE(&block_group->cache_node);
spin_unlock(&info->block_group_cache_lock);
down_write(&block_group->space_info->groups_sem);
list_del(&block_group->list);
up_write(&block_group->space_info->groups_sem);
/*
* We haven't cached this block group, which means we could
* possibly have excluded extents on this block group.
*/
if (block_group->cached == BTRFS_CACHE_NO ||
block_group->cached == BTRFS_CACHE_ERROR)
btrfs_free_excluded_extents(block_group);
btrfs_remove_free_space_cache(block_group);
ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
ASSERT(list_empty(&block_group->dirty_list));
ASSERT(list_empty(&block_group->io_list));
ASSERT(list_empty(&block_group->bg_list));
ASSERT(refcount_read(&block_group->refs) == 1);
btrfs_put_block_group(block_group);
spin_lock(&info->block_group_cache_lock);
}
spin_unlock(&info->block_group_cache_lock);
btrfs_release_global_block_rsv(info);
while (!list_empty(&info->space_info)) {
space_info = list_entry(info->space_info.next,
struct btrfs_space_info,
list);
/*
* Do not hide this behind enospc_debug, this is actually
* important and indicates a real bug if this happens.
*/
if (WARN_ON(space_info->bytes_pinned > 0 ||
space_info->bytes_reserved > 0 ||
space_info->bytes_may_use > 0))
btrfs_dump_space_info(info, space_info, 0, 0);
WARN_ON(space_info->reclaim_size > 0);
list_del(&space_info->list);
btrfs_sysfs_remove_space_info(space_info);
}
return 0;
}
void btrfs_freeze_block_group(struct btrfs_block_group *cache)
{
atomic_inc(&cache->frozen);
}
void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
{
struct btrfs_fs_info *fs_info = block_group->fs_info;
struct extent_map_tree *em_tree;
struct extent_map *em;
bool cleanup;
spin_lock(&block_group->lock);
cleanup = (atomic_dec_and_test(&block_group->frozen) &&
block_group->removed);
spin_unlock(&block_group->lock);
if (cleanup) {
em_tree = &fs_info->mapping_tree;
write_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, block_group->start,
1);
BUG_ON(!em); /* logic error, can't happen */
remove_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
/* once for us and once for the tree */
free_extent_map(em);
free_extent_map(em);
/*
* We may have left one free space entry and other possible
* tasks trimming this block group have left 1 entry each one.
* Free them if any.
*/
__btrfs_remove_free_space_cache(block_group->free_space_ctl);
}
}