linux/arch/arm/kernel/topology.c
Vincent Guittot 339ca09d7a ARM: 7463/1: topology: Update cpu_power according to DT information
Use cpu compatibility field and clock-frequency field of DT to
estimate the capacity of each core of the system and to update
the cpu_power field accordingly.
This patch enables to put more running tasks on big cores than
on LITTLE ones. But this patch doesn't ensure that long running
tasks will run on big cores and short ones on LITTLE cores.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2012-07-12 15:38:12 -04:00

344 lines
9 KiB
C

/*
* arch/arm/kernel/topology.c
*
* Copyright (C) 2011 Linaro Limited.
* Written by: Vincent Guittot
*
* based on arch/sh/kernel/topology.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <asm/cputype.h>
#include <asm/topology.h>
/*
* cpu power scale management
*/
/*
* cpu power table
* This per cpu data structure describes the relative capacity of each core.
* On a heteregenous system, cores don't have the same computation capacity
* and we reflect that difference in the cpu_power field so the scheduler can
* take this difference into account during load balance. A per cpu structure
* is preferred because each CPU updates its own cpu_power field during the
* load balance except for idle cores. One idle core is selected to run the
* rebalance_domains for all idle cores and the cpu_power can be updated
* during this sequence.
*/
static DEFINE_PER_CPU(unsigned long, cpu_scale);
unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
return per_cpu(cpu_scale, cpu);
}
static void set_power_scale(unsigned int cpu, unsigned long power)
{
per_cpu(cpu_scale, cpu) = power;
}
#ifdef CONFIG_OF
struct cpu_efficiency {
const char *compatible;
unsigned long efficiency;
};
/*
* Table of relative efficiency of each processors
* The efficiency value must fit in 20bit and the final
* cpu_scale value must be in the range
* 0 < cpu_scale < 3*SCHED_POWER_SCALE/2
* in order to return at most 1 when DIV_ROUND_CLOSEST
* is used to compute the capacity of a CPU.
* Processors that are not defined in the table,
* use the default SCHED_POWER_SCALE value for cpu_scale.
*/
struct cpu_efficiency table_efficiency[] = {
{"arm,cortex-a15", 3891},
{"arm,cortex-a7", 2048},
{NULL, },
};
struct cpu_capacity {
unsigned long hwid;
unsigned long capacity;
};
struct cpu_capacity *cpu_capacity;
unsigned long middle_capacity = 1;
/*
* Iterate all CPUs' descriptor in DT and compute the efficiency
* (as per table_efficiency). Also calculate a middle efficiency
* as close as possible to (max{eff_i} - min{eff_i}) / 2
* This is later used to scale the cpu_power field such that an
* 'average' CPU is of middle power. Also see the comments near
* table_efficiency[] and update_cpu_power().
*/
static void __init parse_dt_topology(void)
{
struct cpu_efficiency *cpu_eff;
struct device_node *cn = NULL;
unsigned long min_capacity = (unsigned long)(-1);
unsigned long max_capacity = 0;
unsigned long capacity = 0;
int alloc_size, cpu = 0;
alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity);
cpu_capacity = (struct cpu_capacity *)kzalloc(alloc_size, GFP_NOWAIT);
while ((cn = of_find_node_by_type(cn, "cpu"))) {
const u32 *rate, *reg;
int len;
if (cpu >= num_possible_cpus())
break;
for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
if (of_device_is_compatible(cn, cpu_eff->compatible))
break;
if (cpu_eff->compatible == NULL)
continue;
rate = of_get_property(cn, "clock-frequency", &len);
if (!rate || len != 4) {
pr_err("%s missing clock-frequency property\n",
cn->full_name);
continue;
}
reg = of_get_property(cn, "reg", &len);
if (!reg || len != 4) {
pr_err("%s missing reg property\n", cn->full_name);
continue;
}
capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
/* Save min capacity of the system */
if (capacity < min_capacity)
min_capacity = capacity;
/* Save max capacity of the system */
if (capacity > max_capacity)
max_capacity = capacity;
cpu_capacity[cpu].capacity = capacity;
cpu_capacity[cpu++].hwid = be32_to_cpup(reg);
}
if (cpu < num_possible_cpus())
cpu_capacity[cpu].hwid = (unsigned long)(-1);
/* If min and max capacities are equals, we bypass the update of the
* cpu_scale because all CPUs have the same capacity. Otherwise, we
* compute a middle_capacity factor that will ensure that the capacity
* of an 'average' CPU of the system will be as close as possible to
* SCHED_POWER_SCALE, which is the default value, but with the
* constraint explained near table_efficiency[].
*/
if (min_capacity == max_capacity)
cpu_capacity[0].hwid = (unsigned long)(-1);
else if (4*max_capacity < (3*(max_capacity + min_capacity)))
middle_capacity = (min_capacity + max_capacity)
>> (SCHED_POWER_SHIFT+1);
else
middle_capacity = ((max_capacity / 3)
>> (SCHED_POWER_SHIFT-1)) + 1;
}
/*
* Look for a customed capacity of a CPU in the cpu_capacity table during the
* boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
* function returns directly for SMP system.
*/
void update_cpu_power(unsigned int cpu, unsigned long hwid)
{
unsigned int idx = 0;
/* look for the cpu's hwid in the cpu capacity table */
for (idx = 0; idx < num_possible_cpus(); idx++) {
if (cpu_capacity[idx].hwid == hwid)
break;
if (cpu_capacity[idx].hwid == -1)
return;
}
if (idx == num_possible_cpus())
return;
set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity);
printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
cpu, arch_scale_freq_power(NULL, cpu));
}
#else
static inline void parse_dt_topology(void) {}
static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
#endif
/*
* cpu topology management
*/
#define MPIDR_SMP_BITMASK (0x3 << 30)
#define MPIDR_SMP_VALUE (0x2 << 30)
#define MPIDR_MT_BITMASK (0x1 << 24)
/*
* These masks reflect the current use of the affinity levels.
* The affinity level can be up to 16 bits according to ARM ARM
*/
#define MPIDR_HWID_BITMASK 0xFFFFFF
#define MPIDR_LEVEL0_MASK 0x3
#define MPIDR_LEVEL0_SHIFT 0
#define MPIDR_LEVEL1_MASK 0xF
#define MPIDR_LEVEL1_SHIFT 8
#define MPIDR_LEVEL2_MASK 0xFF
#define MPIDR_LEVEL2_SHIFT 16
/*
* cpu topology table
*/
struct cputopo_arm cpu_topology[NR_CPUS];
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return &cpu_topology[cpu].core_sibling;
}
void update_siblings_masks(unsigned int cpuid)
{
struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_possible_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpuid_topo->socket_id != cpu_topo->socket_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
smp_wmb();
}
/*
* store_cpu_topology is called at boot when only one cpu is running
* and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
* which prevents simultaneous write access to cpu_topology array
*/
void store_cpu_topology(unsigned int cpuid)
{
struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
unsigned int mpidr;
/* If the cpu topology has been already set, just return */
if (cpuid_topo->core_id != -1)
return;
mpidr = read_cpuid_mpidr();
/* create cpu topology mapping */
if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
/*
* This is a multiprocessor system
* multiprocessor format & multiprocessor mode field are set
*/
if (mpidr & MPIDR_MT_BITMASK) {
/* core performance interdependency */
cpuid_topo->thread_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
& MPIDR_LEVEL0_MASK;
cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
& MPIDR_LEVEL1_MASK;
cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL2_SHIFT)
& MPIDR_LEVEL2_MASK;
} else {
/* largely independent cores */
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
& MPIDR_LEVEL0_MASK;
cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
& MPIDR_LEVEL1_MASK;
}
} else {
/*
* This is an uniprocessor system
* we are in multiprocessor format but uniprocessor system
* or in the old uniprocessor format
*/
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = 0;
cpuid_topo->socket_id = -1;
}
update_siblings_masks(cpuid);
update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK);
printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
cpuid, cpu_topology[cpuid].thread_id,
cpu_topology[cpuid].core_id,
cpu_topology[cpuid].socket_id, mpidr);
}
/*
* init_cpu_topology is called at boot when only one cpu is running
* which prevent simultaneous write access to cpu_topology array
*/
void init_cpu_topology(void)
{
unsigned int cpu;
/* init core mask and power*/
for_each_possible_cpu(cpu) {
struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
cpu_topo->thread_id = -1;
cpu_topo->core_id = -1;
cpu_topo->socket_id = -1;
cpumask_clear(&cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
set_power_scale(cpu, SCHED_POWER_SCALE);
}
smp_wmb();
parse_dt_topology();
}