linux/drivers/mmc/card/block.c
Pierre Ossman f3eb0aaa02 mmc_block: inform block layer about sector count restriction
Make sure we consider the maximum block count when we tell the block
layer about the maximum sector count. That way we don't have to chop
up the request ourselves.

Signed-off-by: Pierre Ossman <drzeus@drzeus.cx>
2008-10-12 11:04:30 +02:00

626 lines
14 KiB
C

/*
* Block driver for media (i.e., flash cards)
*
* Copyright 2002 Hewlett-Packard Company
* Copyright 2005-2008 Pierre Ossman
*
* Use consistent with the GNU GPL is permitted,
* provided that this copyright notice is
* preserved in its entirety in all copies and derived works.
*
* HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
* AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
* FITNESS FOR ANY PARTICULAR PURPOSE.
*
* Many thanks to Alessandro Rubini and Jonathan Corbet!
*
* Author: Andrew Christian
* 28 May 2002
*/
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/hdreg.h>
#include <linux/kdev_t.h>
#include <linux/blkdev.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include "queue.h"
/*
* max 8 partitions per card
*/
#define MMC_SHIFT 3
#define MMC_NUM_MINORS (256 >> MMC_SHIFT)
static DECLARE_BITMAP(dev_use, MMC_NUM_MINORS);
/*
* There is one mmc_blk_data per slot.
*/
struct mmc_blk_data {
spinlock_t lock;
struct gendisk *disk;
struct mmc_queue queue;
unsigned int usage;
unsigned int block_bits;
unsigned int read_only;
};
static DEFINE_MUTEX(open_lock);
static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
{
struct mmc_blk_data *md;
mutex_lock(&open_lock);
md = disk->private_data;
if (md && md->usage == 0)
md = NULL;
if (md)
md->usage++;
mutex_unlock(&open_lock);
return md;
}
static void mmc_blk_put(struct mmc_blk_data *md)
{
mutex_lock(&open_lock);
md->usage--;
if (md->usage == 0) {
int devidx = md->disk->first_minor >> MMC_SHIFT;
__clear_bit(devidx, dev_use);
put_disk(md->disk);
kfree(md);
}
mutex_unlock(&open_lock);
}
static int mmc_blk_open(struct inode *inode, struct file *filp)
{
struct mmc_blk_data *md;
int ret = -ENXIO;
md = mmc_blk_get(inode->i_bdev->bd_disk);
if (md) {
if (md->usage == 2)
check_disk_change(inode->i_bdev);
ret = 0;
if ((filp->f_mode & FMODE_WRITE) && md->read_only) {
mmc_blk_put(md);
ret = -EROFS;
}
}
return ret;
}
static int mmc_blk_release(struct inode *inode, struct file *filp)
{
struct mmc_blk_data *md = inode->i_bdev->bd_disk->private_data;
mmc_blk_put(md);
return 0;
}
static int
mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
geo->heads = 4;
geo->sectors = 16;
return 0;
}
static struct block_device_operations mmc_bdops = {
.open = mmc_blk_open,
.release = mmc_blk_release,
.getgeo = mmc_blk_getgeo,
.owner = THIS_MODULE,
};
struct mmc_blk_request {
struct mmc_request mrq;
struct mmc_command cmd;
struct mmc_command stop;
struct mmc_data data;
};
static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
{
int err;
u32 blocks;
struct mmc_request mrq;
struct mmc_command cmd;
struct mmc_data data;
unsigned int timeout_us;
struct scatterlist sg;
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = MMC_APP_CMD;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err)
return (u32)-1;
if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
return (u32)-1;
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
cmd.arg = 0;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
memset(&data, 0, sizeof(struct mmc_data));
data.timeout_ns = card->csd.tacc_ns * 100;
data.timeout_clks = card->csd.tacc_clks * 100;
timeout_us = data.timeout_ns / 1000;
timeout_us += data.timeout_clks * 1000 /
(card->host->ios.clock / 1000);
if (timeout_us > 100000) {
data.timeout_ns = 100000000;
data.timeout_clks = 0;
}
data.blksz = 4;
data.blocks = 1;
data.flags = MMC_DATA_READ;
data.sg = &sg;
data.sg_len = 1;
memset(&mrq, 0, sizeof(struct mmc_request));
mrq.cmd = &cmd;
mrq.data = &data;
sg_init_one(&sg, &blocks, 4);
mmc_wait_for_req(card->host, &mrq);
if (cmd.error || data.error)
return (u32)-1;
blocks = ntohl(blocks);
return blocks;
}
static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
struct mmc_blk_request brq;
int ret = 1;
mmc_claim_host(card->host);
do {
struct mmc_command cmd;
u32 readcmd, writecmd;
memset(&brq, 0, sizeof(struct mmc_blk_request));
brq.mrq.cmd = &brq.cmd;
brq.mrq.data = &brq.data;
brq.cmd.arg = req->sector;
if (!mmc_card_blockaddr(card))
brq.cmd.arg <<= 9;
brq.cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
brq.data.blksz = 1 << md->block_bits;
brq.stop.opcode = MMC_STOP_TRANSMISSION;
brq.stop.arg = 0;
brq.stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
brq.data.blocks = req->nr_sectors >> (md->block_bits - 9);
if (brq.data.blocks > 1) {
/* SPI multiblock writes terminate using a special
* token, not a STOP_TRANSMISSION request.
*/
if (!mmc_host_is_spi(card->host)
|| rq_data_dir(req) == READ)
brq.mrq.stop = &brq.stop;
readcmd = MMC_READ_MULTIPLE_BLOCK;
writecmd = MMC_WRITE_MULTIPLE_BLOCK;
} else {
brq.mrq.stop = NULL;
readcmd = MMC_READ_SINGLE_BLOCK;
writecmd = MMC_WRITE_BLOCK;
}
if (rq_data_dir(req) == READ) {
brq.cmd.opcode = readcmd;
brq.data.flags |= MMC_DATA_READ;
} else {
brq.cmd.opcode = writecmd;
brq.data.flags |= MMC_DATA_WRITE;
}
mmc_set_data_timeout(&brq.data, card);
brq.data.sg = mq->sg;
brq.data.sg_len = mmc_queue_map_sg(mq);
mmc_queue_bounce_pre(mq);
mmc_wait_for_req(card->host, &brq.mrq);
mmc_queue_bounce_post(mq);
/*
* Check for errors here, but don't jump to cmd_err
* until later as we need to wait for the card to leave
* programming mode even when things go wrong.
*/
if (brq.cmd.error) {
printk(KERN_ERR "%s: error %d sending read/write command\n",
req->rq_disk->disk_name, brq.cmd.error);
}
if (brq.data.error) {
printk(KERN_ERR "%s: error %d transferring data\n",
req->rq_disk->disk_name, brq.data.error);
}
if (brq.stop.error) {
printk(KERN_ERR "%s: error %d sending stop command\n",
req->rq_disk->disk_name, brq.stop.error);
}
if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
do {
int err;
cmd.opcode = MMC_SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 5);
if (err) {
printk(KERN_ERR "%s: error %d requesting status\n",
req->rq_disk->disk_name, err);
goto cmd_err;
}
/*
* Some cards mishandle the status bits,
* so make sure to check both the busy
* indication and the card state.
*/
} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(cmd.resp[0]) == 7));
#if 0
if (cmd.resp[0] & ~0x00000900)
printk(KERN_ERR "%s: status = %08x\n",
req->rq_disk->disk_name, cmd.resp[0]);
if (mmc_decode_status(cmd.resp))
goto cmd_err;
#endif
}
if (brq.cmd.error || brq.data.error || brq.stop.error)
goto cmd_err;
/*
* A block was successfully transferred.
*/
spin_lock_irq(&md->lock);
ret = __blk_end_request(req, 0, brq.data.bytes_xfered);
spin_unlock_irq(&md->lock);
} while (ret);
mmc_release_host(card->host);
return 1;
cmd_err:
/*
* If this is an SD card and we're writing, we can first
* mark the known good sectors as ok.
*
* If the card is not SD, we can still ok written sectors
* as reported by the controller (which might be less than
* the real number of written sectors, but never more).
*
* For reads we just fail the entire chunk as that should
* be safe in all cases.
*/
if (rq_data_dir(req) != READ) {
if (mmc_card_sd(card)) {
u32 blocks;
unsigned int bytes;
blocks = mmc_sd_num_wr_blocks(card);
if (blocks != (u32)-1) {
if (card->csd.write_partial)
bytes = blocks << md->block_bits;
else
bytes = blocks << 9;
spin_lock_irq(&md->lock);
ret = __blk_end_request(req, 0, bytes);
spin_unlock_irq(&md->lock);
}
} else {
spin_lock_irq(&md->lock);
ret = __blk_end_request(req, 0, brq.data.bytes_xfered);
spin_unlock_irq(&md->lock);
}
}
mmc_release_host(card->host);
spin_lock_irq(&md->lock);
while (ret)
ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
spin_unlock_irq(&md->lock);
return 0;
}
static inline int mmc_blk_readonly(struct mmc_card *card)
{
return mmc_card_readonly(card) ||
!(card->csd.cmdclass & CCC_BLOCK_WRITE);
}
static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
{
struct mmc_blk_data *md;
int devidx, ret;
devidx = find_first_zero_bit(dev_use, MMC_NUM_MINORS);
if (devidx >= MMC_NUM_MINORS)
return ERR_PTR(-ENOSPC);
__set_bit(devidx, dev_use);
md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
if (!md) {
ret = -ENOMEM;
goto out;
}
/*
* Set the read-only status based on the supported commands
* and the write protect switch.
*/
md->read_only = mmc_blk_readonly(card);
/*
* Both SD and MMC specifications state (although a bit
* unclearly in the MMC case) that a block size of 512
* bytes must always be supported by the card.
*/
md->block_bits = 9;
md->disk = alloc_disk(1 << MMC_SHIFT);
if (md->disk == NULL) {
ret = -ENOMEM;
goto err_kfree;
}
spin_lock_init(&md->lock);
md->usage = 1;
ret = mmc_init_queue(&md->queue, card, &md->lock);
if (ret)
goto err_putdisk;
md->queue.issue_fn = mmc_blk_issue_rq;
md->queue.data = md;
md->disk->major = MMC_BLOCK_MAJOR;
md->disk->first_minor = devidx << MMC_SHIFT;
md->disk->fops = &mmc_bdops;
md->disk->private_data = md;
md->disk->queue = md->queue.queue;
md->disk->driverfs_dev = &card->dev;
/*
* As discussed on lkml, GENHD_FL_REMOVABLE should:
*
* - be set for removable media with permanent block devices
* - be unset for removable block devices with permanent media
*
* Since MMC block devices clearly fall under the second
* case, we do not set GENHD_FL_REMOVABLE. Userspace
* should use the block device creation/destruction hotplug
* messages to tell when the card is present.
*/
sprintf(md->disk->disk_name, "mmcblk%d", devidx);
blk_queue_hardsect_size(md->queue.queue, 1 << md->block_bits);
if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
/*
* The EXT_CSD sector count is in number or 512 byte
* sectors.
*/
set_capacity(md->disk, card->ext_csd.sectors);
} else {
/*
* The CSD capacity field is in units of read_blkbits.
* set_capacity takes units of 512 bytes.
*/
set_capacity(md->disk,
card->csd.capacity << (card->csd.read_blkbits - 9));
}
return md;
err_putdisk:
put_disk(md->disk);
err_kfree:
kfree(md);
out:
return ERR_PTR(ret);
}
static int
mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
{
struct mmc_command cmd;
int err;
/* Block-addressed cards ignore MMC_SET_BLOCKLEN. */
if (mmc_card_blockaddr(card))
return 0;
mmc_claim_host(card->host);
cmd.opcode = MMC_SET_BLOCKLEN;
cmd.arg = 1 << md->block_bits;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 5);
mmc_release_host(card->host);
if (err) {
printk(KERN_ERR "%s: unable to set block size to %d: %d\n",
md->disk->disk_name, cmd.arg, err);
return -EINVAL;
}
return 0;
}
static int mmc_blk_probe(struct mmc_card *card)
{
struct mmc_blk_data *md;
int err;
/*
* Check that the card supports the command class(es) we need.
*/
if (!(card->csd.cmdclass & CCC_BLOCK_READ))
return -ENODEV;
md = mmc_blk_alloc(card);
if (IS_ERR(md))
return PTR_ERR(md);
err = mmc_blk_set_blksize(md, card);
if (err)
goto out;
printk(KERN_INFO "%s: %s %s %lluKiB %s\n",
md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
(unsigned long long)(get_capacity(md->disk) >> 1),
md->read_only ? "(ro)" : "");
mmc_set_drvdata(card, md);
add_disk(md->disk);
return 0;
out:
mmc_blk_put(md);
return err;
}
static void mmc_blk_remove(struct mmc_card *card)
{
struct mmc_blk_data *md = mmc_get_drvdata(card);
if (md) {
/* Stop new requests from getting into the queue */
del_gendisk(md->disk);
/* Then flush out any already in there */
mmc_cleanup_queue(&md->queue);
mmc_blk_put(md);
}
mmc_set_drvdata(card, NULL);
}
#ifdef CONFIG_PM
static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state)
{
struct mmc_blk_data *md = mmc_get_drvdata(card);
if (md) {
mmc_queue_suspend(&md->queue);
}
return 0;
}
static int mmc_blk_resume(struct mmc_card *card)
{
struct mmc_blk_data *md = mmc_get_drvdata(card);
if (md) {
mmc_blk_set_blksize(md, card);
mmc_queue_resume(&md->queue);
}
return 0;
}
#else
#define mmc_blk_suspend NULL
#define mmc_blk_resume NULL
#endif
static struct mmc_driver mmc_driver = {
.drv = {
.name = "mmcblk",
},
.probe = mmc_blk_probe,
.remove = mmc_blk_remove,
.suspend = mmc_blk_suspend,
.resume = mmc_blk_resume,
};
static int __init mmc_blk_init(void)
{
int res;
res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
if (res)
goto out;
res = mmc_register_driver(&mmc_driver);
if (res)
goto out2;
return 0;
out2:
unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
out:
return res;
}
static void __exit mmc_blk_exit(void)
{
mmc_unregister_driver(&mmc_driver);
unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
}
module_init(mmc_blk_init);
module_exit(mmc_blk_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");