mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
8968dab8ad
numa_emulation() called compute_hash_shift() with %NULL @nodeids which meant identity mapping between index and nodeid. Make numa_emulation() build identity array and drop %NULL @nodeids handling from populate_memnodemap() and thus from compute_hash_shift(). This is to prepare for transition to using memblks instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
955 lines
25 KiB
C
955 lines
25 KiB
C
/*
|
|
* Generic VM initialization for x86-64 NUMA setups.
|
|
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/acpi.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/acpi.h>
|
|
#include <asm/amd_nb.h>
|
|
|
|
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
nodemask_t cpu_nodes_parsed __initdata;
|
|
nodemask_t mem_nodes_parsed __initdata;
|
|
|
|
struct memnode memnode;
|
|
|
|
static unsigned long __initdata nodemap_addr;
|
|
static unsigned long __initdata nodemap_size;
|
|
|
|
static int num_node_memblks __initdata;
|
|
static struct bootnode node_memblk_range[NR_NODE_MEMBLKS] __initdata;
|
|
static int memblk_nodeid[NR_NODE_MEMBLKS] __initdata;
|
|
|
|
struct bootnode numa_nodes[MAX_NUMNODES] __initdata;
|
|
|
|
/*
|
|
* Given a shift value, try to populate memnodemap[]
|
|
* Returns :
|
|
* 1 if OK
|
|
* 0 if memnodmap[] too small (of shift too small)
|
|
* -1 if node overlap or lost ram (shift too big)
|
|
*/
|
|
static int __init populate_memnodemap(const struct bootnode *nodes,
|
|
int numnodes, int shift, int *nodeids)
|
|
{
|
|
unsigned long addr, end;
|
|
int i, res = -1;
|
|
|
|
memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
|
|
for (i = 0; i < numnodes; i++) {
|
|
addr = nodes[i].start;
|
|
end = nodes[i].end;
|
|
if (addr >= end)
|
|
continue;
|
|
if ((end >> shift) >= memnodemapsize)
|
|
return 0;
|
|
do {
|
|
if (memnodemap[addr >> shift] != NUMA_NO_NODE)
|
|
return -1;
|
|
memnodemap[addr >> shift] = nodeids[i];
|
|
addr += (1UL << shift);
|
|
} while (addr < end);
|
|
res = 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int __init allocate_cachealigned_memnodemap(void)
|
|
{
|
|
unsigned long addr;
|
|
|
|
memnodemap = memnode.embedded_map;
|
|
if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
|
|
return 0;
|
|
|
|
addr = 0x8000;
|
|
nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
|
|
nodemap_addr = memblock_find_in_range(addr, get_max_mapped(),
|
|
nodemap_size, L1_CACHE_BYTES);
|
|
if (nodemap_addr == MEMBLOCK_ERROR) {
|
|
printk(KERN_ERR
|
|
"NUMA: Unable to allocate Memory to Node hash map\n");
|
|
nodemap_addr = nodemap_size = 0;
|
|
return -1;
|
|
}
|
|
memnodemap = phys_to_virt(nodemap_addr);
|
|
memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
|
|
|
|
printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
|
|
nodemap_addr, nodemap_addr + nodemap_size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The LSB of all start and end addresses in the node map is the value of the
|
|
* maximum possible shift.
|
|
*/
|
|
static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
|
|
int numnodes)
|
|
{
|
|
int i, nodes_used = 0;
|
|
unsigned long start, end;
|
|
unsigned long bitfield = 0, memtop = 0;
|
|
|
|
for (i = 0; i < numnodes; i++) {
|
|
start = nodes[i].start;
|
|
end = nodes[i].end;
|
|
if (start >= end)
|
|
continue;
|
|
bitfield |= start;
|
|
nodes_used++;
|
|
if (end > memtop)
|
|
memtop = end;
|
|
}
|
|
if (nodes_used <= 1)
|
|
i = 63;
|
|
else
|
|
i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
|
|
memnodemapsize = (memtop >> i)+1;
|
|
return i;
|
|
}
|
|
|
|
static int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
|
|
int *nodeids)
|
|
{
|
|
int shift;
|
|
|
|
shift = extract_lsb_from_nodes(nodes, numnodes);
|
|
if (allocate_cachealigned_memnodemap())
|
|
return -1;
|
|
printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
|
|
shift);
|
|
|
|
if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
|
|
printk(KERN_INFO "Your memory is not aligned you need to "
|
|
"rebuild your kernel with a bigger NODEMAPSIZE "
|
|
"shift=%d\n", shift);
|
|
return -1;
|
|
}
|
|
return shift;
|
|
}
|
|
|
|
int __meminit __early_pfn_to_nid(unsigned long pfn)
|
|
{
|
|
return phys_to_nid(pfn << PAGE_SHIFT);
|
|
}
|
|
|
|
static void * __init early_node_mem(int nodeid, unsigned long start,
|
|
unsigned long end, unsigned long size,
|
|
unsigned long align)
|
|
{
|
|
unsigned long mem;
|
|
|
|
/*
|
|
* put it on high as possible
|
|
* something will go with NODE_DATA
|
|
*/
|
|
if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
|
|
start = MAX_DMA_PFN<<PAGE_SHIFT;
|
|
if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
|
|
end > (MAX_DMA32_PFN<<PAGE_SHIFT))
|
|
start = MAX_DMA32_PFN<<PAGE_SHIFT;
|
|
mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
|
|
if (mem != MEMBLOCK_ERROR)
|
|
return __va(mem);
|
|
|
|
/* extend the search scope */
|
|
end = max_pfn_mapped << PAGE_SHIFT;
|
|
start = MAX_DMA_PFN << PAGE_SHIFT;
|
|
mem = memblock_find_in_range(start, end, size, align);
|
|
if (mem != MEMBLOCK_ERROR)
|
|
return __va(mem);
|
|
|
|
printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
|
|
size, nodeid);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static __init int conflicting_memblks(unsigned long start, unsigned long end)
|
|
{
|
|
int i;
|
|
for (i = 0; i < num_node_memblks; i++) {
|
|
struct bootnode *nd = &node_memblk_range[i];
|
|
if (nd->start == nd->end)
|
|
continue;
|
|
if (nd->end > start && nd->start < end)
|
|
return memblk_nodeid[i];
|
|
if (nd->end == end && nd->start == start)
|
|
return memblk_nodeid[i];
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int __init numa_add_memblk(int nid, u64 start, u64 end)
|
|
{
|
|
int i;
|
|
|
|
i = conflicting_memblks(start, end);
|
|
if (i == nid) {
|
|
printk(KERN_WARNING "NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n",
|
|
nid, start, end, numa_nodes[i].start, numa_nodes[i].end);
|
|
} else if (i >= 0) {
|
|
printk(KERN_ERR "NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n",
|
|
nid, start, end, i,
|
|
numa_nodes[i].start, numa_nodes[i].end);
|
|
return -EINVAL;
|
|
}
|
|
|
|
node_memblk_range[num_node_memblks].start = start;
|
|
node_memblk_range[num_node_memblks].end = end;
|
|
memblk_nodeid[num_node_memblks] = nid;
|
|
num_node_memblks++;
|
|
return 0;
|
|
}
|
|
|
|
static __init void cutoff_node(int i, unsigned long start, unsigned long end)
|
|
{
|
|
struct bootnode *nd = &numa_nodes[i];
|
|
|
|
if (nd->start < start) {
|
|
nd->start = start;
|
|
if (nd->end < nd->start)
|
|
nd->start = nd->end;
|
|
}
|
|
if (nd->end > end) {
|
|
nd->end = end;
|
|
if (nd->start > nd->end)
|
|
nd->start = nd->end;
|
|
}
|
|
}
|
|
|
|
/* Initialize bootmem allocator for a node */
|
|
void __init
|
|
setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long start_pfn, last_pfn, nodedata_phys;
|
|
const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
|
|
int nid;
|
|
|
|
if (!end)
|
|
return;
|
|
|
|
/*
|
|
* Don't confuse VM with a node that doesn't have the
|
|
* minimum amount of memory:
|
|
*/
|
|
if (end && (end - start) < NODE_MIN_SIZE)
|
|
return;
|
|
|
|
start = roundup(start, ZONE_ALIGN);
|
|
|
|
printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
|
|
start, end);
|
|
|
|
start_pfn = start >> PAGE_SHIFT;
|
|
last_pfn = end >> PAGE_SHIFT;
|
|
|
|
node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
|
|
SMP_CACHE_BYTES);
|
|
if (node_data[nodeid] == NULL)
|
|
return;
|
|
nodedata_phys = __pa(node_data[nodeid]);
|
|
memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
|
|
printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
|
|
nodedata_phys + pgdat_size - 1);
|
|
nid = phys_to_nid(nodedata_phys);
|
|
if (nid != nodeid)
|
|
printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
|
|
|
|
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
|
|
NODE_DATA(nodeid)->node_id = nodeid;
|
|
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
|
|
NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
|
|
|
|
node_set_online(nodeid);
|
|
}
|
|
|
|
/*
|
|
* Sanity check to catch more bad NUMA configurations (they are amazingly
|
|
* common). Make sure the nodes cover all memory.
|
|
*/
|
|
static int __init nodes_cover_memory(const struct bootnode *nodes)
|
|
{
|
|
unsigned long numaram, e820ram;
|
|
int i;
|
|
|
|
numaram = 0;
|
|
for_each_node_mask(i, mem_nodes_parsed) {
|
|
unsigned long s = nodes[i].start >> PAGE_SHIFT;
|
|
unsigned long e = nodes[i].end >> PAGE_SHIFT;
|
|
numaram += e - s;
|
|
numaram -= __absent_pages_in_range(i, s, e);
|
|
if ((long)numaram < 0)
|
|
numaram = 0;
|
|
}
|
|
|
|
e820ram = max_pfn -
|
|
(memblock_x86_hole_size(0, max_pfn<<PAGE_SHIFT) >> PAGE_SHIFT);
|
|
/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
|
|
if ((long)(e820ram - numaram) >= (1<<(20 - PAGE_SHIFT))) {
|
|
printk(KERN_ERR "NUMA: nodes only cover %luMB of your %luMB e820 RAM. Not used.\n",
|
|
(numaram << PAGE_SHIFT) >> 20,
|
|
(e820ram << PAGE_SHIFT) >> 20);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int __init numa_register_memblks(void)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Join together blocks on the same node, holes between
|
|
* which don't overlap with memory on other nodes.
|
|
*/
|
|
for (i = 0; i < num_node_memblks; ++i) {
|
|
int j, k;
|
|
|
|
for (j = i + 1; j < num_node_memblks; ++j) {
|
|
unsigned long start, end;
|
|
|
|
if (memblk_nodeid[i] != memblk_nodeid[j])
|
|
continue;
|
|
start = min(node_memblk_range[i].end,
|
|
node_memblk_range[j].end);
|
|
end = max(node_memblk_range[i].start,
|
|
node_memblk_range[j].start);
|
|
for (k = 0; k < num_node_memblks; ++k) {
|
|
if (memblk_nodeid[i] == memblk_nodeid[k])
|
|
continue;
|
|
if (start < node_memblk_range[k].end &&
|
|
end > node_memblk_range[k].start)
|
|
break;
|
|
}
|
|
if (k < num_node_memblks)
|
|
continue;
|
|
start = min(node_memblk_range[i].start,
|
|
node_memblk_range[j].start);
|
|
end = max(node_memblk_range[i].end,
|
|
node_memblk_range[j].end);
|
|
printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n",
|
|
memblk_nodeid[i],
|
|
node_memblk_range[i].start,
|
|
node_memblk_range[i].end,
|
|
node_memblk_range[j].start,
|
|
node_memblk_range[j].end,
|
|
start, end);
|
|
node_memblk_range[i].start = start;
|
|
node_memblk_range[i].end = end;
|
|
k = --num_node_memblks - j;
|
|
memmove(memblk_nodeid + j, memblk_nodeid + j+1,
|
|
k * sizeof(*memblk_nodeid));
|
|
memmove(node_memblk_range + j, node_memblk_range + j+1,
|
|
k * sizeof(*node_memblk_range));
|
|
--j;
|
|
}
|
|
}
|
|
|
|
memnode_shift = compute_hash_shift(node_memblk_range, num_node_memblks,
|
|
memblk_nodeid);
|
|
if (memnode_shift < 0) {
|
|
printk(KERN_ERR "NUMA: No NUMA node hash function found. Contact maintainer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < num_node_memblks; i++)
|
|
memblock_x86_register_active_regions(memblk_nodeid[i],
|
|
node_memblk_range[i].start >> PAGE_SHIFT,
|
|
node_memblk_range[i].end >> PAGE_SHIFT);
|
|
|
|
/* for out of order entries */
|
|
sort_node_map();
|
|
if (!nodes_cover_memory(numa_nodes))
|
|
return -EINVAL;
|
|
|
|
init_memory_mapping_high();
|
|
|
|
/* Finally register nodes. */
|
|
for_each_node_mask(i, node_possible_map)
|
|
setup_node_bootmem(i, numa_nodes[i].start, numa_nodes[i].end);
|
|
|
|
/*
|
|
* Try again in case setup_node_bootmem missed one due to missing
|
|
* bootmem.
|
|
*/
|
|
for_each_node_mask(i, node_possible_map)
|
|
if (!node_online(i))
|
|
setup_node_bootmem(i, numa_nodes[i].start,
|
|
numa_nodes[i].end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_EMU
|
|
/* Numa emulation */
|
|
static struct bootnode nodes[MAX_NUMNODES] __initdata;
|
|
static struct bootnode physnodes[MAX_NUMNODES] __cpuinitdata;
|
|
static char *cmdline __initdata;
|
|
|
|
void __init numa_emu_cmdline(char *str)
|
|
{
|
|
cmdline = str;
|
|
}
|
|
|
|
static int __init setup_physnodes(unsigned long start, unsigned long end)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
|
|
memset(physnodes, 0, sizeof(physnodes));
|
|
|
|
for_each_node_mask(i, mem_nodes_parsed) {
|
|
physnodes[i].start = numa_nodes[i].start;
|
|
physnodes[i].end = numa_nodes[i].end;
|
|
}
|
|
|
|
/*
|
|
* Basic sanity checking on the physical node map: there may be errors
|
|
* if the SRAT or AMD code incorrectly reported the topology or the mem=
|
|
* kernel parameter is used.
|
|
*/
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
if (physnodes[i].start == physnodes[i].end)
|
|
continue;
|
|
if (physnodes[i].start > end) {
|
|
physnodes[i].end = physnodes[i].start;
|
|
continue;
|
|
}
|
|
if (physnodes[i].end < start) {
|
|
physnodes[i].start = physnodes[i].end;
|
|
continue;
|
|
}
|
|
if (physnodes[i].start < start)
|
|
physnodes[i].start = start;
|
|
if (physnodes[i].end > end)
|
|
physnodes[i].end = end;
|
|
ret++;
|
|
}
|
|
|
|
/*
|
|
* If no physical topology was detected, a single node is faked to cover
|
|
* the entire address space.
|
|
*/
|
|
if (!ret) {
|
|
physnodes[ret].start = start;
|
|
physnodes[ret].end = end;
|
|
ret = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void __init fake_physnodes(int acpi, int amd, int nr_nodes)
|
|
{
|
|
int i;
|
|
|
|
BUG_ON(acpi && amd);
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
if (acpi)
|
|
acpi_fake_nodes(nodes, nr_nodes);
|
|
#endif
|
|
#ifdef CONFIG_AMD_NUMA
|
|
if (amd)
|
|
amd_fake_nodes(nodes, nr_nodes);
|
|
#endif
|
|
if (!acpi && !amd)
|
|
for (i = 0; i < nr_cpu_ids; i++)
|
|
numa_set_node(i, 0);
|
|
}
|
|
|
|
/*
|
|
* Setups up nid to range from addr to addr + size. If the end
|
|
* boundary is greater than max_addr, then max_addr is used instead.
|
|
* The return value is 0 if there is additional memory left for
|
|
* allocation past addr and -1 otherwise. addr is adjusted to be at
|
|
* the end of the node.
|
|
*/
|
|
static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
|
|
{
|
|
int ret = 0;
|
|
nodes[nid].start = *addr;
|
|
*addr += size;
|
|
if (*addr >= max_addr) {
|
|
*addr = max_addr;
|
|
ret = -1;
|
|
}
|
|
nodes[nid].end = *addr;
|
|
node_set(nid, node_possible_map);
|
|
printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
|
|
nodes[nid].start, nodes[nid].end,
|
|
(nodes[nid].end - nodes[nid].start) >> 20);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
|
|
* to max_addr. The return value is the number of nodes allocated.
|
|
*/
|
|
static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes)
|
|
{
|
|
nodemask_t physnode_mask = NODE_MASK_NONE;
|
|
u64 size;
|
|
int big;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
if (nr_nodes <= 0)
|
|
return -1;
|
|
if (nr_nodes > MAX_NUMNODES) {
|
|
pr_info("numa=fake=%d too large, reducing to %d\n",
|
|
nr_nodes, MAX_NUMNODES);
|
|
nr_nodes = MAX_NUMNODES;
|
|
}
|
|
|
|
size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
|
|
/*
|
|
* Calculate the number of big nodes that can be allocated as a result
|
|
* of consolidating the remainder.
|
|
*/
|
|
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
|
|
FAKE_NODE_MIN_SIZE;
|
|
|
|
size &= FAKE_NODE_MIN_HASH_MASK;
|
|
if (!size) {
|
|
pr_err("Not enough memory for each node. "
|
|
"NUMA emulation disabled.\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++)
|
|
if (physnodes[i].start != physnodes[i].end)
|
|
node_set(i, physnode_mask);
|
|
|
|
/*
|
|
* Continue to fill physical nodes with fake nodes until there is no
|
|
* memory left on any of them.
|
|
*/
|
|
while (nodes_weight(physnode_mask)) {
|
|
for_each_node_mask(i, physnode_mask) {
|
|
u64 end = physnodes[i].start + size;
|
|
u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
|
|
|
|
if (ret < big)
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
|
|
/*
|
|
* Continue to add memory to this fake node if its
|
|
* non-reserved memory is less than the per-node size.
|
|
*/
|
|
while (end - physnodes[i].start -
|
|
memblock_x86_hole_size(physnodes[i].start, end) < size) {
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
if (end > physnodes[i].end) {
|
|
end = physnodes[i].end;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there won't be at least FAKE_NODE_MIN_SIZE of
|
|
* non-reserved memory in ZONE_DMA32 for the next node,
|
|
* this one must extend to the boundary.
|
|
*/
|
|
if (end < dma32_end && dma32_end - end -
|
|
memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
|
|
end = dma32_end;
|
|
|
|
/*
|
|
* If there won't be enough non-reserved memory for the
|
|
* next node, this one must extend to the end of the
|
|
* physical node.
|
|
*/
|
|
if (physnodes[i].end - end -
|
|
memblock_x86_hole_size(end, physnodes[i].end) < size)
|
|
end = physnodes[i].end;
|
|
|
|
/*
|
|
* Avoid allocating more nodes than requested, which can
|
|
* happen as a result of rounding down each node's size
|
|
* to FAKE_NODE_MIN_SIZE.
|
|
*/
|
|
if (nodes_weight(physnode_mask) + ret >= nr_nodes)
|
|
end = physnodes[i].end;
|
|
|
|
if (setup_node_range(ret++, &physnodes[i].start,
|
|
end - physnodes[i].start,
|
|
physnodes[i].end) < 0)
|
|
node_clear(i, physnode_mask);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns the end address of a node so that there is at least `size' amount of
|
|
* non-reserved memory or `max_addr' is reached.
|
|
*/
|
|
static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
|
|
{
|
|
u64 end = start + size;
|
|
|
|
while (end - start - memblock_x86_hole_size(start, end) < size) {
|
|
end += FAKE_NODE_MIN_SIZE;
|
|
if (end > max_addr) {
|
|
end = max_addr;
|
|
break;
|
|
}
|
|
}
|
|
return end;
|
|
}
|
|
|
|
/*
|
|
* Sets up fake nodes of `size' interleaved over physical nodes ranging from
|
|
* `addr' to `max_addr'. The return value is the number of nodes allocated.
|
|
*/
|
|
static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
|
|
{
|
|
nodemask_t physnode_mask = NODE_MASK_NONE;
|
|
u64 min_size;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
if (!size)
|
|
return -1;
|
|
/*
|
|
* The limit on emulated nodes is MAX_NUMNODES, so the size per node is
|
|
* increased accordingly if the requested size is too small. This
|
|
* creates a uniform distribution of node sizes across the entire
|
|
* machine (but not necessarily over physical nodes).
|
|
*/
|
|
min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
|
|
MAX_NUMNODES;
|
|
min_size = max(min_size, FAKE_NODE_MIN_SIZE);
|
|
if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
|
|
min_size = (min_size + FAKE_NODE_MIN_SIZE) &
|
|
FAKE_NODE_MIN_HASH_MASK;
|
|
if (size < min_size) {
|
|
pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
|
|
size >> 20, min_size >> 20);
|
|
size = min_size;
|
|
}
|
|
size &= FAKE_NODE_MIN_HASH_MASK;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++)
|
|
if (physnodes[i].start != physnodes[i].end)
|
|
node_set(i, physnode_mask);
|
|
/*
|
|
* Fill physical nodes with fake nodes of size until there is no memory
|
|
* left on any of them.
|
|
*/
|
|
while (nodes_weight(physnode_mask)) {
|
|
for_each_node_mask(i, physnode_mask) {
|
|
u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
|
|
u64 end;
|
|
|
|
end = find_end_of_node(physnodes[i].start,
|
|
physnodes[i].end, size);
|
|
/*
|
|
* If there won't be at least FAKE_NODE_MIN_SIZE of
|
|
* non-reserved memory in ZONE_DMA32 for the next node,
|
|
* this one must extend to the boundary.
|
|
*/
|
|
if (end < dma32_end && dma32_end - end -
|
|
memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
|
|
end = dma32_end;
|
|
|
|
/*
|
|
* If there won't be enough non-reserved memory for the
|
|
* next node, this one must extend to the end of the
|
|
* physical node.
|
|
*/
|
|
if (physnodes[i].end - end -
|
|
memblock_x86_hole_size(end, physnodes[i].end) < size)
|
|
end = physnodes[i].end;
|
|
|
|
/*
|
|
* Setup the fake node that will be allocated as bootmem
|
|
* later. If setup_node_range() returns non-zero, there
|
|
* is no more memory available on this physical node.
|
|
*/
|
|
if (setup_node_range(ret++, &physnodes[i].start,
|
|
end - physnodes[i].start,
|
|
physnodes[i].end) < 0)
|
|
node_clear(i, physnode_mask);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Sets up the system RAM area from start_pfn to last_pfn according to the
|
|
* numa=fake command-line option.
|
|
*/
|
|
static int __init numa_emulation(unsigned long start_pfn,
|
|
unsigned long last_pfn, int acpi, int amd)
|
|
{
|
|
static int nodeid[NR_NODE_MEMBLKS] __initdata;
|
|
u64 addr = start_pfn << PAGE_SHIFT;
|
|
u64 max_addr = last_pfn << PAGE_SHIFT;
|
|
int num_nodes;
|
|
int i;
|
|
|
|
/*
|
|
* If the numa=fake command-line contains a 'M' or 'G', it represents
|
|
* the fixed node size. Otherwise, if it is just a single number N,
|
|
* split the system RAM into N fake nodes.
|
|
*/
|
|
if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
|
|
u64 size;
|
|
|
|
size = memparse(cmdline, &cmdline);
|
|
num_nodes = split_nodes_size_interleave(addr, max_addr, size);
|
|
} else {
|
|
unsigned long n;
|
|
|
|
n = simple_strtoul(cmdline, NULL, 0);
|
|
num_nodes = split_nodes_interleave(addr, max_addr, n);
|
|
}
|
|
|
|
if (num_nodes < 0)
|
|
return num_nodes;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nodeid); i++)
|
|
nodeid[i] = i;
|
|
|
|
memnode_shift = compute_hash_shift(nodes, num_nodes, nodeid);
|
|
if (memnode_shift < 0) {
|
|
memnode_shift = 0;
|
|
printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
|
|
"disabled.\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* We need to vacate all active ranges that may have been registered for
|
|
* the e820 memory map.
|
|
*/
|
|
remove_all_active_ranges();
|
|
for_each_node_mask(i, node_possible_map)
|
|
memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
|
|
nodes[i].end >> PAGE_SHIFT);
|
|
init_memory_mapping_high();
|
|
for_each_node_mask(i, node_possible_map)
|
|
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
|
|
setup_physnodes(addr, max_addr);
|
|
fake_physnodes(acpi, amd, num_nodes);
|
|
numa_init_array();
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NUMA_EMU */
|
|
|
|
static int dummy_numa_init(void)
|
|
{
|
|
printk(KERN_INFO "%s\n",
|
|
numa_off ? "NUMA turned off" : "No NUMA configuration found");
|
|
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
|
|
0LU, max_pfn << PAGE_SHIFT);
|
|
|
|
node_set(0, cpu_nodes_parsed);
|
|
node_set(0, mem_nodes_parsed);
|
|
numa_add_memblk(0, 0, (u64)max_pfn << PAGE_SHIFT);
|
|
numa_nodes[0].start = 0;
|
|
numa_nodes[0].end = (u64)max_pfn << PAGE_SHIFT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init initmem_init(void)
|
|
{
|
|
int (*numa_init[])(void) = { [2] = dummy_numa_init };
|
|
int i, j;
|
|
|
|
if (!numa_off) {
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
numa_init[0] = x86_acpi_numa_init;
|
|
#endif
|
|
#ifdef CONFIG_AMD_NUMA
|
|
numa_init[1] = amd_numa_init;
|
|
#endif
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(numa_init); i++) {
|
|
if (!numa_init[i])
|
|
continue;
|
|
|
|
for (j = 0; j < MAX_LOCAL_APIC; j++)
|
|
set_apicid_to_node(j, NUMA_NO_NODE);
|
|
|
|
nodes_clear(cpu_nodes_parsed);
|
|
nodes_clear(mem_nodes_parsed);
|
|
nodes_clear(node_possible_map);
|
|
nodes_clear(node_online_map);
|
|
num_node_memblks = 0;
|
|
memset(node_memblk_range, 0, sizeof(node_memblk_range));
|
|
memset(memblk_nodeid, 0, sizeof(memblk_nodeid));
|
|
memset(numa_nodes, 0, sizeof(numa_nodes));
|
|
remove_all_active_ranges();
|
|
|
|
if (numa_init[i]() < 0)
|
|
continue;
|
|
|
|
/* clean up the node list */
|
|
for (j = 0; j < MAX_NUMNODES; j++)
|
|
cutoff_node(j, 0, max_pfn << PAGE_SHIFT);
|
|
|
|
#ifdef CONFIG_NUMA_EMU
|
|
setup_physnodes(0, max_pfn << PAGE_SHIFT);
|
|
if (cmdline && !numa_emulation(0, max_pfn, i == 0, i == 1))
|
|
return;
|
|
setup_physnodes(0, max_pfn << PAGE_SHIFT);
|
|
nodes_clear(node_possible_map);
|
|
nodes_clear(node_online_map);
|
|
#endif
|
|
/* Account for nodes with cpus and no memory */
|
|
nodes_or(node_possible_map, mem_nodes_parsed, cpu_nodes_parsed);
|
|
if (WARN_ON(nodes_empty(node_possible_map)))
|
|
continue;
|
|
|
|
if (numa_register_memblks() < 0)
|
|
continue;
|
|
|
|
for (j = 0; j < nr_cpu_ids; j++) {
|
|
int nid = early_cpu_to_node(j);
|
|
|
|
if (nid == NUMA_NO_NODE)
|
|
continue;
|
|
if (!node_online(nid))
|
|
numa_clear_node(j);
|
|
}
|
|
numa_init_array();
|
|
return;
|
|
}
|
|
BUG();
|
|
}
|
|
|
|
unsigned long __init numa_free_all_bootmem(void)
|
|
{
|
|
unsigned long pages = 0;
|
|
int i;
|
|
|
|
for_each_online_node(i)
|
|
pages += free_all_bootmem_node(NODE_DATA(i));
|
|
|
|
pages += free_all_memory_core_early(MAX_NUMNODES);
|
|
|
|
return pages;
|
|
}
|
|
|
|
int __cpuinit numa_cpu_node(int cpu)
|
|
{
|
|
int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
|
|
|
|
if (apicid != BAD_APICID)
|
|
return __apicid_to_node[apicid];
|
|
return NUMA_NO_NODE;
|
|
}
|
|
|
|
/*
|
|
* UGLINESS AHEAD: Currently, CONFIG_NUMA_EMU is 64bit only and makes use
|
|
* of 64bit specific data structures. The distinction is artificial and
|
|
* should be removed. numa_{add|remove}_cpu() are implemented in numa.c
|
|
* for both 32 and 64bit when CONFIG_NUMA_EMU is disabled but here when
|
|
* enabled.
|
|
*
|
|
* NUMA emulation is planned to be made generic and the following and other
|
|
* related code should be moved to numa.c.
|
|
*/
|
|
#ifdef CONFIG_NUMA_EMU
|
|
# ifndef CONFIG_DEBUG_PER_CPU_MAPS
|
|
void __cpuinit numa_add_cpu(int cpu)
|
|
{
|
|
unsigned long addr;
|
|
int physnid, nid;
|
|
|
|
nid = numa_cpu_node(cpu);
|
|
if (nid == NUMA_NO_NODE)
|
|
nid = early_cpu_to_node(cpu);
|
|
BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
|
|
|
|
/*
|
|
* Use the starting address of the emulated node to find which physical
|
|
* node it is allocated on.
|
|
*/
|
|
addr = node_start_pfn(nid) << PAGE_SHIFT;
|
|
for (physnid = 0; physnid < MAX_NUMNODES; physnid++)
|
|
if (addr >= physnodes[physnid].start &&
|
|
addr < physnodes[physnid].end)
|
|
break;
|
|
|
|
/*
|
|
* Map the cpu to each emulated node that is allocated on the physical
|
|
* node of the cpu's apic id.
|
|
*/
|
|
for_each_online_node(nid) {
|
|
addr = node_start_pfn(nid) << PAGE_SHIFT;
|
|
if (addr >= physnodes[physnid].start &&
|
|
addr < physnodes[physnid].end)
|
|
cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
|
|
}
|
|
}
|
|
|
|
void __cpuinit numa_remove_cpu(int cpu)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_node(i)
|
|
cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
|
|
}
|
|
# else /* !CONFIG_DEBUG_PER_CPU_MAPS */
|
|
static void __cpuinit numa_set_cpumask(int cpu, int enable)
|
|
{
|
|
int node = early_cpu_to_node(cpu);
|
|
struct cpumask *mask;
|
|
int i;
|
|
|
|
if (node == NUMA_NO_NODE) {
|
|
/* early_cpu_to_node() already emits a warning and trace */
|
|
return;
|
|
}
|
|
for_each_online_node(i) {
|
|
unsigned long addr;
|
|
|
|
addr = node_start_pfn(i) << PAGE_SHIFT;
|
|
if (addr < physnodes[node].start ||
|
|
addr >= physnodes[node].end)
|
|
continue;
|
|
mask = debug_cpumask_set_cpu(cpu, enable);
|
|
if (!mask)
|
|
return;
|
|
|
|
if (enable)
|
|
cpumask_set_cpu(cpu, mask);
|
|
else
|
|
cpumask_clear_cpu(cpu, mask);
|
|
}
|
|
}
|
|
|
|
void __cpuinit numa_add_cpu(int cpu)
|
|
{
|
|
numa_set_cpumask(cpu, 1);
|
|
}
|
|
|
|
void __cpuinit numa_remove_cpu(int cpu)
|
|
{
|
|
numa_set_cpumask(cpu, 0);
|
|
}
|
|
# endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
|
|
#endif /* CONFIG_NUMA_EMU */
|