linux/tools/testing/selftests/kvm/rseq_test.c
Sean Christopherson 7b0035eaa7 KVM: selftests: Ensure all migrations are performed when test is affined
Rework the CPU selection in the migration worker to ensure the specified
number of migrations are performed when the test iteslf is affined to a
subset of CPUs.  The existing logic skips iterations if the target CPU is
not in the original set of possible CPUs, which causes the test to fail
if too many iterations are skipped.

  ==== Test Assertion Failure ====
  rseq_test.c:228: i > (NR_TASK_MIGRATIONS / 2)
  pid=10127 tid=10127 errno=4 - Interrupted system call
     1  0x00000000004018e5: main at rseq_test.c:227
     2  0x00007fcc8fc66bf6: ?? ??:0
     3  0x0000000000401959: _start at ??:?
  Only performed 4 KVM_RUNs, task stalled too much?

Calculate the min/max possible CPUs as a cheap "best effort" to avoid
high runtimes when the test is affined to a small percentage of CPUs.
Alternatively, a list or xarray of the possible CPUs could be used, but
even in a horrendously inefficient setup, such optimizations are not
needed because the runtime is completely dominated by the cost of
migrating the task, and the absolute runtime is well under a minute in
even truly absurd setups, e.g. running on a subset of vCPUs in a VM that
is heavily overcommited (16 vCPUs per pCPU).

Fixes: 61e52f1630 ("KVM: selftests: Add a test for KVM_RUN+rseq to detect task migration bugs")
Reported-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210929234112.1862848-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:25:57 -04:00

287 lines
8.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#define _GNU_SOURCE /* for program_invocation_short_name */
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <syscall.h>
#include <sys/ioctl.h>
#include <sys/sysinfo.h>
#include <asm/barrier.h>
#include <linux/atomic.h>
#include <linux/rseq.h>
#include <linux/unistd.h>
#include "kvm_util.h"
#include "processor.h"
#include "test_util.h"
#define VCPU_ID 0
static __thread volatile struct rseq __rseq = {
.cpu_id = RSEQ_CPU_ID_UNINITIALIZED,
};
/*
* Use an arbitrary, bogus signature for configuring rseq, this test does not
* actually enter an rseq critical section.
*/
#define RSEQ_SIG 0xdeadbeef
/*
* Any bug related to task migration is likely to be timing-dependent; perform
* a large number of migrations to reduce the odds of a false negative.
*/
#define NR_TASK_MIGRATIONS 100000
static pthread_t migration_thread;
static cpu_set_t possible_mask;
static int min_cpu, max_cpu;
static bool done;
static atomic_t seq_cnt;
static void guest_code(void)
{
for (;;)
GUEST_SYNC(0);
}
static void sys_rseq(int flags)
{
int r;
r = syscall(__NR_rseq, &__rseq, sizeof(__rseq), flags, RSEQ_SIG);
TEST_ASSERT(!r, "rseq failed, errno = %d (%s)", errno, strerror(errno));
}
static int next_cpu(int cpu)
{
/*
* Advance to the next CPU, skipping those that weren't in the original
* affinity set. Sadly, there is no CPU_SET_FOR_EACH, and cpu_set_t's
* data storage is considered as opaque. Note, if this task is pinned
* to a small set of discontigous CPUs, e.g. 2 and 1023, this loop will
* burn a lot cycles and the test will take longer than normal to
* complete.
*/
do {
cpu++;
if (cpu > max_cpu) {
cpu = min_cpu;
TEST_ASSERT(CPU_ISSET(cpu, &possible_mask),
"Min CPU = %d must always be usable", cpu);
break;
}
} while (!CPU_ISSET(cpu, &possible_mask));
return cpu;
}
static void *migration_worker(void *ign)
{
cpu_set_t allowed_mask;
int r, i, cpu;
CPU_ZERO(&allowed_mask);
for (i = 0, cpu = min_cpu; i < NR_TASK_MIGRATIONS; i++, cpu = next_cpu(cpu)) {
CPU_SET(cpu, &allowed_mask);
/*
* Bump the sequence count twice to allow the reader to detect
* that a migration may have occurred in between rseq and sched
* CPU ID reads. An odd sequence count indicates a migration
* is in-progress, while a completely different count indicates
* a migration occurred since the count was last read.
*/
atomic_inc(&seq_cnt);
/*
* Ensure the odd count is visible while sched_getcpu() isn't
* stable, i.e. while changing affinity is in-progress.
*/
smp_wmb();
r = sched_setaffinity(0, sizeof(allowed_mask), &allowed_mask);
TEST_ASSERT(!r, "sched_setaffinity failed, errno = %d (%s)",
errno, strerror(errno));
smp_wmb();
atomic_inc(&seq_cnt);
CPU_CLR(cpu, &allowed_mask);
/*
* Wait 1-10us before proceeding to the next iteration and more
* specifically, before bumping seq_cnt again. A delay is
* needed on three fronts:
*
* 1. To allow sched_setaffinity() to prompt migration before
* ioctl(KVM_RUN) enters the guest so that TIF_NOTIFY_RESUME
* (or TIF_NEED_RESCHED, which indirectly leads to handling
* NOTIFY_RESUME) is handled in KVM context.
*
* If NOTIFY_RESUME/NEED_RESCHED is set after KVM enters
* the guest, the guest will trigger a IO/MMIO exit all the
* way to userspace and the TIF flags will be handled by
* the generic "exit to userspace" logic, not by KVM. The
* exit to userspace is necessary to give the test a chance
* to check the rseq CPU ID (see #2).
*
* Alternatively, guest_code() could include an instruction
* to trigger an exit that is handled by KVM, but any such
* exit requires architecture specific code.
*
* 2. To let ioctl(KVM_RUN) make its way back to the test
* before the next round of migration. The test's check on
* the rseq CPU ID must wait for migration to complete in
* order to avoid false positive, thus any kernel rseq bug
* will be missed if the next migration starts before the
* check completes.
*
* 3. To ensure the read-side makes efficient forward progress,
* e.g. if sched_getcpu() involves a syscall. Stalling the
* read-side means the test will spend more time waiting for
* sched_getcpu() to stabilize and less time trying to hit
* the timing-dependent bug.
*
* Because any bug in this area is likely to be timing-dependent,
* run with a range of delays at 1us intervals from 1us to 10us
* as a best effort to avoid tuning the test to the point where
* it can hit _only_ the original bug and not detect future
* regressions.
*
* The original bug can reproduce with a delay up to ~500us on
* x86-64, but starts to require more iterations to reproduce
* as the delay creeps above ~10us, and the average runtime of
* each iteration obviously increases as well. Cap the delay
* at 10us to keep test runtime reasonable while minimizing
* potential coverage loss.
*
* The lower bound for reproducing the bug is likely below 1us,
* e.g. failures occur on x86-64 with nanosleep(0), but at that
* point the overhead of the syscall likely dominates the delay.
* Use usleep() for simplicity and to avoid unnecessary kernel
* dependencies.
*/
usleep((i % 10) + 1);
}
done = true;
return NULL;
}
static int calc_min_max_cpu(void)
{
int i, cnt, nproc;
if (CPU_COUNT(&possible_mask) < 2)
return -EINVAL;
/*
* CPU_SET doesn't provide a FOR_EACH helper, get the min/max CPU that
* this task is affined to in order to reduce the time spent querying
* unusable CPUs, e.g. if this task is pinned to a small percentage of
* total CPUs.
*/
nproc = get_nprocs_conf();
min_cpu = -1;
max_cpu = -1;
cnt = 0;
for (i = 0; i < nproc; i++) {
if (!CPU_ISSET(i, &possible_mask))
continue;
if (min_cpu == -1)
min_cpu = i;
max_cpu = i;
cnt++;
}
return (cnt < 2) ? -EINVAL : 0;
}
int main(int argc, char *argv[])
{
int r, i, snapshot;
struct kvm_vm *vm;
u32 cpu, rseq_cpu;
/* Tell stdout not to buffer its content */
setbuf(stdout, NULL);
r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask);
TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", errno,
strerror(errno));
if (calc_min_max_cpu()) {
print_skip("Only one usable CPU, task migration not possible");
exit(KSFT_SKIP);
}
sys_rseq(0);
/*
* Create and run a dummy VM that immediately exits to userspace via
* GUEST_SYNC, while concurrently migrating the process by setting its
* CPU affinity.
*/
vm = vm_create_default(VCPU_ID, 0, guest_code);
ucall_init(vm, NULL);
pthread_create(&migration_thread, NULL, migration_worker, 0);
for (i = 0; !done; i++) {
vcpu_run(vm, VCPU_ID);
TEST_ASSERT(get_ucall(vm, VCPU_ID, NULL) == UCALL_SYNC,
"Guest failed?");
/*
* Verify rseq's CPU matches sched's CPU. Ensure migration
* doesn't occur between sched_getcpu() and reading the rseq
* cpu_id by rereading both if the sequence count changes, or
* if the count is odd (migration in-progress).
*/
do {
/*
* Drop bit 0 to force a mismatch if the count is odd,
* i.e. if a migration is in-progress.
*/
snapshot = atomic_read(&seq_cnt) & ~1;
/*
* Ensure reading sched_getcpu() and rseq.cpu_id
* complete in a single "no migration" window, i.e. are
* not reordered across the seq_cnt reads.
*/
smp_rmb();
cpu = sched_getcpu();
rseq_cpu = READ_ONCE(__rseq.cpu_id);
smp_rmb();
} while (snapshot != atomic_read(&seq_cnt));
TEST_ASSERT(rseq_cpu == cpu,
"rseq CPU = %d, sched CPU = %d\n", rseq_cpu, cpu);
}
/*
* Sanity check that the test was able to enter the guest a reasonable
* number of times, e.g. didn't get stalled too often/long waiting for
* sched_getcpu() to stabilize. A 2:1 migration:KVM_RUN ratio is a
* fairly conservative ratio on x86-64, which can do _more_ KVM_RUNs
* than migrations given the 1us+ delay in the migration task.
*/
TEST_ASSERT(i > (NR_TASK_MIGRATIONS / 2),
"Only performed %d KVM_RUNs, task stalled too much?\n", i);
pthread_join(migration_thread, NULL);
kvm_vm_free(vm);
sys_rseq(RSEQ_FLAG_UNREGISTER);
return 0;
}