linux/drivers/iio/light/rohm-bu27008.c
Matti Vaittinen a6d160b21f iio: bu27008: Add illuminance channel
The RGB + IR data can be used to calculate the illuminance value (luxes).
Implement the equation obtained from the ROHM HW colleagues and add a
raw light data channel outputting illuminance values in (nano) Luxes.

Both the read_raw and buffering values are supported, with the limitation
that buffering is only allowed when a suitable scan-mask is used. (RGB+IR,
no clear).

The equation has been developed by ROHM HW colleagues for open air sensor.
Adding any lens to the sensor is likely to impact to used c1, c2, c3
coefficients. Also, the output values have only been tested on BU27008.

According to the HW colleagues, the very same equation should work on
BU27010 as well.

Calculate and output illuminance values from BU27008 and BU27010.

Signed-off-by: Matti Vaittinen <mazziesaccount@gmail.com>
Link: https://lore.kernel.org/r/ZTJcOxSb/WHzdN8h@dc78bmyyyyyyyyyyyyydt-3.rev.dnainternet.fi
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2023-11-16 19:10:27 +00:00

1636 lines
45 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* ROHM Colour Sensor driver for
* - BU27008 RGBC sensor
* - BU27010 RGBC + Flickering sensor
*
* Copyright (c) 2023, ROHM Semiconductor.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/iio-gts-helper.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/*
* A word about register address and mask definitions.
*
* At a quick glance to the data-sheet register tables, the BU27010 has all the
* registers that the BU27008 has. On top of that the BU27010 adds couple of new
* ones.
*
* So, all definitions BU27008_REG_* are there also for BU27010 but none of the
* BU27010_REG_* are present on BU27008. This makes sense as BU27010 just adds
* some features (Flicker FIFO, more power control) on top of the BU27008.
*
* Unfortunately, some of the wheel has been re-invented. Even though the names
* of the registers have stayed the same, pretty much all of the functionality
* provided by the registers has changed place. Contents of all MODE_CONTROL
* registers on BU27008 and BU27010 are different.
*
* Chip-specific mapping from register addresses/bits to functionality is done
* in bu27_chip_data structures.
*/
#define BU27008_REG_SYSTEM_CONTROL 0x40
#define BU27008_MASK_SW_RESET BIT(7)
#define BU27008_MASK_PART_ID GENMASK(5, 0)
#define BU27008_ID 0x1a
#define BU27008_REG_MODE_CONTROL1 0x41
#define BU27008_MASK_MEAS_MODE GENMASK(2, 0)
#define BU27008_MASK_CHAN_SEL GENMASK(3, 2)
#define BU27008_REG_MODE_CONTROL2 0x42
#define BU27008_MASK_RGBC_GAIN GENMASK(7, 3)
#define BU27008_MASK_IR_GAIN_LO GENMASK(2, 0)
#define BU27008_SHIFT_IR_GAIN 3
#define BU27008_REG_MODE_CONTROL3 0x43
#define BU27008_MASK_VALID BIT(7)
#define BU27008_MASK_INT_EN BIT(1)
#define BU27008_INT_EN BU27008_MASK_INT_EN
#define BU27008_INT_DIS 0
#define BU27008_MASK_MEAS_EN BIT(0)
#define BU27008_MEAS_EN BIT(0)
#define BU27008_MEAS_DIS 0
#define BU27008_REG_DATA0_LO 0x50
#define BU27008_REG_DATA1_LO 0x52
#define BU27008_REG_DATA2_LO 0x54
#define BU27008_REG_DATA3_LO 0x56
#define BU27008_REG_DATA3_HI 0x57
#define BU27008_REG_MANUFACTURER_ID 0x92
#define BU27008_REG_MAX BU27008_REG_MANUFACTURER_ID
/* BU27010 specific definitions */
#define BU27010_MASK_SW_RESET BIT(7)
#define BU27010_ID 0x1b
#define BU27010_REG_POWER 0x3e
#define BU27010_MASK_POWER BIT(0)
#define BU27010_REG_RESET 0x3f
#define BU27010_MASK_RESET BIT(0)
#define BU27010_RESET_RELEASE BU27010_MASK_RESET
#define BU27010_MASK_MEAS_EN BIT(1)
#define BU27010_MASK_CHAN_SEL GENMASK(7, 6)
#define BU27010_MASK_MEAS_MODE GENMASK(5, 4)
#define BU27010_MASK_RGBC_GAIN GENMASK(3, 0)
#define BU27010_MASK_DATA3_GAIN GENMASK(7, 6)
#define BU27010_MASK_DATA2_GAIN GENMASK(5, 4)
#define BU27010_MASK_DATA1_GAIN GENMASK(3, 2)
#define BU27010_MASK_DATA0_GAIN GENMASK(1, 0)
#define BU27010_MASK_FLC_MODE BIT(7)
#define BU27010_MASK_FLC_GAIN GENMASK(4, 0)
#define BU27010_REG_MODE_CONTROL4 0x44
/* If flicker is ever to be supported the IRQ must be handled as a field */
#define BU27010_IRQ_DIS_ALL GENMASK(1, 0)
#define BU27010_DRDY_EN BIT(0)
#define BU27010_MASK_INT_SEL GENMASK(1, 0)
#define BU27010_REG_MODE_CONTROL5 0x45
#define BU27010_MASK_RGB_VALID BIT(7)
#define BU27010_MASK_FLC_VALID BIT(6)
#define BU27010_MASK_WAIT_EN BIT(3)
#define BU27010_MASK_FIFO_EN BIT(2)
#define BU27010_MASK_RGB_EN BIT(1)
#define BU27010_MASK_FLC_EN BIT(0)
#define BU27010_REG_DATA_FLICKER_LO 0x56
#define BU27010_MASK_DATA_FLICKER_HI GENMASK(2, 0)
#define BU27010_REG_FLICKER_COUNT 0x5a
#define BU27010_REG_FIFO_LEVEL_LO 0x5b
#define BU27010_MASK_FIFO_LEVEL_HI BIT(0)
#define BU27010_REG_FIFO_DATA_LO 0x5d
#define BU27010_REG_FIFO_DATA_HI 0x5e
#define BU27010_MASK_FIFO_DATA_HI GENMASK(2, 0)
#define BU27010_REG_MANUFACTURER_ID 0x92
#define BU27010_REG_MAX BU27010_REG_MANUFACTURER_ID
/**
* enum bu27008_chan_type - BU27008 channel types
* @BU27008_RED: Red channel. Always via data0.
* @BU27008_GREEN: Green channel. Always via data1.
* @BU27008_BLUE: Blue channel. Via data2 (when used).
* @BU27008_CLEAR: Clear channel. Via data2 or data3 (when used).
* @BU27008_IR: IR channel. Via data3 (when used).
* @BU27008_LUX: Illuminance channel, computed using RGB and IR.
* @BU27008_NUM_CHANS: Number of channel types.
*/
enum bu27008_chan_type {
BU27008_RED,
BU27008_GREEN,
BU27008_BLUE,
BU27008_CLEAR,
BU27008_IR,
BU27008_LUX,
BU27008_NUM_CHANS
};
/**
* enum bu27008_chan - BU27008 physical data channel
* @BU27008_DATA0: Always red.
* @BU27008_DATA1: Always green.
* @BU27008_DATA2: Blue or clear.
* @BU27008_DATA3: IR or clear.
* @BU27008_NUM_HW_CHANS: Number of physical channels
*/
enum bu27008_chan {
BU27008_DATA0,
BU27008_DATA1,
BU27008_DATA2,
BU27008_DATA3,
BU27008_NUM_HW_CHANS
};
/* We can always measure red and green at same time */
#define ALWAYS_SCANNABLE (BIT(BU27008_RED) | BIT(BU27008_GREEN))
/* We use these data channel configs. Ensure scan_masks below follow them too */
#define BU27008_BLUE2_CLEAR3 0x0 /* buffer is R, G, B, C */
#define BU27008_CLEAR2_IR3 0x1 /* buffer is R, G, C, IR */
#define BU27008_BLUE2_IR3 0x2 /* buffer is R, G, B, IR */
static const unsigned long bu27008_scan_masks[] = {
/* buffer is R, G, B, C */
ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_CLEAR),
/* buffer is R, G, C, IR */
ALWAYS_SCANNABLE | BIT(BU27008_CLEAR) | BIT(BU27008_IR),
/* buffer is R, G, B, IR */
ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR),
/* buffer is R, G, B, IR, LUX */
ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR) | BIT(BU27008_LUX),
0
};
/*
* Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS
* Time impacts to gain: 1x, 2x, 4x, 8x.
*
* => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192
*
* Max amplification is (HWGAIN * MAX integration-time multiplier) 1024 * 8
* = 8192. With NANO scale we get rid of accuracy loss when we start with the
* scale 16.0 for HWGAIN1, INT-TIME 55 mS. This way the nano scale for MAX
* total gain 8192 will be 1953125
*/
#define BU27008_SCALE_1X 16
/*
* On BU27010 available scales with gain 1x - 4096x,
* timings 55, 100, 200, 400 mS. Time impacts to gain: 1x, 2x, 4x, 8x.
*
* => Max total gain is HWGAIN * gain by integration time (8 * 4096)
*
* Using NANO precision for scale we must use scale 64x corresponding gain 1x
* to avoid precision loss.
*/
#define BU27010_SCALE_1X 64
/* See the data sheet for the "Gain Setting" table */
#define BU27008_GSEL_1X 0x00
#define BU27008_GSEL_4X 0x08
#define BU27008_GSEL_8X 0x09
#define BU27008_GSEL_16X 0x0a
#define BU27008_GSEL_32X 0x0b
#define BU27008_GSEL_64X 0x0c
#define BU27008_GSEL_256X 0x18
#define BU27008_GSEL_512X 0x19
#define BU27008_GSEL_1024X 0x1a
static const struct iio_gain_sel_pair bu27008_gains[] = {
GAIN_SCALE_GAIN(1, BU27008_GSEL_1X),
GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
};
static const struct iio_gain_sel_pair bu27008_gains_ir[] = {
GAIN_SCALE_GAIN(2, BU27008_GSEL_1X),
GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
};
#define BU27010_GSEL_1X 0x00 /* 000000 */
#define BU27010_GSEL_4X 0x08 /* 001000 */
#define BU27010_GSEL_16X 0x09 /* 001001 */
#define BU27010_GSEL_64X 0x0e /* 001110 */
#define BU27010_GSEL_256X 0x1e /* 011110 */
#define BU27010_GSEL_1024X 0x2e /* 101110 */
#define BU27010_GSEL_4096X 0x3f /* 111111 */
static const struct iio_gain_sel_pair bu27010_gains[] = {
GAIN_SCALE_GAIN(1, BU27010_GSEL_1X),
GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
};
static const struct iio_gain_sel_pair bu27010_gains_ir[] = {
GAIN_SCALE_GAIN(2, BU27010_GSEL_1X),
GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
};
#define BU27008_MEAS_MODE_100MS 0x00
#define BU27008_MEAS_MODE_55MS 0x01
#define BU27008_MEAS_MODE_200MS 0x02
#define BU27008_MEAS_MODE_400MS 0x04
#define BU27010_MEAS_MODE_100MS 0x00
#define BU27010_MEAS_MODE_55MS 0x03
#define BU27010_MEAS_MODE_200MS 0x01
#define BU27010_MEAS_MODE_400MS 0x02
#define BU27008_MEAS_TIME_MAX_MS 400
static const struct iio_itime_sel_mul bu27008_itimes[] = {
GAIN_SCALE_ITIME_US(400000, BU27008_MEAS_MODE_400MS, 8),
GAIN_SCALE_ITIME_US(200000, BU27008_MEAS_MODE_200MS, 4),
GAIN_SCALE_ITIME_US(100000, BU27008_MEAS_MODE_100MS, 2),
GAIN_SCALE_ITIME_US(55000, BU27008_MEAS_MODE_55MS, 1),
};
static const struct iio_itime_sel_mul bu27010_itimes[] = {
GAIN_SCALE_ITIME_US(400000, BU27010_MEAS_MODE_400MS, 8),
GAIN_SCALE_ITIME_US(200000, BU27010_MEAS_MODE_200MS, 4),
GAIN_SCALE_ITIME_US(100000, BU27010_MEAS_MODE_100MS, 2),
GAIN_SCALE_ITIME_US(55000, BU27010_MEAS_MODE_55MS, 1),
};
/*
* All the RGBC channels share the same gain.
* IR gain can be fine-tuned from the gain set for the RGBC by 2 bit, but this
* would yield quite complex gain setting. Especially since not all bit
* compinations are supported. And in any case setting GAIN for RGBC will
* always also change the IR-gain.
*
* On top of this, the selector '0' which corresponds to hw-gain 1X on RGBC,
* corresponds to gain 2X on IR. Rest of the selctors correspond to same gains
* though. This, however, makes it not possible to use shared gain for all
* RGBC and IR settings even though they are all changed at the one go.
*/
#define BU27008_CHAN(color, data, separate_avail) \
{ \
.type = IIO_INTENSITY, \
.modified = 1, \
.channel2 = IIO_MOD_LIGHT_##color, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_separate_available = (separate_avail), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME), \
.address = BU27008_REG_##data##_LO, \
.scan_index = BU27008_##color, \
.scan_type = { \
.sign = 'u', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
}
/* For raw reads we always configure DATA3 for CLEAR */
static const struct iio_chan_spec bu27008_channels[] = {
BU27008_CHAN(RED, DATA0, BIT(IIO_CHAN_INFO_SCALE)),
BU27008_CHAN(GREEN, DATA1, BIT(IIO_CHAN_INFO_SCALE)),
BU27008_CHAN(BLUE, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
BU27008_CHAN(CLEAR, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
/*
* We don't allow setting scale for IR (because of shared gain bits).
* Hence we don't advertise available ones either.
*/
BU27008_CHAN(IR, DATA3, 0),
{
.type = IIO_LIGHT,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.channel = BU27008_LUX,
.scan_index = BU27008_LUX,
.scan_type = {
.sign = 'u',
.realbits = 64,
.storagebits = 64,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(BU27008_NUM_CHANS),
};
struct bu27008_data;
struct bu27_chip_data {
const char *name;
int (*chip_init)(struct bu27008_data *data);
int (*get_gain_sel)(struct bu27008_data *data, int *sel);
int (*write_gain_sel)(struct bu27008_data *data, int sel);
const struct regmap_config *regmap_cfg;
const struct iio_gain_sel_pair *gains;
const struct iio_gain_sel_pair *gains_ir;
const struct iio_itime_sel_mul *itimes;
int num_gains;
int num_gains_ir;
int num_itimes;
int scale1x;
int drdy_en_reg;
int drdy_en_mask;
int meas_en_reg;
int meas_en_mask;
int valid_reg;
int chan_sel_reg;
int chan_sel_mask;
int int_time_mask;
u8 part_id;
};
struct bu27008_data {
const struct bu27_chip_data *cd;
struct regmap *regmap;
struct iio_trigger *trig;
struct device *dev;
struct iio_gts gts;
struct iio_gts gts_ir;
int irq;
/*
* Prevent changing gain/time config when scale is read/written.
* Similarly, protect the integration_time read/change sequence.
* Prevent changing gain/time when data is read.
*/
struct mutex mutex;
};
static const struct regmap_range bu27008_volatile_ranges[] = {
{
.range_min = BU27008_REG_SYSTEM_CONTROL, /* SWRESET */
.range_max = BU27008_REG_SYSTEM_CONTROL,
}, {
.range_min = BU27008_REG_MODE_CONTROL3, /* VALID */
.range_max = BU27008_REG_MODE_CONTROL3,
}, {
.range_min = BU27008_REG_DATA0_LO, /* DATA */
.range_max = BU27008_REG_DATA3_HI,
},
};
static const struct regmap_range bu27010_volatile_ranges[] = {
{
.range_min = BU27010_REG_RESET, /* RSTB */
.range_max = BU27008_REG_SYSTEM_CONTROL, /* RESET */
}, {
.range_min = BU27010_REG_MODE_CONTROL5, /* VALID bits */
.range_max = BU27010_REG_MODE_CONTROL5,
}, {
.range_min = BU27008_REG_DATA0_LO,
.range_max = BU27010_REG_FIFO_DATA_HI,
},
};
static const struct regmap_access_table bu27008_volatile_regs = {
.yes_ranges = &bu27008_volatile_ranges[0],
.n_yes_ranges = ARRAY_SIZE(bu27008_volatile_ranges),
};
static const struct regmap_access_table bu27010_volatile_regs = {
.yes_ranges = &bu27010_volatile_ranges[0],
.n_yes_ranges = ARRAY_SIZE(bu27010_volatile_ranges),
};
static const struct regmap_range bu27008_read_only_ranges[] = {
{
.range_min = BU27008_REG_DATA0_LO,
.range_max = BU27008_REG_DATA3_HI,
}, {
.range_min = BU27008_REG_MANUFACTURER_ID,
.range_max = BU27008_REG_MANUFACTURER_ID,
},
};
static const struct regmap_range bu27010_read_only_ranges[] = {
{
.range_min = BU27008_REG_DATA0_LO,
.range_max = BU27010_REG_FIFO_DATA_HI,
}, {
.range_min = BU27010_REG_MANUFACTURER_ID,
.range_max = BU27010_REG_MANUFACTURER_ID,
}
};
static const struct regmap_access_table bu27008_ro_regs = {
.no_ranges = &bu27008_read_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(bu27008_read_only_ranges),
};
static const struct regmap_access_table bu27010_ro_regs = {
.no_ranges = &bu27010_read_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(bu27010_read_only_ranges),
};
static const struct regmap_config bu27008_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = BU27008_REG_MAX,
.cache_type = REGCACHE_RBTREE,
.volatile_table = &bu27008_volatile_regs,
.wr_table = &bu27008_ro_regs,
/*
* All register writes are serialized by the mutex which protects the
* scale setting/getting. This is needed because scale is combined by
* gain and integration time settings and we need to ensure those are
* not read / written when scale is being computed.
*
* As a result of this serializing, we don't need regmap locking. Note,
* this is not true if we add any configurations which are not
* serialized by the mutex and which may need for example a protected
* read-modify-write cycle (eg. regmap_update_bits()). Please, revise
* this when adding features to the driver.
*/
.disable_locking = true,
};
static const struct regmap_config bu27010_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = BU27010_REG_MAX,
.cache_type = REGCACHE_RBTREE,
.volatile_table = &bu27010_volatile_regs,
.wr_table = &bu27010_ro_regs,
.disable_locking = true,
};
static int bu27008_write_gain_sel(struct bu27008_data *data, int sel)
{
int regval;
regval = FIELD_PREP(BU27008_MASK_RGBC_GAIN, sel);
/*
* We do always set also the LOW bits of IR-gain because othervice we
* would risk resulting an invalid GAIN register value.
*
* We could allow setting separate gains for RGBC and IR when the
* values were such that HW could support both gain settings.
* Eg, when the shared bits were same for both gain values.
*
* This, however, has a negligible benefit compared to the increased
* software complexity when we would need to go through the gains
* for both channels separately when the integration time changes.
* This would end up with nasty logic for computing gain values for
* both channels - and rejecting them if shared bits changed.
*
* We should then build the logic by guessing what a user prefers.
* RGBC or IR gains correctly set while other jumps to odd value?
* Maybe look-up a value where both gains are somehow optimized
* <what this somehow is, is ATM unknown to us>. Or maybe user would
* expect us to reject changes when optimal gains can't be set to both
* channels w/given integration time. At best that would result
* solution that works well for a very specific subset of
* configurations but causes unexpected corner-cases.
*
* So, we keep it simple. Always set same selector to IR and RGBC.
* We disallow setting IR (as I expect that most of the users are
* interested in RGBC). This way we can show the user that the scales
* for RGBC and IR channels are different (1X Vs 2X with sel 0) while
* still keeping the operation deterministic.
*/
regval |= FIELD_PREP(BU27008_MASK_IR_GAIN_LO, sel);
return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL2,
BU27008_MASK_RGBC_GAIN, regval);
}
static int bu27010_write_gain_sel(struct bu27008_data *data, int sel)
{
unsigned int regval;
int ret, chan_selector;
/*
* Gain 'selector' is composed of two registers. Selector is 6bit value,
* 4 high bits being the RGBC gain fieild in MODE_CONTROL1 register and
* two low bits being the channel specific gain in MODE_CONTROL2.
*
* Let's take the 4 high bits of whole 6 bit selector, and prepare
* the MODE_CONTROL1 value (RGBC gain part).
*/
regval = FIELD_PREP(BU27010_MASK_RGBC_GAIN, (sel >> 2));
ret = regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
BU27010_MASK_RGBC_GAIN, regval);
if (ret)
return ret;
/*
* Two low two bits of the selector must be written for all 4
* channels in the MODE_CONTROL2 register. Copy these two bits for
* all channels.
*/
chan_selector = sel & GENMASK(1, 0);
regval = FIELD_PREP(BU27010_MASK_DATA0_GAIN, chan_selector);
regval |= FIELD_PREP(BU27010_MASK_DATA1_GAIN, chan_selector);
regval |= FIELD_PREP(BU27010_MASK_DATA2_GAIN, chan_selector);
regval |= FIELD_PREP(BU27010_MASK_DATA3_GAIN, chan_selector);
return regmap_write(data->regmap, BU27008_REG_MODE_CONTROL2, regval);
}
static int bu27008_get_gain_sel(struct bu27008_data *data, int *sel)
{
int ret;
/*
* If we always "lock" the gain selectors for all channels to prevent
* unsupported configs, then it does not matter which channel is used
* we can just return selector from any of them.
*
* This, however is not true if we decide to support only 4X and 16X
* and then individual gains for channels. Currently this is not the
* case.
*
* If we some day decide to support individual gains, then we need to
* have channel information here.
*/
ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
if (ret)
return ret;
*sel = FIELD_GET(BU27008_MASK_RGBC_GAIN, *sel);
return 0;
}
static int bu27010_get_gain_sel(struct bu27008_data *data, int *sel)
{
int ret, tmp;
/*
* We always "lock" the gain selectors for all channels to prevent
* unsupported configs. It does not matter which channel is used
* we can just return selector from any of them.
*
* Read the channel0 gain.
*/
ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
if (ret)
return ret;
*sel = FIELD_GET(BU27010_MASK_DATA0_GAIN, *sel);
/* Read the shared gain */
ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &tmp);
if (ret)
return ret;
/*
* The gain selector is made as a combination of common RGBC gain and
* the channel specific gain. The channel specific gain forms the low
* bits of selector and RGBC gain is appended right after it.
*
* Compose the selector from channel0 gain and shared RGBC gain.
*/
*sel |= FIELD_GET(BU27010_MASK_RGBC_GAIN, tmp) << fls(BU27010_MASK_DATA0_GAIN);
return ret;
}
static int bu27008_chip_init(struct bu27008_data *data)
{
int ret;
ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
BU27008_MASK_SW_RESET, BU27008_MASK_SW_RESET);
if (ret)
return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
/*
* The data-sheet does not tell how long performing the IC reset takes.
* However, the data-sheet says the minimum time it takes the IC to be
* able to take inputs after power is applied, is 100 uS. I'd assume
* > 1 mS is enough.
*/
msleep(1);
ret = regmap_reinit_cache(data->regmap, data->cd->regmap_cfg);
if (ret)
dev_err(data->dev, "Failed to reinit reg cache\n");
return ret;
}
static int bu27010_chip_init(struct bu27008_data *data)
{
int ret;
ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
BU27010_MASK_SW_RESET, BU27010_MASK_SW_RESET);
if (ret)
return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
msleep(1);
/* Power ON*/
ret = regmap_write_bits(data->regmap, BU27010_REG_POWER,
BU27010_MASK_POWER, BU27010_MASK_POWER);
if (ret)
return dev_err_probe(data->dev, ret, "Sensor power-on failed\n");
msleep(1);
/* Release blocks from reset */
ret = regmap_write_bits(data->regmap, BU27010_REG_RESET,
BU27010_MASK_RESET, BU27010_RESET_RELEASE);
if (ret)
return dev_err_probe(data->dev, ret, "Sensor powering failed\n");
msleep(1);
/*
* The IRQ enabling on BU27010 is done in a peculiar way. The IRQ
* enabling is not a bit mask where individual IRQs could be enabled but
* a field which values are:
* 00 => IRQs disabled
* 01 => Data-ready (RGBC/IR)
* 10 => Data-ready (flicker)
* 11 => Flicker FIFO
*
* So, only one IRQ can be enabled at a time and enabling for example
* flicker FIFO would automagically disable data-ready IRQ.
*
* Currently the driver does not support the flicker. Hence, we can
* just treat the RGBC data-ready as single bit which can be enabled /
* disabled. This works for as long as the second bit in the field
* stays zero. Here we ensure it gets zeroed.
*/
return regmap_clear_bits(data->regmap, BU27010_REG_MODE_CONTROL4,
BU27010_IRQ_DIS_ALL);
}
static const struct bu27_chip_data bu27010_chip = {
.name = "bu27010",
.chip_init = bu27010_chip_init,
.get_gain_sel = bu27010_get_gain_sel,
.write_gain_sel = bu27010_write_gain_sel,
.regmap_cfg = &bu27010_regmap,
.gains = &bu27010_gains[0],
.gains_ir = &bu27010_gains_ir[0],
.itimes = &bu27010_itimes[0],
.num_gains = ARRAY_SIZE(bu27010_gains),
.num_gains_ir = ARRAY_SIZE(bu27010_gains_ir),
.num_itimes = ARRAY_SIZE(bu27010_itimes),
.scale1x = BU27010_SCALE_1X,
.drdy_en_reg = BU27010_REG_MODE_CONTROL4,
.drdy_en_mask = BU27010_DRDY_EN,
.meas_en_reg = BU27010_REG_MODE_CONTROL5,
.meas_en_mask = BU27010_MASK_MEAS_EN,
.valid_reg = BU27010_REG_MODE_CONTROL5,
.chan_sel_reg = BU27008_REG_MODE_CONTROL1,
.chan_sel_mask = BU27010_MASK_CHAN_SEL,
.int_time_mask = BU27010_MASK_MEAS_MODE,
.part_id = BU27010_ID,
};
static const struct bu27_chip_data bu27008_chip = {
.name = "bu27008",
.chip_init = bu27008_chip_init,
.get_gain_sel = bu27008_get_gain_sel,
.write_gain_sel = bu27008_write_gain_sel,
.regmap_cfg = &bu27008_regmap,
.gains = &bu27008_gains[0],
.gains_ir = &bu27008_gains_ir[0],
.itimes = &bu27008_itimes[0],
.num_gains = ARRAY_SIZE(bu27008_gains),
.num_gains_ir = ARRAY_SIZE(bu27008_gains_ir),
.num_itimes = ARRAY_SIZE(bu27008_itimes),
.scale1x = BU27008_SCALE_1X,
.drdy_en_reg = BU27008_REG_MODE_CONTROL3,
.drdy_en_mask = BU27008_MASK_INT_EN,
.valid_reg = BU27008_REG_MODE_CONTROL3,
.meas_en_reg = BU27008_REG_MODE_CONTROL3,
.meas_en_mask = BU27008_MASK_MEAS_EN,
.chan_sel_reg = BU27008_REG_MODE_CONTROL3,
.chan_sel_mask = BU27008_MASK_CHAN_SEL,
.int_time_mask = BU27008_MASK_MEAS_MODE,
.part_id = BU27008_ID,
};
#define BU27008_MAX_VALID_RESULT_WAIT_US 50000
#define BU27008_VALID_RESULT_WAIT_QUANTA_US 1000
static int bu27008_chan_read_data(struct bu27008_data *data, int reg, int *val)
{
int ret, valid;
__le16 tmp;
ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg,
valid, (valid & BU27008_MASK_VALID),
BU27008_VALID_RESULT_WAIT_QUANTA_US,
BU27008_MAX_VALID_RESULT_WAIT_US);
if (ret)
return ret;
ret = regmap_bulk_read(data->regmap, reg, &tmp, sizeof(tmp));
if (ret)
dev_err(data->dev, "Reading channel data failed\n");
*val = le16_to_cpu(tmp);
return ret;
}
static int bu27008_get_gain(struct bu27008_data *data, struct iio_gts *gts, int *gain)
{
int ret, sel;
ret = data->cd->get_gain_sel(data, &sel);
if (ret)
return ret;
ret = iio_gts_find_gain_by_sel(gts, sel);
if (ret < 0) {
dev_err(data->dev, "unknown gain value 0x%x\n", sel);
return ret;
}
*gain = ret;
return 0;
}
static int bu27008_set_gain(struct bu27008_data *data, int gain)
{
int ret;
ret = iio_gts_find_sel_by_gain(&data->gts, gain);
if (ret < 0)
return ret;
return data->cd->write_gain_sel(data, ret);
}
static int bu27008_get_int_time_sel(struct bu27008_data *data, int *sel)
{
int ret, val;
ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &val);
if (ret)
return ret;
val &= data->cd->int_time_mask;
val >>= ffs(data->cd->int_time_mask) - 1;
*sel = val;
return 0;
}
static int bu27008_set_int_time_sel(struct bu27008_data *data, int sel)
{
sel <<= ffs(data->cd->int_time_mask) - 1;
return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
data->cd->int_time_mask, sel);
}
static int bu27008_get_int_time_us(struct bu27008_data *data)
{
int ret, sel;
ret = bu27008_get_int_time_sel(data, &sel);
if (ret)
return ret;
return iio_gts_find_int_time_by_sel(&data->gts, sel);
}
static int _bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
int *val2)
{
struct iio_gts *gts;
int gain, ret;
if (ir)
gts = &data->gts_ir;
else
gts = &data->gts;
ret = bu27008_get_gain(data, gts, &gain);
if (ret)
return ret;
ret = bu27008_get_int_time_us(data);
if (ret < 0)
return ret;
return iio_gts_get_scale(gts, gain, ret, val, val2);
}
static int bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
int *val2)
{
int ret;
mutex_lock(&data->mutex);
ret = _bu27008_get_scale(data, ir, val, val2);
mutex_unlock(&data->mutex);
return ret;
}
static int bu27008_set_int_time(struct bu27008_data *data, int time)
{
int ret;
ret = iio_gts_find_sel_by_int_time(&data->gts, time);
if (ret < 0)
return ret;
return bu27008_set_int_time_sel(data, ret);
}
/* Try to change the time so that the scale is maintained */
static int bu27008_try_set_int_time(struct bu27008_data *data, int int_time_new)
{
int ret, old_time_sel, new_time_sel, old_gain, new_gain;
mutex_lock(&data->mutex);
ret = bu27008_get_int_time_sel(data, &old_time_sel);
if (ret < 0)
goto unlock_out;
if (!iio_gts_valid_time(&data->gts, int_time_new)) {
dev_dbg(data->dev, "Unsupported integration time %u\n",
int_time_new);
ret = -EINVAL;
goto unlock_out;
}
/* If we already use requested time, then we're done */
new_time_sel = iio_gts_find_sel_by_int_time(&data->gts, int_time_new);
if (new_time_sel == old_time_sel)
goto unlock_out;
ret = bu27008_get_gain(data, &data->gts, &old_gain);
if (ret)
goto unlock_out;
ret = iio_gts_find_new_gain_sel_by_old_gain_time(&data->gts, old_gain,
old_time_sel, new_time_sel, &new_gain);
if (ret) {
int scale1, scale2;
bool ok;
_bu27008_get_scale(data, false, &scale1, &scale2);
dev_dbg(data->dev,
"Can't support time %u with current scale %u %u\n",
int_time_new, scale1, scale2);
if (new_gain < 0)
goto unlock_out;
/*
* If caller requests for integration time change and we
* can't support the scale - then the caller should be
* prepared to 'pick up the pieces and deal with the
* fact that the scale changed'.
*/
ret = iio_find_closest_gain_low(&data->gts, new_gain, &ok);
if (!ok)
dev_dbg(data->dev, "optimal gain out of range\n");
if (ret < 0) {
dev_dbg(data->dev,
"Total gain increase. Risk of saturation");
ret = iio_gts_get_min_gain(&data->gts);
if (ret < 0)
goto unlock_out;
}
new_gain = ret;
dev_dbg(data->dev, "scale changed, new gain %u\n", new_gain);
}
ret = bu27008_set_gain(data, new_gain);
if (ret)
goto unlock_out;
ret = bu27008_set_int_time(data, int_time_new);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int bu27008_meas_set(struct bu27008_data *data, bool enable)
{
if (enable)
return regmap_set_bits(data->regmap, data->cd->meas_en_reg,
data->cd->meas_en_mask);
return regmap_clear_bits(data->regmap, data->cd->meas_en_reg,
data->cd->meas_en_mask);
}
static int bu27008_chan_cfg(struct bu27008_data *data,
struct iio_chan_spec const *chan)
{
int chan_sel;
if (chan->scan_index == BU27008_BLUE)
chan_sel = BU27008_BLUE2_CLEAR3;
else
chan_sel = BU27008_CLEAR2_IR3;
/*
* prepare bitfield for channel sel. The FIELD_PREP works only when
* mask is constant. In our case the mask is assigned based on the
* chip type. Hence the open-coded FIELD_PREP here. We don't bother
* zeroing the irrelevant bits though - update_bits takes care of that.
*/
chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;
return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
BU27008_MASK_CHAN_SEL, chan_sel);
}
static int bu27008_read_one(struct bu27008_data *data, struct iio_dev *idev,
struct iio_chan_spec const *chan, int *val, int *val2)
{
int ret, int_time;
ret = bu27008_chan_cfg(data, chan);
if (ret)
return ret;
ret = bu27008_meas_set(data, true);
if (ret)
return ret;
ret = bu27008_get_int_time_us(data);
if (ret < 0)
int_time = BU27008_MEAS_TIME_MAX_MS;
else
int_time = ret / USEC_PER_MSEC;
msleep(int_time);
ret = bu27008_chan_read_data(data, chan->address, val);
if (!ret)
ret = IIO_VAL_INT;
if (bu27008_meas_set(data, false))
dev_warn(data->dev, "measurement disabling failed\n");
return ret;
}
#define BU27008_LUX_DATA_RED 0
#define BU27008_LUX_DATA_GREEN 1
#define BU27008_LUX_DATA_BLUE 2
#define BU27008_LUX_DATA_IR 3
#define LUX_DATA_SIZE (BU27008_NUM_HW_CHANS * sizeof(__le16))
static int bu27008_read_lux_chans(struct bu27008_data *data, unsigned int time,
__le16 *chan_data)
{
int ret, chan_sel, tmpret, valid;
chan_sel = BU27008_BLUE2_IR3 << (ffs(data->cd->chan_sel_mask) - 1);
ret = regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
data->cd->chan_sel_mask, chan_sel);
if (ret)
return ret;
ret = bu27008_meas_set(data, true);
if (ret)
return ret;
msleep(time / USEC_PER_MSEC);
ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg,
valid, (valid & BU27008_MASK_VALID),
BU27008_VALID_RESULT_WAIT_QUANTA_US,
BU27008_MAX_VALID_RESULT_WAIT_US);
if (ret)
goto out;
ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, chan_data,
LUX_DATA_SIZE);
if (ret)
goto out;
out:
tmpret = bu27008_meas_set(data, false);
if (tmpret)
dev_warn(data->dev, "Stopping measurement failed\n");
return ret;
}
/*
* Following equation for computing lux out of register values was given by
* ROHM HW colleagues;
*
* Red = RedData*1024 / Gain * 20 / meas_mode
* Green = GreenData* 1024 / Gain * 20 / meas_mode
* Blue = BlueData* 1024 / Gain * 20 / meas_mode
* IR = IrData* 1024 / Gain * 20 / meas_mode
*
* where meas_mode is the integration time in mS / 10
*
* IRratio = (IR > 0.18 * Green) ? 0 : 1
*
* Lx = max(c1*Red + c2*Green + c3*Blue,0)
*
* for
* IRratio 0: c1 = -0.00002237, c2 = 0.0003219, c3 = -0.000120371
* IRratio 1: c1 = -0.00001074, c2 = 0.000305415, c3 = -0.000129367
*/
/*
* The max chan data is 0xffff. When we multiply it by 1024 * 20, we'll get
* 0x4FFFB000 which still fits in 32-bit integer. This won't overflow.
*/
#define NORM_CHAN_DATA_FOR_LX_CALC(chan, gain, time) (le16_to_cpu(chan) * \
1024 * 20 / (gain) / (time))
static u64 bu27008_calc_nlux(struct bu27008_data *data, __le16 *lux_data,
unsigned int gain, unsigned int gain_ir, unsigned int time)
{
unsigned int red, green, blue, ir;
s64 c1, c2, c3, nlux;
time /= 10000;
ir = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_IR], gain_ir, time);
red = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_RED], gain, time);
green = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_GREEN], gain, time);
blue = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_BLUE], gain, time);
if ((u64)ir * 100LLU > (u64)green * 18LLU) {
c1 = -22370;
c2 = 321900;
c3 = -120371;
} else {
c1 = -10740;
c2 = 305415;
c3 = -129367;
}
nlux = c1 * red + c2 * green + c3 * blue;
return max_t(s64, 0, nlux);
}
static int bu27008_get_time_n_gains(struct bu27008_data *data,
unsigned int *gain, unsigned int *gain_ir, unsigned int *time)
{
int ret;
ret = bu27008_get_gain(data, &data->gts, gain);
if (ret < 0)
return ret;
ret = bu27008_get_gain(data, &data->gts_ir, gain_ir);
if (ret < 0)
return ret;
ret = bu27008_get_int_time_us(data);
if (ret < 0)
return ret;
/* Max integration time is 400000. Fits in signed int. */
*time = ret;
return 0;
}
struct bu27008_buf {
__le16 chan[BU27008_NUM_HW_CHANS];
u64 lux __aligned(8);
s64 ts __aligned(8);
};
static int bu27008_buffer_fill_lux(struct bu27008_data *data,
struct bu27008_buf *raw)
{
unsigned int gain, gain_ir, time;
int ret;
ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time);
if (ret)
return ret;
raw->lux = bu27008_calc_nlux(data, raw->chan, gain, gain_ir, time);
return 0;
}
static int bu27008_read_lux(struct bu27008_data *data, struct iio_dev *idev,
struct iio_chan_spec const *chan,
int *val, int *val2)
{
__le16 lux_data[BU27008_NUM_HW_CHANS];
unsigned int gain, gain_ir, time;
u64 nlux;
int ret;
ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time);
if (ret)
return ret;
ret = bu27008_read_lux_chans(data, time, lux_data);
if (ret)
return ret;
nlux = bu27008_calc_nlux(data, lux_data, gain, gain_ir, time);
*val = (int)nlux;
*val2 = nlux >> 32LLU;
return IIO_VAL_INT_64;
}
static int bu27008_read_raw(struct iio_dev *idev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bu27008_data *data = iio_priv(idev);
int busy, ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
busy = iio_device_claim_direct_mode(idev);
if (busy)
return -EBUSY;
mutex_lock(&data->mutex);
if (chan->type == IIO_LIGHT)
ret = bu27008_read_lux(data, idev, chan, val, val2);
else
ret = bu27008_read_one(data, idev, chan, val, val2);
mutex_unlock(&data->mutex);
iio_device_release_direct_mode(idev);
return ret;
case IIO_CHAN_INFO_SCALE:
if (chan->type == IIO_LIGHT) {
*val = 0;
*val2 = 1;
return IIO_VAL_INT_PLUS_NANO;
}
ret = bu27008_get_scale(data, chan->scan_index == BU27008_IR,
val, val2);
if (ret)
return ret;
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_INT_TIME:
ret = bu27008_get_int_time_us(data);
if (ret < 0)
return ret;
*val = 0;
*val2 = ret;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
/* Called if the new scale could not be supported with existing int-time */
static int bu27008_try_find_new_time_gain(struct bu27008_data *data, int val,
int val2, int *gain_sel)
{
int i, ret, new_time_sel;
for (i = 0; i < data->gts.num_itime; i++) {
new_time_sel = data->gts.itime_table[i].sel;
ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts,
new_time_sel, val, val2, gain_sel);
if (!ret)
break;
}
if (i == data->gts.num_itime) {
dev_err(data->dev, "Can't support scale %u %u\n", val, val2);
return -EINVAL;
}
return bu27008_set_int_time_sel(data, new_time_sel);
}
static int bu27008_set_scale(struct bu27008_data *data,
struct iio_chan_spec const *chan,
int val, int val2)
{
int ret, gain_sel, time_sel;
if (chan->scan_index == BU27008_IR)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bu27008_get_int_time_sel(data, &time_sel);
if (ret < 0)
goto unlock_out;
ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel,
val, val2, &gain_sel);
if (ret) {
ret = bu27008_try_find_new_time_gain(data, val, val2, &gain_sel);
if (ret)
goto unlock_out;
}
ret = data->cd->write_gain_sel(data, gain_sel);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int bu27008_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_INT_TIME:
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int bu27008_write_raw(struct iio_dev *idev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bu27008_data *data = iio_priv(idev);
int ret;
/*
* Do not allow changing scale when measurement is ongoing as doing so
* could make values in the buffer inconsistent.
*/
ret = iio_device_claim_direct_mode(idev);
if (ret)
return ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
ret = bu27008_set_scale(data, chan, val, val2);
break;
case IIO_CHAN_INFO_INT_TIME:
if (val) {
ret = -EINVAL;
break;
}
ret = bu27008_try_set_int_time(data, val2);
break;
default:
ret = -EINVAL;
break;
}
iio_device_release_direct_mode(idev);
return ret;
}
static int bu27008_read_avail(struct iio_dev *idev,
struct iio_chan_spec const *chan, const int **vals,
int *type, int *length, long mask)
{
struct bu27008_data *data = iio_priv(idev);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
return iio_gts_avail_times(&data->gts, vals, type, length);
case IIO_CHAN_INFO_SCALE:
if (chan->channel2 == IIO_MOD_LIGHT_IR)
return iio_gts_all_avail_scales(&data->gts_ir, vals,
type, length);
return iio_gts_all_avail_scales(&data->gts, vals, type, length);
default:
return -EINVAL;
}
}
static int bu27008_update_scan_mode(struct iio_dev *idev,
const unsigned long *scan_mask)
{
struct bu27008_data *data = iio_priv(idev);
int chan_sel;
/* Configure channel selection */
if (test_bit(BU27008_BLUE, idev->active_scan_mask)) {
if (test_bit(BU27008_CLEAR, idev->active_scan_mask))
chan_sel = BU27008_BLUE2_CLEAR3;
else
chan_sel = BU27008_BLUE2_IR3;
} else {
chan_sel = BU27008_CLEAR2_IR3;
}
chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;
return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
data->cd->chan_sel_mask, chan_sel);
}
static const struct iio_info bu27008_info = {
.read_raw = &bu27008_read_raw,
.write_raw = &bu27008_write_raw,
.write_raw_get_fmt = &bu27008_write_raw_get_fmt,
.read_avail = &bu27008_read_avail,
.update_scan_mode = bu27008_update_scan_mode,
.validate_trigger = iio_validate_own_trigger,
};
static int bu27008_trigger_set_state(struct iio_trigger *trig, bool state)
{
struct bu27008_data *data = iio_trigger_get_drvdata(trig);
int ret;
if (state)
ret = regmap_set_bits(data->regmap, data->cd->drdy_en_reg,
data->cd->drdy_en_mask);
else
ret = regmap_clear_bits(data->regmap, data->cd->drdy_en_reg,
data->cd->drdy_en_mask);
if (ret)
dev_err(data->dev, "Failed to set trigger state\n");
return ret;
}
static void bu27008_trigger_reenable(struct iio_trigger *trig)
{
struct bu27008_data *data = iio_trigger_get_drvdata(trig);
enable_irq(data->irq);
}
static const struct iio_trigger_ops bu27008_trigger_ops = {
.set_trigger_state = bu27008_trigger_set_state,
.reenable = bu27008_trigger_reenable,
};
static irqreturn_t bu27008_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *idev = pf->indio_dev;
struct bu27008_data *data = iio_priv(idev);
struct bu27008_buf raw;
int ret, dummy;
memset(&raw, 0, sizeof(raw));
/*
* After some measurements, it seems reading the
* BU27008_REG_MODE_CONTROL3 debounces the IRQ line
*/
ret = regmap_read(data->regmap, data->cd->valid_reg, &dummy);
if (ret < 0)
goto err_read;
ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, &raw.chan,
sizeof(raw.chan));
if (ret < 0)
goto err_read;
if (test_bit(BU27008_LUX, idev->active_scan_mask)) {
ret = bu27008_buffer_fill_lux(data, &raw);
if (ret)
goto err_read;
}
iio_push_to_buffers_with_timestamp(idev, &raw, pf->timestamp);
err_read:
iio_trigger_notify_done(idev->trig);
return IRQ_HANDLED;
}
static int bu27008_buffer_preenable(struct iio_dev *idev)
{
struct bu27008_data *data = iio_priv(idev);
return bu27008_meas_set(data, true);
}
static int bu27008_buffer_postdisable(struct iio_dev *idev)
{
struct bu27008_data *data = iio_priv(idev);
return bu27008_meas_set(data, false);
}
static const struct iio_buffer_setup_ops bu27008_buffer_ops = {
.preenable = bu27008_buffer_preenable,
.postdisable = bu27008_buffer_postdisable,
};
static irqreturn_t bu27008_data_rdy_poll(int irq, void *private)
{
/*
* The BU27008 keeps IRQ asserted until we read the VALID bit from
* a register. We need to keep the IRQ disabled until then.
*/
disable_irq_nosync(irq);
iio_trigger_poll(private);
return IRQ_HANDLED;
}
static int bu27008_setup_trigger(struct bu27008_data *data, struct iio_dev *idev)
{
struct iio_trigger *itrig;
char *name;
int ret;
ret = devm_iio_triggered_buffer_setup(data->dev, idev,
&iio_pollfunc_store_time,
bu27008_trigger_handler,
&bu27008_buffer_ops);
if (ret)
return dev_err_probe(data->dev, ret,
"iio_triggered_buffer_setup_ext FAIL\n");
itrig = devm_iio_trigger_alloc(data->dev, "%sdata-rdy-dev%d",
idev->name, iio_device_id(idev));
if (!itrig)
return -ENOMEM;
data->trig = itrig;
itrig->ops = &bu27008_trigger_ops;
iio_trigger_set_drvdata(itrig, data);
name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-bu27008",
dev_name(data->dev));
ret = devm_request_irq(data->dev, data->irq,
&bu27008_data_rdy_poll,
0, name, itrig);
if (ret)
return dev_err_probe(data->dev, ret, "Could not request IRQ\n");
ret = devm_iio_trigger_register(data->dev, itrig);
if (ret)
return dev_err_probe(data->dev, ret,
"Trigger registration failed\n");
/* set default trigger */
idev->trig = iio_trigger_get(itrig);
return 0;
}
static int bu27008_probe(struct i2c_client *i2c)
{
struct device *dev = &i2c->dev;
struct bu27008_data *data;
struct regmap *regmap;
unsigned int part_id, reg;
struct iio_dev *idev;
int ret;
idev = devm_iio_device_alloc(dev, sizeof(*data));
if (!idev)
return -ENOMEM;
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret, "Failed to get regulator\n");
data = iio_priv(idev);
data->cd = device_get_match_data(&i2c->dev);
if (!data->cd)
return -ENODEV;
regmap = devm_regmap_init_i2c(i2c, data->cd->regmap_cfg);
if (IS_ERR(regmap))
return dev_err_probe(dev, PTR_ERR(regmap),
"Failed to initialize Regmap\n");
ret = regmap_read(regmap, BU27008_REG_SYSTEM_CONTROL, &reg);
if (ret)
return dev_err_probe(dev, ret, "Failed to access sensor\n");
part_id = FIELD_GET(BU27008_MASK_PART_ID, reg);
if (part_id != data->cd->part_id)
dev_warn(dev, "unknown device 0x%x\n", part_id);
ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains,
data->cd->num_gains, data->cd->itimes,
data->cd->num_itimes, &data->gts);
if (ret)
return ret;
ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains_ir,
data->cd->num_gains_ir, data->cd->itimes,
data->cd->num_itimes, &data->gts_ir);
if (ret)
return ret;
mutex_init(&data->mutex);
data->regmap = regmap;
data->dev = dev;
data->irq = i2c->irq;
idev->channels = bu27008_channels;
idev->num_channels = ARRAY_SIZE(bu27008_channels);
idev->name = data->cd->name;
idev->info = &bu27008_info;
idev->modes = INDIO_DIRECT_MODE;
idev->available_scan_masks = bu27008_scan_masks;
ret = data->cd->chip_init(data);
if (ret)
return ret;
if (i2c->irq) {
ret = bu27008_setup_trigger(data, idev);
if (ret)
return ret;
} else {
dev_info(dev, "No IRQ, buffered mode disabled\n");
}
ret = devm_iio_device_register(dev, idev);
if (ret)
return dev_err_probe(dev, ret,
"Unable to register iio device\n");
return 0;
}
static const struct of_device_id bu27008_of_match[] = {
{ .compatible = "rohm,bu27008", .data = &bu27008_chip },
{ .compatible = "rohm,bu27010", .data = &bu27010_chip },
{ }
};
MODULE_DEVICE_TABLE(of, bu27008_of_match);
static struct i2c_driver bu27008_i2c_driver = {
.driver = {
.name = "bu27008",
.of_match_table = bu27008_of_match,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.probe = bu27008_probe,
};
module_i2c_driver(bu27008_i2c_driver);
MODULE_DESCRIPTION("ROHM BU27008 and BU27010 colour sensor driver");
MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(IIO_GTS_HELPER);