linux/tools/perf/util/auxtrace.c
Ian Rogers 3e5deb708c perf cpumap: Clean up use of perf_cpu_map__has_any_cpu_or_is_empty
Most uses of what was perf_cpu_map__empty but is now
perf_cpu_map__has_any_cpu_or_is_empty want to do something with the
CPU map if it contains CPUs. Replace uses of
perf_cpu_map__has_any_cpu_or_is_empty with other helpers so that CPUs
within the map can be handled.

Reviewed-by: James Clark <james.clark@arm.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Andrew Jones <ajones@ventanamicro.com>
Cc: André Almeida <andrealmeid@igalia.com>
Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Atish Patra <atishp@rivosinc.com>
Cc: Changbin Du <changbin.du@huawei.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paran Lee <p4ranlee@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Sandipan Das <sandipan.das@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Jihong <yangjihong1@huawei.com>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Link: https://lore.kernel.org/r/20240202234057.2085863-6-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-03-21 10:41:28 -03:00

2876 lines
65 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* auxtrace.c: AUX area trace support
* Copyright (c) 2013-2015, Intel Corporation.
*/
#include <inttypes.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <stdbool.h>
#include <string.h>
#include <limits.h>
#include <errno.h>
#include <linux/kernel.h>
#include <linux/perf_event.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/log2.h>
#include <linux/string.h>
#include <linux/time64.h>
#include <sys/param.h>
#include <stdlib.h>
#include <stdio.h>
#include <linux/list.h>
#include <linux/zalloc.h>
#include "config.h"
#include "evlist.h"
#include "dso.h"
#include "map.h"
#include "pmu.h"
#include "evsel.h"
#include "evsel_config.h"
#include "symbol.h"
#include "util/perf_api_probe.h"
#include "util/synthetic-events.h"
#include "thread_map.h"
#include "asm/bug.h"
#include "auxtrace.h"
#include <linux/hash.h>
#include "event.h"
#include "record.h"
#include "session.h"
#include "debug.h"
#include <subcmd/parse-options.h>
#include "cs-etm.h"
#include "intel-pt.h"
#include "intel-bts.h"
#include "arm-spe.h"
#include "hisi-ptt.h"
#include "s390-cpumsf.h"
#include "util/mmap.h"
#include <linux/ctype.h>
#include "symbol/kallsyms.h"
#include <internal/lib.h>
#include "util/sample.h"
/*
* Make a group from 'leader' to 'last', requiring that the events were not
* already grouped to a different leader.
*/
static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
{
struct evsel *evsel;
bool grp;
if (!evsel__is_group_leader(leader))
return -EINVAL;
grp = false;
evlist__for_each_entry(evlist, evsel) {
if (grp) {
if (!(evsel__leader(evsel) == leader ||
(evsel__leader(evsel) == evsel &&
evsel->core.nr_members <= 1)))
return -EINVAL;
} else if (evsel == leader) {
grp = true;
}
if (evsel == last)
break;
}
grp = false;
evlist__for_each_entry(evlist, evsel) {
if (grp) {
if (!evsel__has_leader(evsel, leader)) {
evsel__set_leader(evsel, leader);
if (leader->core.nr_members < 1)
leader->core.nr_members = 1;
leader->core.nr_members += 1;
}
} else if (evsel == leader) {
grp = true;
}
if (evsel == last)
break;
}
return 0;
}
static bool auxtrace__dont_decode(struct perf_session *session)
{
return !session->itrace_synth_opts ||
session->itrace_synth_opts->dont_decode;
}
int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
struct auxtrace_mmap_params *mp,
void *userpg, int fd)
{
struct perf_event_mmap_page *pc = userpg;
WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
mm->userpg = userpg;
mm->mask = mp->mask;
mm->len = mp->len;
mm->prev = 0;
mm->idx = mp->idx;
mm->tid = mp->tid;
mm->cpu = mp->cpu.cpu;
if (!mp->len || !mp->mmap_needed) {
mm->base = NULL;
return 0;
}
pc->aux_offset = mp->offset;
pc->aux_size = mp->len;
mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
if (mm->base == MAP_FAILED) {
pr_debug2("failed to mmap AUX area\n");
mm->base = NULL;
return -1;
}
return 0;
}
void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
{
if (mm->base) {
munmap(mm->base, mm->len);
mm->base = NULL;
}
}
void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
off_t auxtrace_offset,
unsigned int auxtrace_pages,
bool auxtrace_overwrite)
{
if (auxtrace_pages) {
mp->offset = auxtrace_offset;
mp->len = auxtrace_pages * (size_t)page_size;
mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
pr_debug2("AUX area mmap length %zu\n", mp->len);
} else {
mp->len = 0;
}
}
void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
struct evlist *evlist,
struct evsel *evsel, int idx)
{
bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
mp->mmap_needed = evsel->needs_auxtrace_mmap;
if (!mp->mmap_needed)
return;
mp->idx = idx;
if (per_cpu) {
mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
if (evlist->core.threads)
mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
else
mp->tid = -1;
} else {
mp->cpu.cpu = -1;
mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
}
}
#define AUXTRACE_INIT_NR_QUEUES 32
static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
{
struct auxtrace_queue *queue_array;
unsigned int max_nr_queues, i;
max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
if (nr_queues > max_nr_queues)
return NULL;
queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
if (!queue_array)
return NULL;
for (i = 0; i < nr_queues; i++) {
INIT_LIST_HEAD(&queue_array[i].head);
queue_array[i].priv = NULL;
}
return queue_array;
}
int auxtrace_queues__init(struct auxtrace_queues *queues)
{
queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
if (!queues->queue_array)
return -ENOMEM;
return 0;
}
static int auxtrace_queues__grow(struct auxtrace_queues *queues,
unsigned int new_nr_queues)
{
unsigned int nr_queues = queues->nr_queues;
struct auxtrace_queue *queue_array;
unsigned int i;
if (!nr_queues)
nr_queues = AUXTRACE_INIT_NR_QUEUES;
while (nr_queues && nr_queues < new_nr_queues)
nr_queues <<= 1;
if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
return -EINVAL;
queue_array = auxtrace_alloc_queue_array(nr_queues);
if (!queue_array)
return -ENOMEM;
for (i = 0; i < queues->nr_queues; i++) {
list_splice_tail(&queues->queue_array[i].head,
&queue_array[i].head);
queue_array[i].tid = queues->queue_array[i].tid;
queue_array[i].cpu = queues->queue_array[i].cpu;
queue_array[i].set = queues->queue_array[i].set;
queue_array[i].priv = queues->queue_array[i].priv;
}
queues->nr_queues = nr_queues;
queues->queue_array = queue_array;
return 0;
}
static void *auxtrace_copy_data(u64 size, struct perf_session *session)
{
int fd = perf_data__fd(session->data);
void *p;
ssize_t ret;
if (size > SSIZE_MAX)
return NULL;
p = malloc(size);
if (!p)
return NULL;
ret = readn(fd, p, size);
if (ret != (ssize_t)size) {
free(p);
return NULL;
}
return p;
}
static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
unsigned int idx,
struct auxtrace_buffer *buffer)
{
struct auxtrace_queue *queue;
int err;
if (idx >= queues->nr_queues) {
err = auxtrace_queues__grow(queues, idx + 1);
if (err)
return err;
}
queue = &queues->queue_array[idx];
if (!queue->set) {
queue->set = true;
queue->tid = buffer->tid;
queue->cpu = buffer->cpu.cpu;
}
buffer->buffer_nr = queues->next_buffer_nr++;
list_add_tail(&buffer->list, &queue->head);
queues->new_data = true;
queues->populated = true;
return 0;
}
/* Limit buffers to 32MiB on 32-bit */
#define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
unsigned int idx,
struct auxtrace_buffer *buffer)
{
u64 sz = buffer->size;
bool consecutive = false;
struct auxtrace_buffer *b;
int err;
while (sz > BUFFER_LIMIT_FOR_32_BIT) {
b = memdup(buffer, sizeof(struct auxtrace_buffer));
if (!b)
return -ENOMEM;
b->size = BUFFER_LIMIT_FOR_32_BIT;
b->consecutive = consecutive;
err = auxtrace_queues__queue_buffer(queues, idx, b);
if (err) {
auxtrace_buffer__free(b);
return err;
}
buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
sz -= BUFFER_LIMIT_FOR_32_BIT;
consecutive = true;
}
buffer->size = sz;
buffer->consecutive = consecutive;
return 0;
}
static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
{
unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
}
static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
struct perf_session *session,
unsigned int idx,
struct auxtrace_buffer *buffer,
struct auxtrace_buffer **buffer_ptr)
{
int err = -ENOMEM;
if (filter_cpu(session, buffer->cpu))
return 0;
buffer = memdup(buffer, sizeof(*buffer));
if (!buffer)
return -ENOMEM;
if (session->one_mmap) {
buffer->data = buffer->data_offset - session->one_mmap_offset +
session->one_mmap_addr;
} else if (perf_data__is_pipe(session->data)) {
buffer->data = auxtrace_copy_data(buffer->size, session);
if (!buffer->data)
goto out_free;
buffer->data_needs_freeing = true;
} else if (BITS_PER_LONG == 32 &&
buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
err = auxtrace_queues__split_buffer(queues, idx, buffer);
if (err)
goto out_free;
}
err = auxtrace_queues__queue_buffer(queues, idx, buffer);
if (err)
goto out_free;
/* FIXME: Doesn't work for split buffer */
if (buffer_ptr)
*buffer_ptr = buffer;
return 0;
out_free:
auxtrace_buffer__free(buffer);
return err;
}
int auxtrace_queues__add_event(struct auxtrace_queues *queues,
struct perf_session *session,
union perf_event *event, off_t data_offset,
struct auxtrace_buffer **buffer_ptr)
{
struct auxtrace_buffer buffer = {
.pid = -1,
.tid = event->auxtrace.tid,
.cpu = { event->auxtrace.cpu },
.data_offset = data_offset,
.offset = event->auxtrace.offset,
.reference = event->auxtrace.reference,
.size = event->auxtrace.size,
};
unsigned int idx = event->auxtrace.idx;
return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
buffer_ptr);
}
static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
struct perf_session *session,
off_t file_offset, size_t sz)
{
union perf_event *event;
int err;
char buf[PERF_SAMPLE_MAX_SIZE];
err = perf_session__peek_event(session, file_offset, buf,
PERF_SAMPLE_MAX_SIZE, &event, NULL);
if (err)
return err;
if (event->header.type == PERF_RECORD_AUXTRACE) {
if (event->header.size < sizeof(struct perf_record_auxtrace) ||
event->header.size != sz) {
err = -EINVAL;
goto out;
}
file_offset += event->header.size;
err = auxtrace_queues__add_event(queues, session, event,
file_offset, NULL);
}
out:
return err;
}
void auxtrace_queues__free(struct auxtrace_queues *queues)
{
unsigned int i;
for (i = 0; i < queues->nr_queues; i++) {
while (!list_empty(&queues->queue_array[i].head)) {
struct auxtrace_buffer *buffer;
buffer = list_entry(queues->queue_array[i].head.next,
struct auxtrace_buffer, list);
list_del_init(&buffer->list);
auxtrace_buffer__free(buffer);
}
}
zfree(&queues->queue_array);
queues->nr_queues = 0;
}
static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
unsigned int pos, unsigned int queue_nr,
u64 ordinal)
{
unsigned int parent;
while (pos) {
parent = (pos - 1) >> 1;
if (heap_array[parent].ordinal <= ordinal)
break;
heap_array[pos] = heap_array[parent];
pos = parent;
}
heap_array[pos].queue_nr = queue_nr;
heap_array[pos].ordinal = ordinal;
}
int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
u64 ordinal)
{
struct auxtrace_heap_item *heap_array;
if (queue_nr >= heap->heap_sz) {
unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
while (heap_sz <= queue_nr)
heap_sz <<= 1;
heap_array = realloc(heap->heap_array,
heap_sz * sizeof(struct auxtrace_heap_item));
if (!heap_array)
return -ENOMEM;
heap->heap_array = heap_array;
heap->heap_sz = heap_sz;
}
auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
return 0;
}
void auxtrace_heap__free(struct auxtrace_heap *heap)
{
zfree(&heap->heap_array);
heap->heap_cnt = 0;
heap->heap_sz = 0;
}
void auxtrace_heap__pop(struct auxtrace_heap *heap)
{
unsigned int pos, last, heap_cnt = heap->heap_cnt;
struct auxtrace_heap_item *heap_array;
if (!heap_cnt)
return;
heap->heap_cnt -= 1;
heap_array = heap->heap_array;
pos = 0;
while (1) {
unsigned int left, right;
left = (pos << 1) + 1;
if (left >= heap_cnt)
break;
right = left + 1;
if (right >= heap_cnt) {
heap_array[pos] = heap_array[left];
return;
}
if (heap_array[left].ordinal < heap_array[right].ordinal) {
heap_array[pos] = heap_array[left];
pos = left;
} else {
heap_array[pos] = heap_array[right];
pos = right;
}
}
last = heap_cnt - 1;
auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
heap_array[last].ordinal);
}
size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
struct evlist *evlist)
{
if (itr)
return itr->info_priv_size(itr, evlist);
return 0;
}
static int auxtrace_not_supported(void)
{
pr_err("AUX area tracing is not supported on this architecture\n");
return -EINVAL;
}
int auxtrace_record__info_fill(struct auxtrace_record *itr,
struct perf_session *session,
struct perf_record_auxtrace_info *auxtrace_info,
size_t priv_size)
{
if (itr)
return itr->info_fill(itr, session, auxtrace_info, priv_size);
return auxtrace_not_supported();
}
void auxtrace_record__free(struct auxtrace_record *itr)
{
if (itr)
itr->free(itr);
}
int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
{
if (itr && itr->snapshot_start)
return itr->snapshot_start(itr);
return 0;
}
int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
{
if (!on_exit && itr && itr->snapshot_finish)
return itr->snapshot_finish(itr);
return 0;
}
int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
struct auxtrace_mmap *mm,
unsigned char *data, u64 *head, u64 *old)
{
if (itr && itr->find_snapshot)
return itr->find_snapshot(itr, idx, mm, data, head, old);
return 0;
}
int auxtrace_record__options(struct auxtrace_record *itr,
struct evlist *evlist,
struct record_opts *opts)
{
if (itr) {
itr->evlist = evlist;
return itr->recording_options(itr, evlist, opts);
}
return 0;
}
u64 auxtrace_record__reference(struct auxtrace_record *itr)
{
if (itr)
return itr->reference(itr);
return 0;
}
int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
struct record_opts *opts, const char *str)
{
if (!str)
return 0;
/* PMU-agnostic options */
switch (*str) {
case 'e':
opts->auxtrace_snapshot_on_exit = true;
str++;
break;
default:
break;
}
if (itr && itr->parse_snapshot_options)
return itr->parse_snapshot_options(itr, opts, str);
pr_err("No AUX area tracing to snapshot\n");
return -EINVAL;
}
static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
{
bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
if (per_cpu_mmaps) {
struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
if (cpu_map_idx == -1)
return -EINVAL;
return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
}
return perf_evsel__enable_thread(&evsel->core, idx);
}
int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
{
struct evsel *evsel;
if (!itr->evlist || !itr->pmu)
return -EINVAL;
evlist__for_each_entry(itr->evlist, evsel) {
if (evsel->core.attr.type == itr->pmu->type) {
if (evsel->disabled)
return 0;
return evlist__enable_event_idx(itr->evlist, evsel, idx);
}
}
return -EINVAL;
}
/*
* Event record size is 16-bit which results in a maximum size of about 64KiB.
* Allow about 4KiB for the rest of the sample record, to give a maximum
* AUX area sample size of 60KiB.
*/
#define MAX_AUX_SAMPLE_SIZE (60 * 1024)
/* Arbitrary default size if no other default provided */
#define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
struct record_opts *opts)
{
struct evsel *evsel;
bool has_aux_leader = false;
u32 sz;
evlist__for_each_entry(evlist, evsel) {
sz = evsel->core.attr.aux_sample_size;
if (evsel__is_group_leader(evsel)) {
has_aux_leader = evsel__is_aux_event(evsel);
if (sz) {
if (has_aux_leader)
pr_err("Cannot add AUX area sampling to an AUX area event\n");
else
pr_err("Cannot add AUX area sampling to a group leader\n");
return -EINVAL;
}
}
if (sz > MAX_AUX_SAMPLE_SIZE) {
pr_err("AUX area sample size %u too big, max. %d\n",
sz, MAX_AUX_SAMPLE_SIZE);
return -EINVAL;
}
if (sz) {
if (!has_aux_leader) {
pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
return -EINVAL;
}
evsel__set_sample_bit(evsel, AUX);
opts->auxtrace_sample_mode = true;
} else {
evsel__reset_sample_bit(evsel, AUX);
}
}
if (!opts->auxtrace_sample_mode) {
pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
return -EINVAL;
}
if (!perf_can_aux_sample()) {
pr_err("AUX area sampling is not supported by kernel\n");
return -EINVAL;
}
return 0;
}
int auxtrace_parse_sample_options(struct auxtrace_record *itr,
struct evlist *evlist,
struct record_opts *opts, const char *str)
{
struct evsel_config_term *term;
struct evsel *aux_evsel;
bool has_aux_sample_size = false;
bool has_aux_leader = false;
struct evsel *evsel;
char *endptr;
unsigned long sz;
if (!str)
goto no_opt;
if (!itr) {
pr_err("No AUX area event to sample\n");
return -EINVAL;
}
sz = strtoul(str, &endptr, 0);
if (*endptr || sz > UINT_MAX) {
pr_err("Bad AUX area sampling option: '%s'\n", str);
return -EINVAL;
}
if (!sz)
sz = itr->default_aux_sample_size;
if (!sz)
sz = DEFAULT_AUX_SAMPLE_SIZE;
/* Set aux_sample_size based on --aux-sample option */
evlist__for_each_entry(evlist, evsel) {
if (evsel__is_group_leader(evsel)) {
has_aux_leader = evsel__is_aux_event(evsel);
} else if (has_aux_leader) {
evsel->core.attr.aux_sample_size = sz;
}
}
no_opt:
aux_evsel = NULL;
/* Override with aux_sample_size from config term */
evlist__for_each_entry(evlist, evsel) {
if (evsel__is_aux_event(evsel))
aux_evsel = evsel;
term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
if (term) {
has_aux_sample_size = true;
evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
/* If possible, group with the AUX event */
if (aux_evsel && evsel->core.attr.aux_sample_size)
evlist__regroup(evlist, aux_evsel, evsel);
}
}
if (!str && !has_aux_sample_size)
return 0;
if (!itr) {
pr_err("No AUX area event to sample\n");
return -EINVAL;
}
return auxtrace_validate_aux_sample_size(evlist, opts);
}
void auxtrace_regroup_aux_output(struct evlist *evlist)
{
struct evsel *evsel, *aux_evsel = NULL;
struct evsel_config_term *term;
evlist__for_each_entry(evlist, evsel) {
if (evsel__is_aux_event(evsel))
aux_evsel = evsel;
term = evsel__get_config_term(evsel, AUX_OUTPUT);
/* If possible, group with the AUX event */
if (term && aux_evsel)
evlist__regroup(evlist, aux_evsel, evsel);
}
}
struct auxtrace_record *__weak
auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
{
*err = 0;
return NULL;
}
static int auxtrace_index__alloc(struct list_head *head)
{
struct auxtrace_index *auxtrace_index;
auxtrace_index = malloc(sizeof(struct auxtrace_index));
if (!auxtrace_index)
return -ENOMEM;
auxtrace_index->nr = 0;
INIT_LIST_HEAD(&auxtrace_index->list);
list_add_tail(&auxtrace_index->list, head);
return 0;
}
void auxtrace_index__free(struct list_head *head)
{
struct auxtrace_index *auxtrace_index, *n;
list_for_each_entry_safe(auxtrace_index, n, head, list) {
list_del_init(&auxtrace_index->list);
free(auxtrace_index);
}
}
static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
{
struct auxtrace_index *auxtrace_index;
int err;
if (list_empty(head)) {
err = auxtrace_index__alloc(head);
if (err)
return NULL;
}
auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
err = auxtrace_index__alloc(head);
if (err)
return NULL;
auxtrace_index = list_entry(head->prev, struct auxtrace_index,
list);
}
return auxtrace_index;
}
int auxtrace_index__auxtrace_event(struct list_head *head,
union perf_event *event, off_t file_offset)
{
struct auxtrace_index *auxtrace_index;
size_t nr;
auxtrace_index = auxtrace_index__last(head);
if (!auxtrace_index)
return -ENOMEM;
nr = auxtrace_index->nr;
auxtrace_index->entries[nr].file_offset = file_offset;
auxtrace_index->entries[nr].sz = event->header.size;
auxtrace_index->nr += 1;
return 0;
}
static int auxtrace_index__do_write(int fd,
struct auxtrace_index *auxtrace_index)
{
struct auxtrace_index_entry ent;
size_t i;
for (i = 0; i < auxtrace_index->nr; i++) {
ent.file_offset = auxtrace_index->entries[i].file_offset;
ent.sz = auxtrace_index->entries[i].sz;
if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
return -errno;
}
return 0;
}
int auxtrace_index__write(int fd, struct list_head *head)
{
struct auxtrace_index *auxtrace_index;
u64 total = 0;
int err;
list_for_each_entry(auxtrace_index, head, list)
total += auxtrace_index->nr;
if (writen(fd, &total, sizeof(total)) != sizeof(total))
return -errno;
list_for_each_entry(auxtrace_index, head, list) {
err = auxtrace_index__do_write(fd, auxtrace_index);
if (err)
return err;
}
return 0;
}
static int auxtrace_index__process_entry(int fd, struct list_head *head,
bool needs_swap)
{
struct auxtrace_index *auxtrace_index;
struct auxtrace_index_entry ent;
size_t nr;
if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
return -1;
auxtrace_index = auxtrace_index__last(head);
if (!auxtrace_index)
return -1;
nr = auxtrace_index->nr;
if (needs_swap) {
auxtrace_index->entries[nr].file_offset =
bswap_64(ent.file_offset);
auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
} else {
auxtrace_index->entries[nr].file_offset = ent.file_offset;
auxtrace_index->entries[nr].sz = ent.sz;
}
auxtrace_index->nr = nr + 1;
return 0;
}
int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
bool needs_swap)
{
struct list_head *head = &session->auxtrace_index;
u64 nr;
if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
return -1;
if (needs_swap)
nr = bswap_64(nr);
if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
return -1;
while (nr--) {
int err;
err = auxtrace_index__process_entry(fd, head, needs_swap);
if (err)
return -1;
}
return 0;
}
static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
struct perf_session *session,
struct auxtrace_index_entry *ent)
{
return auxtrace_queues__add_indexed_event(queues, session,
ent->file_offset, ent->sz);
}
int auxtrace_queues__process_index(struct auxtrace_queues *queues,
struct perf_session *session)
{
struct auxtrace_index *auxtrace_index;
struct auxtrace_index_entry *ent;
size_t i;
int err;
if (auxtrace__dont_decode(session))
return 0;
list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
for (i = 0; i < auxtrace_index->nr; i++) {
ent = &auxtrace_index->entries[i];
err = auxtrace_queues__process_index_entry(queues,
session,
ent);
if (err)
return err;
}
}
return 0;
}
struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
struct auxtrace_buffer *buffer)
{
if (buffer) {
if (list_is_last(&buffer->list, &queue->head))
return NULL;
return list_entry(buffer->list.next, struct auxtrace_buffer,
list);
} else {
if (list_empty(&queue->head))
return NULL;
return list_entry(queue->head.next, struct auxtrace_buffer,
list);
}
}
struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
struct perf_sample *sample,
struct perf_session *session)
{
struct perf_sample_id *sid;
unsigned int idx;
u64 id;
id = sample->id;
if (!id)
return NULL;
sid = evlist__id2sid(session->evlist, id);
if (!sid)
return NULL;
idx = sid->idx;
if (idx >= queues->nr_queues)
return NULL;
return &queues->queue_array[idx];
}
int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
struct perf_session *session,
struct perf_sample *sample, u64 data_offset,
u64 reference)
{
struct auxtrace_buffer buffer = {
.pid = -1,
.data_offset = data_offset,
.reference = reference,
.size = sample->aux_sample.size,
};
struct perf_sample_id *sid;
u64 id = sample->id;
unsigned int idx;
if (!id)
return -EINVAL;
sid = evlist__id2sid(session->evlist, id);
if (!sid)
return -ENOENT;
idx = sid->idx;
buffer.tid = sid->tid;
buffer.cpu = sid->cpu;
return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
}
struct queue_data {
bool samples;
bool events;
};
static int auxtrace_queue_data_cb(struct perf_session *session,
union perf_event *event, u64 offset,
void *data)
{
struct queue_data *qd = data;
struct perf_sample sample;
int err;
if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
if (event->header.size < sizeof(struct perf_record_auxtrace))
return -EINVAL;
offset += event->header.size;
return session->auxtrace->queue_data(session, NULL, event,
offset);
}
if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
return 0;
err = evlist__parse_sample(session->evlist, event, &sample);
if (err)
return err;
if (!sample.aux_sample.size)
return 0;
offset += sample.aux_sample.data - (void *)event;
return session->auxtrace->queue_data(session, &sample, NULL, offset);
}
int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
{
struct queue_data qd = {
.samples = samples,
.events = events,
};
if (auxtrace__dont_decode(session))
return 0;
if (perf_data__is_pipe(session->data))
return 0;
if (!session->auxtrace || !session->auxtrace->queue_data)
return -EINVAL;
return perf_session__peek_events(session, session->header.data_offset,
session->header.data_size,
auxtrace_queue_data_cb, &qd);
}
void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
{
int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
size_t adj = buffer->data_offset & (page_size - 1);
size_t size = buffer->size + adj;
off_t file_offset = buffer->data_offset - adj;
void *addr;
if (buffer->data)
return buffer->data;
addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
if (addr == MAP_FAILED)
return NULL;
buffer->mmap_addr = addr;
buffer->mmap_size = size;
buffer->data = addr + adj;
return buffer->data;
}
void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
{
if (!buffer->data || !buffer->mmap_addr)
return;
munmap(buffer->mmap_addr, buffer->mmap_size);
buffer->mmap_addr = NULL;
buffer->mmap_size = 0;
buffer->data = NULL;
buffer->use_data = NULL;
}
void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
{
auxtrace_buffer__put_data(buffer);
if (buffer->data_needs_freeing) {
buffer->data_needs_freeing = false;
zfree(&buffer->data);
buffer->use_data = NULL;
buffer->size = 0;
}
}
void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
{
auxtrace_buffer__drop_data(buffer);
free(buffer);
}
void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
int code, int cpu, pid_t pid, pid_t tid, u64 ip,
const char *msg, u64 timestamp,
pid_t machine_pid, int vcpu)
{
size_t size;
memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
auxtrace_error->type = type;
auxtrace_error->code = code;
auxtrace_error->cpu = cpu;
auxtrace_error->pid = pid;
auxtrace_error->tid = tid;
auxtrace_error->fmt = 1;
auxtrace_error->ip = ip;
auxtrace_error->time = timestamp;
strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
if (machine_pid) {
auxtrace_error->fmt = 2;
auxtrace_error->machine_pid = machine_pid;
auxtrace_error->vcpu = vcpu;
size = sizeof(*auxtrace_error);
} else {
size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
strlen(auxtrace_error->msg) + 1;
}
auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
}
void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
int code, int cpu, pid_t pid, pid_t tid, u64 ip,
const char *msg, u64 timestamp)
{
auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
ip, msg, timestamp, 0, -1);
}
int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
struct perf_tool *tool,
struct perf_session *session,
perf_event__handler_t process)
{
union perf_event *ev;
size_t priv_size;
int err;
pr_debug2("Synthesizing auxtrace information\n");
priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
if (!ev)
return -ENOMEM;
ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
priv_size;
err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
priv_size);
if (err)
goto out_free;
err = process(tool, ev, NULL, NULL);
out_free:
free(ev);
return err;
}
static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
{
struct evsel *new_leader = NULL;
struct evsel *evsel;
/* Find new leader for the group */
evlist__for_each_entry(evlist, evsel) {
if (!evsel__has_leader(evsel, leader) || evsel == leader)
continue;
if (!new_leader)
new_leader = evsel;
evsel__set_leader(evsel, new_leader);
}
/* Update group information */
if (new_leader) {
zfree(&new_leader->group_name);
new_leader->group_name = leader->group_name;
leader->group_name = NULL;
new_leader->core.nr_members = leader->core.nr_members - 1;
leader->core.nr_members = 1;
}
}
static void unleader_auxtrace(struct perf_session *session)
{
struct evsel *evsel;
evlist__for_each_entry(session->evlist, evsel) {
if (auxtrace__evsel_is_auxtrace(session, evsel) &&
evsel__is_group_leader(evsel)) {
unleader_evsel(session->evlist, evsel);
}
}
}
int perf_event__process_auxtrace_info(struct perf_session *session,
union perf_event *event)
{
enum auxtrace_type type = event->auxtrace_info.type;
int err;
if (dump_trace)
fprintf(stdout, " type: %u\n", type);
switch (type) {
case PERF_AUXTRACE_INTEL_PT:
err = intel_pt_process_auxtrace_info(event, session);
break;
case PERF_AUXTRACE_INTEL_BTS:
err = intel_bts_process_auxtrace_info(event, session);
break;
case PERF_AUXTRACE_ARM_SPE:
err = arm_spe_process_auxtrace_info(event, session);
break;
case PERF_AUXTRACE_CS_ETM:
err = cs_etm__process_auxtrace_info(event, session);
break;
case PERF_AUXTRACE_S390_CPUMSF:
err = s390_cpumsf_process_auxtrace_info(event, session);
break;
case PERF_AUXTRACE_HISI_PTT:
err = hisi_ptt_process_auxtrace_info(event, session);
break;
case PERF_AUXTRACE_UNKNOWN:
default:
return -EINVAL;
}
if (err)
return err;
unleader_auxtrace(session);
return 0;
}
s64 perf_event__process_auxtrace(struct perf_session *session,
union perf_event *event)
{
s64 err;
if (dump_trace)
fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
event->auxtrace.size, event->auxtrace.offset,
event->auxtrace.reference, event->auxtrace.idx,
event->auxtrace.tid, event->auxtrace.cpu);
if (auxtrace__dont_decode(session))
return event->auxtrace.size;
if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
return -EINVAL;
err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
if (err < 0)
return err;
return event->auxtrace.size;
}
#define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
#define PERF_ITRACE_DEFAULT_PERIOD 100000
#define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
#define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
#define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
#define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
bool no_sample)
{
synth_opts->branches = true;
synth_opts->transactions = true;
synth_opts->ptwrites = true;
synth_opts->pwr_events = true;
synth_opts->other_events = true;
synth_opts->intr_events = true;
synth_opts->errors = true;
synth_opts->flc = true;
synth_opts->llc = true;
synth_opts->tlb = true;
synth_opts->mem = true;
synth_opts->remote_access = true;
if (no_sample) {
synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
synth_opts->period = 1;
synth_opts->calls = true;
} else {
synth_opts->instructions = true;
synth_opts->cycles = true;
synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
}
synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
synth_opts->initial_skip = 0;
}
static int get_flag(const char **ptr, unsigned int *flags)
{
while (1) {
char c = **ptr;
if (c >= 'a' && c <= 'z') {
*flags |= 1 << (c - 'a');
++*ptr;
return 0;
} else if (c == ' ') {
++*ptr;
continue;
} else {
return -1;
}
}
}
static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
{
while (1) {
switch (**ptr) {
case '+':
++*ptr;
if (get_flag(ptr, plus_flags))
return -1;
break;
case '-':
++*ptr;
if (get_flag(ptr, minus_flags))
return -1;
break;
case ' ':
++*ptr;
break;
default:
return 0;
}
}
}
#define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
static unsigned int itrace_log_on_error_size(void)
{
unsigned int sz = 0;
perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
}
/*
* Please check tools/perf/Documentation/perf-script.txt for information
* about the options parsed here, which is introduced after this cset,
* when support in 'perf script' for these options is introduced.
*/
int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
const char *str, int unset)
{
const char *p;
char *endptr;
bool period_type_set = false;
bool period_set = false;
bool iy = false;
synth_opts->set = true;
if (unset) {
synth_opts->dont_decode = true;
return 0;
}
if (!str) {
itrace_synth_opts__set_default(synth_opts,
synth_opts->default_no_sample);
return 0;
}
for (p = str; *p;) {
switch (*p++) {
case 'i':
case 'y':
iy = true;
if (p[-1] == 'y')
synth_opts->cycles = true;
else
synth_opts->instructions = true;
while (*p == ' ' || *p == ',')
p += 1;
if (isdigit(*p)) {
synth_opts->period = strtoull(p, &endptr, 10);
period_set = true;
p = endptr;
while (*p == ' ' || *p == ',')
p += 1;
switch (*p++) {
case 'i':
synth_opts->period_type =
PERF_ITRACE_PERIOD_INSTRUCTIONS;
period_type_set = true;
break;
case 't':
synth_opts->period_type =
PERF_ITRACE_PERIOD_TICKS;
period_type_set = true;
break;
case 'm':
synth_opts->period *= 1000;
/* Fall through */
case 'u':
synth_opts->period *= 1000;
/* Fall through */
case 'n':
if (*p++ != 's')
goto out_err;
synth_opts->period_type =
PERF_ITRACE_PERIOD_NANOSECS;
period_type_set = true;
break;
case '\0':
goto out;
default:
goto out_err;
}
}
break;
case 'b':
synth_opts->branches = true;
break;
case 'x':
synth_opts->transactions = true;
break;
case 'w':
synth_opts->ptwrites = true;
break;
case 'p':
synth_opts->pwr_events = true;
break;
case 'o':
synth_opts->other_events = true;
break;
case 'I':
synth_opts->intr_events = true;
break;
case 'e':
synth_opts->errors = true;
if (get_flags(&p, &synth_opts->error_plus_flags,
&synth_opts->error_minus_flags))
goto out_err;
break;
case 'd':
synth_opts->log = true;
if (get_flags(&p, &synth_opts->log_plus_flags,
&synth_opts->log_minus_flags))
goto out_err;
if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
synth_opts->log_on_error_size = itrace_log_on_error_size();
break;
case 'c':
synth_opts->branches = true;
synth_opts->calls = true;
break;
case 'r':
synth_opts->branches = true;
synth_opts->returns = true;
break;
case 'G':
case 'g':
if (p[-1] == 'G')
synth_opts->add_callchain = true;
else
synth_opts->callchain = true;
synth_opts->callchain_sz =
PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
while (*p == ' ' || *p == ',')
p += 1;
if (isdigit(*p)) {
unsigned int val;
val = strtoul(p, &endptr, 10);
p = endptr;
if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
goto out_err;
synth_opts->callchain_sz = val;
}
break;
case 'L':
case 'l':
if (p[-1] == 'L')
synth_opts->add_last_branch = true;
else
synth_opts->last_branch = true;
synth_opts->last_branch_sz =
PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
while (*p == ' ' || *p == ',')
p += 1;
if (isdigit(*p)) {
unsigned int val;
val = strtoul(p, &endptr, 10);
p = endptr;
if (!val ||
val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
goto out_err;
synth_opts->last_branch_sz = val;
}
break;
case 's':
synth_opts->initial_skip = strtoul(p, &endptr, 10);
if (p == endptr)
goto out_err;
p = endptr;
break;
case 'f':
synth_opts->flc = true;
break;
case 'm':
synth_opts->llc = true;
break;
case 't':
synth_opts->tlb = true;
break;
case 'a':
synth_opts->remote_access = true;
break;
case 'M':
synth_opts->mem = true;
break;
case 'q':
synth_opts->quick += 1;
break;
case 'A':
synth_opts->approx_ipc = true;
break;
case 'Z':
synth_opts->timeless_decoding = true;
break;
case 'T':
synth_opts->use_timestamp = true;
break;
case ' ':
case ',':
break;
default:
goto out_err;
}
}
out:
if (iy) {
if (!period_type_set)
synth_opts->period_type =
PERF_ITRACE_DEFAULT_PERIOD_TYPE;
if (!period_set)
synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
}
return 0;
out_err:
pr_err("Bad Instruction Tracing options '%s'\n", str);
return -EINVAL;
}
int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
{
return itrace_do_parse_synth_opts(opt->value, str, unset);
}
static const char * const auxtrace_error_type_name[] = {
[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
};
static const char *auxtrace_error_name(int type)
{
const char *error_type_name = NULL;
if (type < PERF_AUXTRACE_ERROR_MAX)
error_type_name = auxtrace_error_type_name[type];
if (!error_type_name)
error_type_name = "unknown AUX";
return error_type_name;
}
size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
{
struct perf_record_auxtrace_error *e = &event->auxtrace_error;
unsigned long long nsecs = e->time;
const char *msg = e->msg;
int ret;
ret = fprintf(fp, " %s error type %u",
auxtrace_error_name(e->type), e->type);
if (e->fmt && nsecs) {
unsigned long secs = nsecs / NSEC_PER_SEC;
nsecs -= secs * NSEC_PER_SEC;
ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
} else {
ret += fprintf(fp, " time 0");
}
if (!e->fmt)
msg = (const char *)&e->time;
if (e->fmt >= 2 && e->machine_pid)
ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
e->cpu, e->pid, e->tid, e->ip, e->code, msg);
return ret;
}
void perf_session__auxtrace_error_inc(struct perf_session *session,
union perf_event *event)
{
struct perf_record_auxtrace_error *e = &event->auxtrace_error;
if (e->type < PERF_AUXTRACE_ERROR_MAX)
session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
}
void events_stats__auxtrace_error_warn(const struct events_stats *stats)
{
int i;
for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
if (!stats->nr_auxtrace_errors[i])
continue;
ui__warning("%u %s errors\n",
stats->nr_auxtrace_errors[i],
auxtrace_error_name(i));
}
}
int perf_event__process_auxtrace_error(struct perf_session *session,
union perf_event *event)
{
if (auxtrace__dont_decode(session))
return 0;
perf_event__fprintf_auxtrace_error(event, stdout);
return 0;
}
/*
* In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
* 32-bit perf tool cannot access 64-bit value atomically, which might lead to
* the issues caused by the below sequence on multiple CPUs: when perf tool
* accesses either the load operation or the store operation for 64-bit value,
* on some architectures the operation is divided into two instructions, one
* is for accessing the low 32-bit value and another is for the high 32-bit;
* thus these two user operations can give the kernel chances to access the
* 64-bit value, and thus leads to the unexpected load values.
*
* kernel (64-bit) user (32-bit)
*
* if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo
* STORE $aux_data | ,--->
* FLUSH $aux_data | | LOAD ->aux_head_hi
* STORE ->aux_head --|-------` smp_rmb()
* } | LOAD $data
* | smp_mb()
* | STORE ->aux_tail_lo
* `----------->
* STORE ->aux_tail_hi
*
* For this reason, it's impossible for the perf tool to work correctly when
* the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
* can not simply limit the AUX ring buffer to less than 4GB, the reason is
* the pointers can be increased monotonically, whatever the buffer size it is,
* at the end the head and tail can be bigger than 4GB and carry out to the
* high 32-bit.
*
* To mitigate the issues and improve the user experience, we can allow the
* perf tool working in certain conditions and bail out with error if detect
* any overflow cannot be handled.
*
* For reading the AUX head, it reads out the values for three times, and
* compares the high 4 bytes of the values between the first time and the last
* time, if there has no change for high 4 bytes injected by the kernel during
* the user reading sequence, it's safe for use the second value.
*
* When compat_auxtrace_mmap__write_tail() detects any carrying in the high
* 32 bits, it means there have two store operations in user space and it cannot
* promise the atomicity for 64-bit write, so return '-1' in this case to tell
* the caller an overflow error has happened.
*/
u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
{
struct perf_event_mmap_page *pc = mm->userpg;
u64 first, second, last;
u64 mask = (u64)(UINT32_MAX) << 32;
do {
first = READ_ONCE(pc->aux_head);
/* Ensure all reads are done after we read the head */
smp_rmb();
second = READ_ONCE(pc->aux_head);
/* Ensure all reads are done after we read the head */
smp_rmb();
last = READ_ONCE(pc->aux_head);
} while ((first & mask) != (last & mask));
return second;
}
int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
{
struct perf_event_mmap_page *pc = mm->userpg;
u64 mask = (u64)(UINT32_MAX) << 32;
if (tail & mask)
return -1;
/* Ensure all reads are done before we write the tail out */
smp_mb();
WRITE_ONCE(pc->aux_tail, tail);
return 0;
}
static int __auxtrace_mmap__read(struct mmap *map,
struct auxtrace_record *itr,
struct perf_tool *tool, process_auxtrace_t fn,
bool snapshot, size_t snapshot_size)
{
struct auxtrace_mmap *mm = &map->auxtrace_mmap;
u64 head, old = mm->prev, offset, ref;
unsigned char *data = mm->base;
size_t size, head_off, old_off, len1, len2, padding;
union perf_event ev;
void *data1, *data2;
int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
if (snapshot &&
auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
return -1;
if (old == head)
return 0;
pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
mm->idx, old, head, head - old);
if (mm->mask) {
head_off = head & mm->mask;
old_off = old & mm->mask;
} else {
head_off = head % mm->len;
old_off = old % mm->len;
}
if (head_off > old_off)
size = head_off - old_off;
else
size = mm->len - (old_off - head_off);
if (snapshot && size > snapshot_size)
size = snapshot_size;
ref = auxtrace_record__reference(itr);
if (head > old || size <= head || mm->mask) {
offset = head - size;
} else {
/*
* When the buffer size is not a power of 2, 'head' wraps at the
* highest multiple of the buffer size, so we have to subtract
* the remainder here.
*/
u64 rem = (0ULL - mm->len) % mm->len;
offset = head - size - rem;
}
if (size > head_off) {
len1 = size - head_off;
data1 = &data[mm->len - len1];
len2 = head_off;
data2 = &data[0];
} else {
len1 = size;
data1 = &data[head_off - len1];
len2 = 0;
data2 = NULL;
}
if (itr->alignment) {
unsigned int unwanted = len1 % itr->alignment;
len1 -= unwanted;
size -= unwanted;
}
/* padding must be written by fn() e.g. record__process_auxtrace() */
padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
if (padding)
padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
memset(&ev, 0, sizeof(ev));
ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
ev.auxtrace.header.size = sizeof(ev.auxtrace);
ev.auxtrace.size = size + padding;
ev.auxtrace.offset = offset;
ev.auxtrace.reference = ref;
ev.auxtrace.idx = mm->idx;
ev.auxtrace.tid = mm->tid;
ev.auxtrace.cpu = mm->cpu;
if (fn(tool, map, &ev, data1, len1, data2, len2))
return -1;
mm->prev = head;
if (!snapshot) {
int err;
err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
if (err < 0)
return err;
if (itr->read_finish) {
err = itr->read_finish(itr, mm->idx);
if (err < 0)
return err;
}
}
return 1;
}
int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
struct perf_tool *tool, process_auxtrace_t fn)
{
return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
}
int auxtrace_mmap__read_snapshot(struct mmap *map,
struct auxtrace_record *itr,
struct perf_tool *tool, process_auxtrace_t fn,
size_t snapshot_size)
{
return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
}
/**
* struct auxtrace_cache - hash table to implement a cache
* @hashtable: the hashtable
* @sz: hashtable size (number of hlists)
* @entry_size: size of an entry
* @limit: limit the number of entries to this maximum, when reached the cache
* is dropped and caching begins again with an empty cache
* @cnt: current number of entries
* @bits: hashtable size (@sz = 2^@bits)
*/
struct auxtrace_cache {
struct hlist_head *hashtable;
size_t sz;
size_t entry_size;
size_t limit;
size_t cnt;
unsigned int bits;
};
struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
unsigned int limit_percent)
{
struct auxtrace_cache *c;
struct hlist_head *ht;
size_t sz, i;
c = zalloc(sizeof(struct auxtrace_cache));
if (!c)
return NULL;
sz = 1UL << bits;
ht = calloc(sz, sizeof(struct hlist_head));
if (!ht)
goto out_free;
for (i = 0; i < sz; i++)
INIT_HLIST_HEAD(&ht[i]);
c->hashtable = ht;
c->sz = sz;
c->entry_size = entry_size;
c->limit = (c->sz * limit_percent) / 100;
c->bits = bits;
return c;
out_free:
free(c);
return NULL;
}
static void auxtrace_cache__drop(struct auxtrace_cache *c)
{
struct auxtrace_cache_entry *entry;
struct hlist_node *tmp;
size_t i;
if (!c)
return;
for (i = 0; i < c->sz; i++) {
hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
hlist_del(&entry->hash);
auxtrace_cache__free_entry(c, entry);
}
}
c->cnt = 0;
}
void auxtrace_cache__free(struct auxtrace_cache *c)
{
if (!c)
return;
auxtrace_cache__drop(c);
zfree(&c->hashtable);
free(c);
}
void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
{
return malloc(c->entry_size);
}
void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
void *entry)
{
free(entry);
}
int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
struct auxtrace_cache_entry *entry)
{
if (c->limit && ++c->cnt > c->limit)
auxtrace_cache__drop(c);
entry->key = key;
hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
return 0;
}
static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
u32 key)
{
struct auxtrace_cache_entry *entry;
struct hlist_head *hlist;
struct hlist_node *n;
if (!c)
return NULL;
hlist = &c->hashtable[hash_32(key, c->bits)];
hlist_for_each_entry_safe(entry, n, hlist, hash) {
if (entry->key == key) {
hlist_del(&entry->hash);
return entry;
}
}
return NULL;
}
void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
{
struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
auxtrace_cache__free_entry(c, entry);
}
void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
{
struct auxtrace_cache_entry *entry;
struct hlist_head *hlist;
if (!c)
return NULL;
hlist = &c->hashtable[hash_32(key, c->bits)];
hlist_for_each_entry(entry, hlist, hash) {
if (entry->key == key)
return entry;
}
return NULL;
}
static void addr_filter__free_str(struct addr_filter *filt)
{
zfree(&filt->str);
filt->action = NULL;
filt->sym_from = NULL;
filt->sym_to = NULL;
filt->filename = NULL;
}
static struct addr_filter *addr_filter__new(void)
{
struct addr_filter *filt = zalloc(sizeof(*filt));
if (filt)
INIT_LIST_HEAD(&filt->list);
return filt;
}
static void addr_filter__free(struct addr_filter *filt)
{
if (filt)
addr_filter__free_str(filt);
free(filt);
}
static void addr_filters__add(struct addr_filters *filts,
struct addr_filter *filt)
{
list_add_tail(&filt->list, &filts->head);
filts->cnt += 1;
}
static void addr_filters__del(struct addr_filters *filts,
struct addr_filter *filt)
{
list_del_init(&filt->list);
filts->cnt -= 1;
}
void addr_filters__init(struct addr_filters *filts)
{
INIT_LIST_HEAD(&filts->head);
filts->cnt = 0;
}
void addr_filters__exit(struct addr_filters *filts)
{
struct addr_filter *filt, *n;
list_for_each_entry_safe(filt, n, &filts->head, list) {
addr_filters__del(filts, filt);
addr_filter__free(filt);
}
}
static int parse_num_or_str(char **inp, u64 *num, const char **str,
const char *str_delim)
{
*inp += strspn(*inp, " ");
if (isdigit(**inp)) {
char *endptr;
if (!num)
return -EINVAL;
errno = 0;
*num = strtoull(*inp, &endptr, 0);
if (errno)
return -errno;
if (endptr == *inp)
return -EINVAL;
*inp = endptr;
} else {
size_t n;
if (!str)
return -EINVAL;
*inp += strspn(*inp, " ");
*str = *inp;
n = strcspn(*inp, str_delim);
if (!n)
return -EINVAL;
*inp += n;
if (**inp) {
**inp = '\0';
*inp += 1;
}
}
return 0;
}
static int parse_action(struct addr_filter *filt)
{
if (!strcmp(filt->action, "filter")) {
filt->start = true;
filt->range = true;
} else if (!strcmp(filt->action, "start")) {
filt->start = true;
} else if (!strcmp(filt->action, "stop")) {
filt->start = false;
} else if (!strcmp(filt->action, "tracestop")) {
filt->start = false;
filt->range = true;
filt->action += 5; /* Change 'tracestop' to 'stop' */
} else {
return -EINVAL;
}
return 0;
}
static int parse_sym_idx(char **inp, int *idx)
{
*idx = -1;
*inp += strspn(*inp, " ");
if (**inp != '#')
return 0;
*inp += 1;
if (**inp == 'g' || **inp == 'G') {
*inp += 1;
*idx = 0;
} else {
unsigned long num;
char *endptr;
errno = 0;
num = strtoul(*inp, &endptr, 0);
if (errno)
return -errno;
if (endptr == *inp || num > INT_MAX)
return -EINVAL;
*inp = endptr;
*idx = num;
}
return 0;
}
static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
{
int err = parse_num_or_str(inp, num, str, " ");
if (!err && *str)
err = parse_sym_idx(inp, idx);
return err;
}
static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
{
char *fstr;
int err;
filt->str = fstr = strdup(*filter_inp);
if (!fstr)
return -ENOMEM;
err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
if (err)
goto out_err;
err = parse_action(filt);
if (err)
goto out_err;
err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
&filt->sym_from_idx);
if (err)
goto out_err;
fstr += strspn(fstr, " ");
if (*fstr == '/') {
fstr += 1;
err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
&filt->sym_to_idx);
if (err)
goto out_err;
filt->range = true;
}
fstr += strspn(fstr, " ");
if (*fstr == '@') {
fstr += 1;
err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
if (err)
goto out_err;
}
fstr += strspn(fstr, " ,");
*filter_inp += fstr - filt->str;
return 0;
out_err:
addr_filter__free_str(filt);
return err;
}
int addr_filters__parse_bare_filter(struct addr_filters *filts,
const char *filter)
{
struct addr_filter *filt;
const char *fstr = filter;
int err;
while (*fstr) {
filt = addr_filter__new();
err = parse_one_filter(filt, &fstr);
if (err) {
addr_filter__free(filt);
addr_filters__exit(filts);
return err;
}
addr_filters__add(filts, filt);
}
return 0;
}
struct sym_args {
const char *name;
u64 start;
u64 size;
int idx;
int cnt;
bool started;
bool global;
bool selected;
bool duplicate;
bool near;
};
static bool kern_sym_name_match(const char *kname, const char *name)
{
size_t n = strlen(name);
return !strcmp(kname, name) ||
(!strncmp(kname, name, n) && kname[n] == '\t');
}
static bool kern_sym_match(struct sym_args *args, const char *name, char type)
{
/* A function with the same name, and global or the n'th found or any */
return kallsyms__is_function(type) &&
kern_sym_name_match(name, args->name) &&
((args->global && isupper(type)) ||
(args->selected && ++(args->cnt) == args->idx) ||
(!args->global && !args->selected));
}
static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
{
struct sym_args *args = arg;
if (args->started) {
if (!args->size)
args->size = start - args->start;
if (args->selected) {
if (args->size)
return 1;
} else if (kern_sym_match(args, name, type)) {
args->duplicate = true;
return 1;
}
} else if (kern_sym_match(args, name, type)) {
args->started = true;
args->start = start;
}
return 0;
}
static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
{
struct sym_args *args = arg;
if (kern_sym_match(args, name, type)) {
pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
++args->cnt, start, type, name);
args->near = true;
} else if (args->near) {
args->near = false;
pr_err("\t\twhich is near\t\t%s\n", name);
}
return 0;
}
static int sym_not_found_error(const char *sym_name, int idx)
{
if (idx > 0) {
pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
idx, sym_name);
} else if (!idx) {
pr_err("Global symbol '%s' not found.\n", sym_name);
} else {
pr_err("Symbol '%s' not found.\n", sym_name);
}
pr_err("Note that symbols must be functions.\n");
return -EINVAL;
}
static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
{
struct sym_args args = {
.name = sym_name,
.idx = idx,
.global = !idx,
.selected = idx > 0,
};
int err;
*start = 0;
*size = 0;
err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
if (err < 0) {
pr_err("Failed to parse /proc/kallsyms\n");
return err;
}
if (args.duplicate) {
pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
args.cnt = 0;
kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
sym_name);
pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
return -EINVAL;
}
if (!args.started) {
pr_err("Kernel symbol lookup: ");
return sym_not_found_error(sym_name, idx);
}
*start = args.start;
*size = args.size;
return 0;
}
static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
char type, u64 start)
{
struct sym_args *args = arg;
u64 size;
if (!kallsyms__is_function(type))
return 0;
if (!args->started) {
args->started = true;
args->start = start;
}
/* Don't know exactly where the kernel ends, so we add a page */
size = round_up(start, page_size) + page_size - args->start;
if (size > args->size)
args->size = size;
return 0;
}
static int addr_filter__entire_kernel(struct addr_filter *filt)
{
struct sym_args args = { .started = false };
int err;
err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
if (err < 0 || !args.started) {
pr_err("Failed to parse /proc/kallsyms\n");
return err;
}
filt->addr = args.start;
filt->size = args.size;
return 0;
}
static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
{
if (start + size >= filt->addr)
return 0;
if (filt->sym_from) {
pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
filt->sym_to, start, filt->sym_from, filt->addr);
} else {
pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
filt->sym_to, start, filt->addr);
}
return -EINVAL;
}
static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
{
bool no_size = false;
u64 start, size;
int err;
if (symbol_conf.kptr_restrict) {
pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
return -EINVAL;
}
if (filt->sym_from && !strcmp(filt->sym_from, "*"))
return addr_filter__entire_kernel(filt);
if (filt->sym_from) {
err = find_kern_sym(filt->sym_from, &start, &size,
filt->sym_from_idx);
if (err)
return err;
filt->addr = start;
if (filt->range && !filt->size && !filt->sym_to) {
filt->size = size;
no_size = !size;
}
}
if (filt->sym_to) {
err = find_kern_sym(filt->sym_to, &start, &size,
filt->sym_to_idx);
if (err)
return err;
err = check_end_after_start(filt, start, size);
if (err)
return err;
filt->size = start + size - filt->addr;
no_size = !size;
}
/* The very last symbol in kallsyms does not imply a particular size */
if (no_size) {
pr_err("Cannot determine size of symbol '%s'\n",
filt->sym_to ? filt->sym_to : filt->sym_from);
return -EINVAL;
}
return 0;
}
static struct dso *load_dso(const char *name)
{
struct map *map;
struct dso *dso;
map = dso__new_map(name);
if (!map)
return NULL;
if (map__load(map) < 0)
pr_err("File '%s' not found or has no symbols.\n", name);
dso = dso__get(map__dso(map));
map__put(map);
return dso;
}
static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
int idx)
{
/* Same name, and global or the n'th found or any */
return !arch__compare_symbol_names(name, sym->name) &&
((!idx && sym->binding == STB_GLOBAL) ||
(idx > 0 && ++*cnt == idx) ||
idx < 0);
}
static void print_duplicate_syms(struct dso *dso, const char *sym_name)
{
struct symbol *sym;
bool near = false;
int cnt = 0;
pr_err("Multiple symbols with name '%s'\n", sym_name);
sym = dso__first_symbol(dso);
while (sym) {
if (dso_sym_match(sym, sym_name, &cnt, -1)) {
pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
++cnt, sym->start,
sym->binding == STB_GLOBAL ? 'g' :
sym->binding == STB_LOCAL ? 'l' : 'w',
sym->name);
near = true;
} else if (near) {
near = false;
pr_err("\t\twhich is near\t\t%s\n", sym->name);
}
sym = dso__next_symbol(sym);
}
pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
sym_name);
pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
}
static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
u64 *size, int idx)
{
struct symbol *sym;
int cnt = 0;
*start = 0;
*size = 0;
sym = dso__first_symbol(dso);
while (sym) {
if (*start) {
if (!*size)
*size = sym->start - *start;
if (idx > 0) {
if (*size)
return 0;
} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
print_duplicate_syms(dso, sym_name);
return -EINVAL;
}
} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
*start = sym->start;
*size = sym->end - sym->start;
}
sym = dso__next_symbol(sym);
}
if (!*start)
return sym_not_found_error(sym_name, idx);
return 0;
}
static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
{
if (dso__data_file_size(dso, NULL)) {
pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
filt->filename);
return -EINVAL;
}
filt->addr = 0;
filt->size = dso->data.file_size;
return 0;
}
static int addr_filter__resolve_syms(struct addr_filter *filt)
{
u64 start, size;
struct dso *dso;
int err = 0;
if (!filt->sym_from && !filt->sym_to)
return 0;
if (!filt->filename)
return addr_filter__resolve_kernel_syms(filt);
dso = load_dso(filt->filename);
if (!dso) {
pr_err("Failed to load symbols from: %s\n", filt->filename);
return -EINVAL;
}
if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
err = addr_filter__entire_dso(filt, dso);
goto put_dso;
}
if (filt->sym_from) {
err = find_dso_sym(dso, filt->sym_from, &start, &size,
filt->sym_from_idx);
if (err)
goto put_dso;
filt->addr = start;
if (filt->range && !filt->size && !filt->sym_to)
filt->size = size;
}
if (filt->sym_to) {
err = find_dso_sym(dso, filt->sym_to, &start, &size,
filt->sym_to_idx);
if (err)
goto put_dso;
err = check_end_after_start(filt, start, size);
if (err)
return err;
filt->size = start + size - filt->addr;
}
put_dso:
dso__put(dso);
return err;
}
static char *addr_filter__to_str(struct addr_filter *filt)
{
char filename_buf[PATH_MAX];
const char *at = "";
const char *fn = "";
char *filter;
int err;
if (filt->filename) {
at = "@";
fn = realpath(filt->filename, filename_buf);
if (!fn)
return NULL;
}
if (filt->range) {
err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
filt->action, filt->addr, filt->size, at, fn);
} else {
err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
filt->action, filt->addr, at, fn);
}
return err < 0 ? NULL : filter;
}
static int parse_addr_filter(struct evsel *evsel, const char *filter,
int max_nr)
{
struct addr_filters filts;
struct addr_filter *filt;
int err;
addr_filters__init(&filts);
err = addr_filters__parse_bare_filter(&filts, filter);
if (err)
goto out_exit;
if (filts.cnt > max_nr) {
pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
filts.cnt, max_nr);
err = -EINVAL;
goto out_exit;
}
list_for_each_entry(filt, &filts.head, list) {
char *new_filter;
err = addr_filter__resolve_syms(filt);
if (err)
goto out_exit;
new_filter = addr_filter__to_str(filt);
if (!new_filter) {
err = -ENOMEM;
goto out_exit;
}
if (evsel__append_addr_filter(evsel, new_filter)) {
err = -ENOMEM;
goto out_exit;
}
}
out_exit:
addr_filters__exit(&filts);
if (err) {
pr_err("Failed to parse address filter: '%s'\n", filter);
pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
pr_err("Where multiple filters are separated by space or comma.\n");
}
return err;
}
static int evsel__nr_addr_filter(struct evsel *evsel)
{
struct perf_pmu *pmu = evsel__find_pmu(evsel);
int nr_addr_filters = 0;
if (!pmu)
return 0;
perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
return nr_addr_filters;
}
int auxtrace_parse_filters(struct evlist *evlist)
{
struct evsel *evsel;
char *filter;
int err, max_nr;
evlist__for_each_entry(evlist, evsel) {
filter = evsel->filter;
max_nr = evsel__nr_addr_filter(evsel);
if (!filter || !max_nr)
continue;
evsel->filter = NULL;
err = parse_addr_filter(evsel, filter, max_nr);
free(filter);
if (err)
return err;
pr_debug("Address filter: %s\n", evsel->filter);
}
return 0;
}
int auxtrace__process_event(struct perf_session *session, union perf_event *event,
struct perf_sample *sample, struct perf_tool *tool)
{
if (!session->auxtrace)
return 0;
return session->auxtrace->process_event(session, event, sample, tool);
}
void auxtrace__dump_auxtrace_sample(struct perf_session *session,
struct perf_sample *sample)
{
if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
auxtrace__dont_decode(session))
return;
session->auxtrace->dump_auxtrace_sample(session, sample);
}
int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
{
if (!session->auxtrace)
return 0;
return session->auxtrace->flush_events(session, tool);
}
void auxtrace__free_events(struct perf_session *session)
{
if (!session->auxtrace)
return;
return session->auxtrace->free_events(session);
}
void auxtrace__free(struct perf_session *session)
{
if (!session->auxtrace)
return;
return session->auxtrace->free(session);
}
bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
struct evsel *evsel)
{
if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
return false;
return session->auxtrace->evsel_is_auxtrace(session, evsel);
}