linux/drivers/net/wireless/iwlwifi/iwl-rx.c
John W. Linville 76232ebf89 iwlwifi: fix build error for CONFIG_IWLAGN=n
drivers/net/wireless/iwlwifi/iwl-rx.c: In function 'iwl_good_ack_health':
drivers/net/wireless/iwlwifi/iwl-rx.c:647: error: 'struct iwl_priv' has no member named '_agn'

Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-03-24 17:21:08 -04:00

1289 lines
39 KiB
C

/******************************************************************************
*
* Copyright(c) 2003 - 2010 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/etherdevice.h>
#include <net/mac80211.h>
#include <asm/unaligned.h>
#include "iwl-eeprom.h"
#include "iwl-dev.h"
#include "iwl-core.h"
#include "iwl-sta.h"
#include "iwl-io.h"
#include "iwl-calib.h"
#include "iwl-helpers.h"
/************************** RX-FUNCTIONS ****************************/
/*
* Rx theory of operation
*
* Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
* each of which point to Receive Buffers to be filled by the NIC. These get
* used not only for Rx frames, but for any command response or notification
* from the NIC. The driver and NIC manage the Rx buffers by means
* of indexes into the circular buffer.
*
* Rx Queue Indexes
* The host/firmware share two index registers for managing the Rx buffers.
*
* The READ index maps to the first position that the firmware may be writing
* to -- the driver can read up to (but not including) this position and get
* good data.
* The READ index is managed by the firmware once the card is enabled.
*
* The WRITE index maps to the last position the driver has read from -- the
* position preceding WRITE is the last slot the firmware can place a packet.
*
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
* WRITE = READ.
*
* During initialization, the host sets up the READ queue position to the first
* INDEX position, and WRITE to the last (READ - 1 wrapped)
*
* When the firmware places a packet in a buffer, it will advance the READ index
* and fire the RX interrupt. The driver can then query the READ index and
* process as many packets as possible, moving the WRITE index forward as it
* resets the Rx queue buffers with new memory.
*
* The management in the driver is as follows:
* + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
* iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
* to replenish the iwl->rxq->rx_free.
* + In iwl_rx_replenish (scheduled) if 'processed' != 'read' then the
* iwl->rxq is replenished and the READ INDEX is updated (updating the
* 'processed' and 'read' driver indexes as well)
* + A received packet is processed and handed to the kernel network stack,
* detached from the iwl->rxq. The driver 'processed' index is updated.
* + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
* list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
* INDEX is not incremented and iwl->status(RX_STALLED) is set. If there
* were enough free buffers and RX_STALLED is set it is cleared.
*
*
* Driver sequence:
*
* iwl_rx_queue_alloc() Allocates rx_free
* iwl_rx_replenish() Replenishes rx_free list from rx_used, and calls
* iwl_rx_queue_restock
* iwl_rx_queue_restock() Moves available buffers from rx_free into Rx
* queue, updates firmware pointers, and updates
* the WRITE index. If insufficient rx_free buffers
* are available, schedules iwl_rx_replenish
*
* -- enable interrupts --
* ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
* READ INDEX, detaching the SKB from the pool.
* Moves the packet buffer from queue to rx_used.
* Calls iwl_rx_queue_restock to refill any empty
* slots.
* ...
*
*/
/**
* iwl_rx_queue_space - Return number of free slots available in queue.
*/
int iwl_rx_queue_space(const struct iwl_rx_queue *q)
{
int s = q->read - q->write;
if (s <= 0)
s += RX_QUEUE_SIZE;
/* keep some buffer to not confuse full and empty queue */
s -= 2;
if (s < 0)
s = 0;
return s;
}
EXPORT_SYMBOL(iwl_rx_queue_space);
/**
* iwl_rx_queue_update_write_ptr - Update the write pointer for the RX queue
*/
void iwl_rx_queue_update_write_ptr(struct iwl_priv *priv, struct iwl_rx_queue *q)
{
unsigned long flags;
u32 rx_wrt_ptr_reg = priv->hw_params.rx_wrt_ptr_reg;
u32 reg;
spin_lock_irqsave(&q->lock, flags);
if (q->need_update == 0)
goto exit_unlock;
/* If power-saving is in use, make sure device is awake */
if (test_bit(STATUS_POWER_PMI, &priv->status)) {
reg = iwl_read32(priv, CSR_UCODE_DRV_GP1);
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
IWL_DEBUG_INFO(priv, "Rx queue requesting wakeup, GP1 = 0x%x\n",
reg);
iwl_set_bit(priv, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
goto exit_unlock;
}
q->write_actual = (q->write & ~0x7);
iwl_write_direct32(priv, rx_wrt_ptr_reg, q->write_actual);
/* Else device is assumed to be awake */
} else {
/* Device expects a multiple of 8 */
q->write_actual = (q->write & ~0x7);
iwl_write_direct32(priv, rx_wrt_ptr_reg, q->write_actual);
}
q->need_update = 0;
exit_unlock:
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(iwl_rx_queue_update_write_ptr);
/**
* iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
*/
static inline __le32 iwl_dma_addr2rbd_ptr(struct iwl_priv *priv,
dma_addr_t dma_addr)
{
return cpu_to_le32((u32)(dma_addr >> 8));
}
/**
* iwl_rx_queue_restock - refill RX queue from pre-allocated pool
*
* If there are slots in the RX queue that need to be restocked,
* and we have free pre-allocated buffers, fill the ranks as much
* as we can, pulling from rx_free.
*
* This moves the 'write' index forward to catch up with 'processed', and
* also updates the memory address in the firmware to reference the new
* target buffer.
*/
void iwl_rx_queue_restock(struct iwl_priv *priv)
{
struct iwl_rx_queue *rxq = &priv->rxq;
struct list_head *element;
struct iwl_rx_mem_buffer *rxb;
unsigned long flags;
int write;
spin_lock_irqsave(&rxq->lock, flags);
write = rxq->write & ~0x7;
while ((iwl_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
/* Get next free Rx buffer, remove from free list */
element = rxq->rx_free.next;
rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
list_del(element);
/* Point to Rx buffer via next RBD in circular buffer */
rxq->bd[rxq->write] = iwl_dma_addr2rbd_ptr(priv, rxb->page_dma);
rxq->queue[rxq->write] = rxb;
rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
rxq->free_count--;
}
spin_unlock_irqrestore(&rxq->lock, flags);
/* If the pre-allocated buffer pool is dropping low, schedule to
* refill it */
if (rxq->free_count <= RX_LOW_WATERMARK)
queue_work(priv->workqueue, &priv->rx_replenish);
/* If we've added more space for the firmware to place data, tell it.
* Increment device's write pointer in multiples of 8. */
if (rxq->write_actual != (rxq->write & ~0x7)) {
spin_lock_irqsave(&rxq->lock, flags);
rxq->need_update = 1;
spin_unlock_irqrestore(&rxq->lock, flags);
iwl_rx_queue_update_write_ptr(priv, rxq);
}
}
EXPORT_SYMBOL(iwl_rx_queue_restock);
/**
* iwl_rx_replenish - Move all used packet from rx_used to rx_free
*
* When moving to rx_free an SKB is allocated for the slot.
*
* Also restock the Rx queue via iwl_rx_queue_restock.
* This is called as a scheduled work item (except for during initialization)
*/
void iwl_rx_allocate(struct iwl_priv *priv, gfp_t priority)
{
struct iwl_rx_queue *rxq = &priv->rxq;
struct list_head *element;
struct iwl_rx_mem_buffer *rxb;
struct page *page;
unsigned long flags;
gfp_t gfp_mask = priority;
while (1) {
spin_lock_irqsave(&rxq->lock, flags);
if (list_empty(&rxq->rx_used)) {
spin_unlock_irqrestore(&rxq->lock, flags);
return;
}
spin_unlock_irqrestore(&rxq->lock, flags);
if (rxq->free_count > RX_LOW_WATERMARK)
gfp_mask |= __GFP_NOWARN;
if (priv->hw_params.rx_page_order > 0)
gfp_mask |= __GFP_COMP;
/* Alloc a new receive buffer */
page = alloc_pages(gfp_mask, priv->hw_params.rx_page_order);
if (!page) {
if (net_ratelimit())
IWL_DEBUG_INFO(priv, "alloc_pages failed, "
"order: %d\n",
priv->hw_params.rx_page_order);
if ((rxq->free_count <= RX_LOW_WATERMARK) &&
net_ratelimit())
IWL_CRIT(priv, "Failed to alloc_pages with %s. Only %u free buffers remaining.\n",
priority == GFP_ATOMIC ? "GFP_ATOMIC" : "GFP_KERNEL",
rxq->free_count);
/* We don't reschedule replenish work here -- we will
* call the restock method and if it still needs
* more buffers it will schedule replenish */
return;
}
spin_lock_irqsave(&rxq->lock, flags);
if (list_empty(&rxq->rx_used)) {
spin_unlock_irqrestore(&rxq->lock, flags);
__free_pages(page, priv->hw_params.rx_page_order);
return;
}
element = rxq->rx_used.next;
rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
list_del(element);
spin_unlock_irqrestore(&rxq->lock, flags);
rxb->page = page;
/* Get physical address of the RB */
rxb->page_dma = pci_map_page(priv->pci_dev, page, 0,
PAGE_SIZE << priv->hw_params.rx_page_order,
PCI_DMA_FROMDEVICE);
/* dma address must be no more than 36 bits */
BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
/* and also 256 byte aligned! */
BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
spin_lock_irqsave(&rxq->lock, flags);
list_add_tail(&rxb->list, &rxq->rx_free);
rxq->free_count++;
priv->alloc_rxb_page++;
spin_unlock_irqrestore(&rxq->lock, flags);
}
}
void iwl_rx_replenish(struct iwl_priv *priv)
{
unsigned long flags;
iwl_rx_allocate(priv, GFP_KERNEL);
spin_lock_irqsave(&priv->lock, flags);
iwl_rx_queue_restock(priv);
spin_unlock_irqrestore(&priv->lock, flags);
}
EXPORT_SYMBOL(iwl_rx_replenish);
void iwl_rx_replenish_now(struct iwl_priv *priv)
{
iwl_rx_allocate(priv, GFP_ATOMIC);
iwl_rx_queue_restock(priv);
}
EXPORT_SYMBOL(iwl_rx_replenish_now);
/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
* If an SKB has been detached, the POOL needs to have its SKB set to NULL
* This free routine walks the list of POOL entries and if SKB is set to
* non NULL it is unmapped and freed
*/
void iwl_rx_queue_free(struct iwl_priv *priv, struct iwl_rx_queue *rxq)
{
int i;
for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
if (rxq->pool[i].page != NULL) {
pci_unmap_page(priv->pci_dev, rxq->pool[i].page_dma,
PAGE_SIZE << priv->hw_params.rx_page_order,
PCI_DMA_FROMDEVICE);
__iwl_free_pages(priv, rxq->pool[i].page);
rxq->pool[i].page = NULL;
}
}
dma_free_coherent(&priv->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
rxq->dma_addr);
dma_free_coherent(&priv->pci_dev->dev, sizeof(struct iwl_rb_status),
rxq->rb_stts, rxq->rb_stts_dma);
rxq->bd = NULL;
rxq->rb_stts = NULL;
}
EXPORT_SYMBOL(iwl_rx_queue_free);
int iwl_rx_queue_alloc(struct iwl_priv *priv)
{
struct iwl_rx_queue *rxq = &priv->rxq;
struct device *dev = &priv->pci_dev->dev;
int i;
spin_lock_init(&rxq->lock);
INIT_LIST_HEAD(&rxq->rx_free);
INIT_LIST_HEAD(&rxq->rx_used);
/* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->dma_addr,
GFP_KERNEL);
if (!rxq->bd)
goto err_bd;
rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct iwl_rb_status),
&rxq->rb_stts_dma, GFP_KERNEL);
if (!rxq->rb_stts)
goto err_rb;
/* Fill the rx_used queue with _all_ of the Rx buffers */
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
/* Set us so that we have processed and used all buffers, but have
* not restocked the Rx queue with fresh buffers */
rxq->read = rxq->write = 0;
rxq->write_actual = 0;
rxq->free_count = 0;
rxq->need_update = 0;
return 0;
err_rb:
dma_free_coherent(&priv->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
rxq->dma_addr);
err_bd:
return -ENOMEM;
}
EXPORT_SYMBOL(iwl_rx_queue_alloc);
void iwl_rx_queue_reset(struct iwl_priv *priv, struct iwl_rx_queue *rxq)
{
unsigned long flags;
int i;
spin_lock_irqsave(&rxq->lock, flags);
INIT_LIST_HEAD(&rxq->rx_free);
INIT_LIST_HEAD(&rxq->rx_used);
/* Fill the rx_used queue with _all_ of the Rx buffers */
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
/* In the reset function, these buffers may have been allocated
* to an SKB, so we need to unmap and free potential storage */
if (rxq->pool[i].page != NULL) {
pci_unmap_page(priv->pci_dev, rxq->pool[i].page_dma,
PAGE_SIZE << priv->hw_params.rx_page_order,
PCI_DMA_FROMDEVICE);
__iwl_free_pages(priv, rxq->pool[i].page);
rxq->pool[i].page = NULL;
}
list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
}
/* Set us so that we have processed and used all buffers, but have
* not restocked the Rx queue with fresh buffers */
rxq->read = rxq->write = 0;
rxq->write_actual = 0;
rxq->free_count = 0;
spin_unlock_irqrestore(&rxq->lock, flags);
}
int iwl_rx_init(struct iwl_priv *priv, struct iwl_rx_queue *rxq)
{
u32 rb_size;
const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
u32 rb_timeout = 0; /* FIXME: RX_RB_TIMEOUT for all devices? */
if (!priv->cfg->use_isr_legacy)
rb_timeout = RX_RB_TIMEOUT;
if (priv->cfg->mod_params->amsdu_size_8K)
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
else
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
/* Stop Rx DMA */
iwl_write_direct32(priv, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
/* Reset driver's Rx queue write index */
iwl_write_direct32(priv, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
/* Tell device where to find RBD circular buffer in DRAM */
iwl_write_direct32(priv, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
(u32)(rxq->dma_addr >> 8));
/* Tell device where in DRAM to update its Rx status */
iwl_write_direct32(priv, FH_RSCSR_CHNL0_STTS_WPTR_REG,
rxq->rb_stts_dma >> 4);
/* Enable Rx DMA
* FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
* the credit mechanism in 5000 HW RX FIFO
* Direct rx interrupts to hosts
* Rx buffer size 4 or 8k
* RB timeout 0x10
* 256 RBDs
*/
iwl_write_direct32(priv, FH_MEM_RCSR_CHNL0_CONFIG_REG,
FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK |
rb_size|
(rb_timeout << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
(rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
/* Set interrupt coalescing timer to default (2048 usecs) */
iwl_write8(priv, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
return 0;
}
int iwl_rxq_stop(struct iwl_priv *priv)
{
/* stop Rx DMA */
iwl_write_direct32(priv, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
iwl_poll_direct_bit(priv, FH_MEM_RSSR_RX_STATUS_REG,
FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
return 0;
}
EXPORT_SYMBOL(iwl_rxq_stop);
void iwl_rx_missed_beacon_notif(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_missed_beacon_notif *missed_beacon;
missed_beacon = &pkt->u.missed_beacon;
if (le32_to_cpu(missed_beacon->consecutive_missed_beacons) >
priv->missed_beacon_threshold) {
IWL_DEBUG_CALIB(priv, "missed bcn cnsq %d totl %d rcd %d expctd %d\n",
le32_to_cpu(missed_beacon->consecutive_missed_beacons),
le32_to_cpu(missed_beacon->total_missed_becons),
le32_to_cpu(missed_beacon->num_recvd_beacons),
le32_to_cpu(missed_beacon->num_expected_beacons));
if (!test_bit(STATUS_SCANNING, &priv->status))
iwl_init_sensitivity(priv);
}
}
EXPORT_SYMBOL(iwl_rx_missed_beacon_notif);
void iwl_rx_spectrum_measure_notif(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_spectrum_notification *report = &(pkt->u.spectrum_notif);
if (!report->state) {
IWL_DEBUG_11H(priv,
"Spectrum Measure Notification: Start\n");
return;
}
memcpy(&priv->measure_report, report, sizeof(*report));
priv->measurement_status |= MEASUREMENT_READY;
}
EXPORT_SYMBOL(iwl_rx_spectrum_measure_notif);
/* Calculate noise level, based on measurements during network silence just
* before arriving beacon. This measurement can be done only if we know
* exactly when to expect beacons, therefore only when we're associated. */
static void iwl_rx_calc_noise(struct iwl_priv *priv)
{
struct statistics_rx_non_phy *rx_info
= &(priv->statistics.rx.general);
int num_active_rx = 0;
int total_silence = 0;
int bcn_silence_a =
le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
int bcn_silence_b =
le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
int bcn_silence_c =
le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;
if (bcn_silence_a) {
total_silence += bcn_silence_a;
num_active_rx++;
}
if (bcn_silence_b) {
total_silence += bcn_silence_b;
num_active_rx++;
}
if (bcn_silence_c) {
total_silence += bcn_silence_c;
num_active_rx++;
}
/* Average among active antennas */
if (num_active_rx)
priv->last_rx_noise = (total_silence / num_active_rx) - 107;
else
priv->last_rx_noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
IWL_DEBUG_CALIB(priv, "inband silence a %u, b %u, c %u, dBm %d\n",
bcn_silence_a, bcn_silence_b, bcn_silence_c,
priv->last_rx_noise);
}
#ifdef CONFIG_IWLWIFI_DEBUG
/*
* based on the assumption of all statistics counter are in DWORD
* FIXME: This function is for debugging, do not deal with
* the case of counters roll-over.
*/
static void iwl_accumulative_statistics(struct iwl_priv *priv,
__le32 *stats)
{
int i;
__le32 *prev_stats;
u32 *accum_stats;
u32 *delta, *max_delta;
prev_stats = (__le32 *)&priv->statistics;
accum_stats = (u32 *)&priv->accum_statistics;
delta = (u32 *)&priv->delta_statistics;
max_delta = (u32 *)&priv->max_delta;
for (i = sizeof(__le32); i < sizeof(struct iwl_notif_statistics);
i += sizeof(__le32), stats++, prev_stats++, delta++,
max_delta++, accum_stats++) {
if (le32_to_cpu(*stats) > le32_to_cpu(*prev_stats)) {
*delta = (le32_to_cpu(*stats) -
le32_to_cpu(*prev_stats));
*accum_stats += *delta;
if (*delta > *max_delta)
*max_delta = *delta;
}
}
/* reset accumulative statistics for "no-counter" type statistics */
priv->accum_statistics.general.temperature =
priv->statistics.general.temperature;
priv->accum_statistics.general.temperature_m =
priv->statistics.general.temperature_m;
priv->accum_statistics.general.ttl_timestamp =
priv->statistics.general.ttl_timestamp;
priv->accum_statistics.tx.tx_power.ant_a =
priv->statistics.tx.tx_power.ant_a;
priv->accum_statistics.tx.tx_power.ant_b =
priv->statistics.tx.tx_power.ant_b;
priv->accum_statistics.tx.tx_power.ant_c =
priv->statistics.tx.tx_power.ant_c;
}
#endif
#define REG_RECALIB_PERIOD (60)
/* the threshold ratio of actual_ack_cnt to expected_ack_cnt in percent */
#define ACK_CNT_RATIO (50)
#define BA_TIMEOUT_CNT (5)
#define BA_TIMEOUT_MAX (16)
#if defined(CONFIG_IWLAGN) || defined(CONFIG_IWLAGN_MODULE)
/**
* iwl_good_ack_health - checks for ACK count ratios, BA timeout retries.
*
* When the ACK count ratio is 0 and aggregated BA timeout retries exceeding
* the BA_TIMEOUT_MAX, reload firmware and bring system back to normal
* operation state.
*/
bool iwl_good_ack_health(struct iwl_priv *priv,
struct iwl_rx_packet *pkt)
{
bool rc = true;
int actual_ack_cnt_delta, expected_ack_cnt_delta;
int ba_timeout_delta;
actual_ack_cnt_delta =
le32_to_cpu(pkt->u.stats.tx.actual_ack_cnt) -
le32_to_cpu(priv->statistics.tx.actual_ack_cnt);
expected_ack_cnt_delta =
le32_to_cpu(pkt->u.stats.tx.expected_ack_cnt) -
le32_to_cpu(priv->statistics.tx.expected_ack_cnt);
ba_timeout_delta =
le32_to_cpu(pkt->u.stats.tx.agg.ba_timeout) -
le32_to_cpu(priv->statistics.tx.agg.ba_timeout);
if ((priv->_agn.agg_tids_count > 0) &&
(expected_ack_cnt_delta > 0) &&
(((actual_ack_cnt_delta * 100) / expected_ack_cnt_delta)
< ACK_CNT_RATIO) &&
(ba_timeout_delta > BA_TIMEOUT_CNT)) {
IWL_DEBUG_RADIO(priv, "actual_ack_cnt delta = %d,"
" expected_ack_cnt = %d\n",
actual_ack_cnt_delta, expected_ack_cnt_delta);
#ifdef CONFIG_IWLWIFI_DEBUG
IWL_DEBUG_RADIO(priv, "rx_detected_cnt delta = %d\n",
priv->delta_statistics.tx.rx_detected_cnt);
IWL_DEBUG_RADIO(priv,
"ack_or_ba_timeout_collision delta = %d\n",
priv->delta_statistics.tx.
ack_or_ba_timeout_collision);
#endif
IWL_DEBUG_RADIO(priv, "agg ba_timeout delta = %d\n",
ba_timeout_delta);
if (!actual_ack_cnt_delta &&
(ba_timeout_delta >= BA_TIMEOUT_MAX))
rc = false;
}
return rc;
}
EXPORT_SYMBOL(iwl_good_ack_health);
#endif
/**
* iwl_good_plcp_health - checks for plcp error.
*
* When the plcp error is exceeding the thresholds, reset the radio
* to improve the throughput.
*/
bool iwl_good_plcp_health(struct iwl_priv *priv,
struct iwl_rx_packet *pkt)
{
bool rc = true;
int combined_plcp_delta;
unsigned int plcp_msec;
unsigned long plcp_received_jiffies;
/*
* check for plcp_err and trigger radio reset if it exceeds
* the plcp error threshold plcp_delta.
*/
plcp_received_jiffies = jiffies;
plcp_msec = jiffies_to_msecs((long) plcp_received_jiffies -
(long) priv->plcp_jiffies);
priv->plcp_jiffies = plcp_received_jiffies;
/*
* check to make sure plcp_msec is not 0 to prevent division
* by zero.
*/
if (plcp_msec) {
combined_plcp_delta =
(le32_to_cpu(pkt->u.stats.rx.ofdm.plcp_err) -
le32_to_cpu(priv->statistics.rx.ofdm.plcp_err)) +
(le32_to_cpu(pkt->u.stats.rx.ofdm_ht.plcp_err) -
le32_to_cpu(priv->statistics.rx.ofdm_ht.plcp_err));
if ((combined_plcp_delta > 0) &&
((combined_plcp_delta * 100) / plcp_msec) >
priv->cfg->plcp_delta_threshold) {
/*
* if plcp_err exceed the threshold,
* the following data is printed in csv format:
* Text: plcp_err exceeded %d,
* Received ofdm.plcp_err,
* Current ofdm.plcp_err,
* Received ofdm_ht.plcp_err,
* Current ofdm_ht.plcp_err,
* combined_plcp_delta,
* plcp_msec
*/
IWL_DEBUG_RADIO(priv, "plcp_err exceeded %u, "
"%u, %u, %u, %u, %d, %u mSecs\n",
priv->cfg->plcp_delta_threshold,
le32_to_cpu(pkt->u.stats.rx.ofdm.plcp_err),
le32_to_cpu(priv->statistics.rx.ofdm.plcp_err),
le32_to_cpu(pkt->u.stats.rx.ofdm_ht.plcp_err),
le32_to_cpu(
priv->statistics.rx.ofdm_ht.plcp_err),
combined_plcp_delta, plcp_msec);
rc = false;
}
}
return rc;
}
EXPORT_SYMBOL(iwl_good_plcp_health);
static void iwl_recover_from_statistics(struct iwl_priv *priv,
struct iwl_rx_packet *pkt)
{
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
if (iwl_is_associated(priv)) {
if (priv->cfg->ops->lib->check_ack_health) {
if (!priv->cfg->ops->lib->check_ack_health(
priv, pkt)) {
/*
* low ack count detected
* restart Firmware
*/
IWL_ERR(priv, "low ack count detected, "
"restart firmware\n");
iwl_force_reset(priv, IWL_FW_RESET);
}
} else if (priv->cfg->ops->lib->check_plcp_health) {
if (!priv->cfg->ops->lib->check_plcp_health(
priv, pkt)) {
/*
* high plcp error detected
* reset Radio
*/
iwl_force_reset(priv, IWL_RF_RESET);
}
}
}
}
void iwl_rx_statistics(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
int change;
struct iwl_rx_packet *pkt = rxb_addr(rxb);
IWL_DEBUG_RX(priv, "Statistics notification received (%d vs %d).\n",
(int)sizeof(priv->statistics),
le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK);
change = ((priv->statistics.general.temperature !=
pkt->u.stats.general.temperature) ||
((priv->statistics.flag &
STATISTICS_REPLY_FLG_HT40_MODE_MSK) !=
(pkt->u.stats.flag & STATISTICS_REPLY_FLG_HT40_MODE_MSK)));
#ifdef CONFIG_IWLWIFI_DEBUG
iwl_accumulative_statistics(priv, (__le32 *)&pkt->u.stats);
#endif
iwl_recover_from_statistics(priv, pkt);
memcpy(&priv->statistics, &pkt->u.stats, sizeof(priv->statistics));
set_bit(STATUS_STATISTICS, &priv->status);
/* Reschedule the statistics timer to occur in
* REG_RECALIB_PERIOD seconds to ensure we get a
* thermal update even if the uCode doesn't give
* us one */
mod_timer(&priv->statistics_periodic, jiffies +
msecs_to_jiffies(REG_RECALIB_PERIOD * 1000));
if (unlikely(!test_bit(STATUS_SCANNING, &priv->status)) &&
(pkt->hdr.cmd == STATISTICS_NOTIFICATION)) {
iwl_rx_calc_noise(priv);
queue_work(priv->workqueue, &priv->run_time_calib_work);
}
if (priv->cfg->ops->lib->temp_ops.temperature && change)
priv->cfg->ops->lib->temp_ops.temperature(priv);
}
EXPORT_SYMBOL(iwl_rx_statistics);
void iwl_reply_statistics(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
if (le32_to_cpu(pkt->u.stats.flag) & UCODE_STATISTICS_CLEAR_MSK) {
#ifdef CONFIG_IWLWIFI_DEBUG
memset(&priv->accum_statistics, 0,
sizeof(struct iwl_notif_statistics));
memset(&priv->delta_statistics, 0,
sizeof(struct iwl_notif_statistics));
memset(&priv->max_delta, 0,
sizeof(struct iwl_notif_statistics));
#endif
IWL_DEBUG_RX(priv, "Statistics have been cleared\n");
}
iwl_rx_statistics(priv, rxb);
}
EXPORT_SYMBOL(iwl_reply_statistics);
/* Calc max signal level (dBm) among 3 possible receivers */
static inline int iwl_calc_rssi(struct iwl_priv *priv,
struct iwl_rx_phy_res *rx_resp)
{
return priv->cfg->ops->utils->calc_rssi(priv, rx_resp);
}
#ifdef CONFIG_IWLWIFI_DEBUG
/**
* iwl_dbg_report_frame - dump frame to syslog during debug sessions
*
* You may hack this function to show different aspects of received frames,
* including selective frame dumps.
* group100 parameter selects whether to show 1 out of 100 good data frames.
* All beacon and probe response frames are printed.
*/
static void iwl_dbg_report_frame(struct iwl_priv *priv,
struct iwl_rx_phy_res *phy_res, u16 length,
struct ieee80211_hdr *header, int group100)
{
u32 to_us;
u32 print_summary = 0;
u32 print_dump = 0; /* set to 1 to dump all frames' contents */
u32 hundred = 0;
u32 dataframe = 0;
__le16 fc;
u16 seq_ctl;
u16 channel;
u16 phy_flags;
u32 rate_n_flags;
u32 tsf_low;
int rssi;
if (likely(!(iwl_get_debug_level(priv) & IWL_DL_RX)))
return;
/* MAC header */
fc = header->frame_control;
seq_ctl = le16_to_cpu(header->seq_ctrl);
/* metadata */
channel = le16_to_cpu(phy_res->channel);
phy_flags = le16_to_cpu(phy_res->phy_flags);
rate_n_flags = le32_to_cpu(phy_res->rate_n_flags);
/* signal statistics */
rssi = iwl_calc_rssi(priv, phy_res);
tsf_low = le64_to_cpu(phy_res->timestamp) & 0x0ffffffff;
to_us = !compare_ether_addr(header->addr1, priv->mac_addr);
/* if data frame is to us and all is good,
* (optionally) print summary for only 1 out of every 100 */
if (to_us && (fc & ~cpu_to_le16(IEEE80211_FCTL_PROTECTED)) ==
cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FTYPE_DATA)) {
dataframe = 1;
if (!group100)
print_summary = 1; /* print each frame */
else if (priv->framecnt_to_us < 100) {
priv->framecnt_to_us++;
print_summary = 0;
} else {
priv->framecnt_to_us = 0;
print_summary = 1;
hundred = 1;
}
} else {
/* print summary for all other frames */
print_summary = 1;
}
if (print_summary) {
char *title;
int rate_idx;
u32 bitrate;
if (hundred)
title = "100Frames";
else if (ieee80211_has_retry(fc))
title = "Retry";
else if (ieee80211_is_assoc_resp(fc))
title = "AscRsp";
else if (ieee80211_is_reassoc_resp(fc))
title = "RasRsp";
else if (ieee80211_is_probe_resp(fc)) {
title = "PrbRsp";
print_dump = 1; /* dump frame contents */
} else if (ieee80211_is_beacon(fc)) {
title = "Beacon";
print_dump = 1; /* dump frame contents */
} else if (ieee80211_is_atim(fc))
title = "ATIM";
else if (ieee80211_is_auth(fc))
title = "Auth";
else if (ieee80211_is_deauth(fc))
title = "DeAuth";
else if (ieee80211_is_disassoc(fc))
title = "DisAssoc";
else
title = "Frame";
rate_idx = iwl_hwrate_to_plcp_idx(rate_n_flags);
if (unlikely((rate_idx < 0) || (rate_idx >= IWL_RATE_COUNT))) {
bitrate = 0;
WARN_ON_ONCE(1);
} else {
bitrate = iwl_rates[rate_idx].ieee / 2;
}
/* print frame summary.
* MAC addresses show just the last byte (for brevity),
* but you can hack it to show more, if you'd like to. */
if (dataframe)
IWL_DEBUG_RX(priv, "%s: mhd=0x%04x, dst=0x%02x, "
"len=%u, rssi=%d, chnl=%d, rate=%u, \n",
title, le16_to_cpu(fc), header->addr1[5],
length, rssi, channel, bitrate);
else {
/* src/dst addresses assume managed mode */
IWL_DEBUG_RX(priv, "%s: 0x%04x, dst=0x%02x, src=0x%02x, "
"len=%u, rssi=%d, tim=%lu usec, "
"phy=0x%02x, chnl=%d\n",
title, le16_to_cpu(fc), header->addr1[5],
header->addr3[5], length, rssi,
tsf_low - priv->scan_start_tsf,
phy_flags, channel);
}
}
if (print_dump)
iwl_print_hex_dump(priv, IWL_DL_RX, header, length);
}
#endif
/*
* returns non-zero if packet should be dropped
*/
int iwl_set_decrypted_flag(struct iwl_priv *priv,
struct ieee80211_hdr *hdr,
u32 decrypt_res,
struct ieee80211_rx_status *stats)
{
u16 fc = le16_to_cpu(hdr->frame_control);
if (priv->active_rxon.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
return 0;
if (!(fc & IEEE80211_FCTL_PROTECTED))
return 0;
IWL_DEBUG_RX(priv, "decrypt_res:0x%x\n", decrypt_res);
switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
case RX_RES_STATUS_SEC_TYPE_TKIP:
/* The uCode has got a bad phase 1 Key, pushes the packet.
* Decryption will be done in SW. */
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_BAD_KEY_TTAK)
break;
case RX_RES_STATUS_SEC_TYPE_WEP:
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_BAD_ICV_MIC) {
/* bad ICV, the packet is destroyed since the
* decryption is inplace, drop it */
IWL_DEBUG_RX(priv, "Packet destroyed\n");
return -1;
}
case RX_RES_STATUS_SEC_TYPE_CCMP:
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_DECRYPT_OK) {
IWL_DEBUG_RX(priv, "hw decrypt successfully!!!\n");
stats->flag |= RX_FLAG_DECRYPTED;
}
break;
default:
break;
}
return 0;
}
EXPORT_SYMBOL(iwl_set_decrypted_flag);
static u32 iwl_translate_rx_status(struct iwl_priv *priv, u32 decrypt_in)
{
u32 decrypt_out = 0;
if ((decrypt_in & RX_RES_STATUS_STATION_FOUND) ==
RX_RES_STATUS_STATION_FOUND)
decrypt_out |= (RX_RES_STATUS_STATION_FOUND |
RX_RES_STATUS_NO_STATION_INFO_MISMATCH);
decrypt_out |= (decrypt_in & RX_RES_STATUS_SEC_TYPE_MSK);
/* packet was not encrypted */
if ((decrypt_in & RX_RES_STATUS_SEC_TYPE_MSK) ==
RX_RES_STATUS_SEC_TYPE_NONE)
return decrypt_out;
/* packet was encrypted with unknown alg */
if ((decrypt_in & RX_RES_STATUS_SEC_TYPE_MSK) ==
RX_RES_STATUS_SEC_TYPE_ERR)
return decrypt_out;
/* decryption was not done in HW */
if ((decrypt_in & RX_MPDU_RES_STATUS_DEC_DONE_MSK) !=
RX_MPDU_RES_STATUS_DEC_DONE_MSK)
return decrypt_out;
switch (decrypt_in & RX_RES_STATUS_SEC_TYPE_MSK) {
case RX_RES_STATUS_SEC_TYPE_CCMP:
/* alg is CCM: check MIC only */
if (!(decrypt_in & RX_MPDU_RES_STATUS_MIC_OK))
/* Bad MIC */
decrypt_out |= RX_RES_STATUS_BAD_ICV_MIC;
else
decrypt_out |= RX_RES_STATUS_DECRYPT_OK;
break;
case RX_RES_STATUS_SEC_TYPE_TKIP:
if (!(decrypt_in & RX_MPDU_RES_STATUS_TTAK_OK)) {
/* Bad TTAK */
decrypt_out |= RX_RES_STATUS_BAD_KEY_TTAK;
break;
}
/* fall through if TTAK OK */
default:
if (!(decrypt_in & RX_MPDU_RES_STATUS_ICV_OK))
decrypt_out |= RX_RES_STATUS_BAD_ICV_MIC;
else
decrypt_out |= RX_RES_STATUS_DECRYPT_OK;
break;
};
IWL_DEBUG_RX(priv, "decrypt_in:0x%x decrypt_out = 0x%x\n",
decrypt_in, decrypt_out);
return decrypt_out;
}
static void iwl_pass_packet_to_mac80211(struct iwl_priv *priv,
struct ieee80211_hdr *hdr,
u16 len,
u32 ampdu_status,
struct iwl_rx_mem_buffer *rxb,
struct ieee80211_rx_status *stats)
{
struct sk_buff *skb;
int ret = 0;
__le16 fc = hdr->frame_control;
/* We only process data packets if the interface is open */
if (unlikely(!priv->is_open)) {
IWL_DEBUG_DROP_LIMIT(priv,
"Dropping packet while interface is not open.\n");
return;
}
/* In case of HW accelerated crypto and bad decryption, drop */
if (!priv->cfg->mod_params->sw_crypto &&
iwl_set_decrypted_flag(priv, hdr, ampdu_status, stats))
return;
skb = alloc_skb(IWL_LINK_HDR_MAX * 2, GFP_ATOMIC);
if (!skb) {
IWL_ERR(priv, "alloc_skb failed\n");
return;
}
skb_reserve(skb, IWL_LINK_HDR_MAX);
skb_add_rx_frag(skb, 0, rxb->page, (void *)hdr - rxb_addr(rxb), len);
/* mac80211 currently doesn't support paged SKB. Convert it to
* linear SKB for management frame and data frame requires
* software decryption or software defragementation. */
if (ieee80211_is_mgmt(fc) ||
ieee80211_has_protected(fc) ||
ieee80211_has_morefrags(fc) ||
le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG ||
(ieee80211_is_data_qos(fc) &&
*ieee80211_get_qos_ctl(hdr) &
IEEE80211_QOS_CONTROL_A_MSDU_PRESENT))
ret = skb_linearize(skb);
else
ret = __pskb_pull_tail(skb, min_t(u16, IWL_LINK_HDR_MAX, len)) ?
0 : -ENOMEM;
if (ret) {
kfree_skb(skb);
goto out;
}
/*
* XXX: We cannot touch the page and its virtual memory (hdr) after
* here. It might have already been freed by the above skb change.
*/
iwl_update_stats(priv, false, fc, len);
memcpy(IEEE80211_SKB_RXCB(skb), stats, sizeof(*stats));
ieee80211_rx(priv->hw, skb);
out:
priv->alloc_rxb_page--;
rxb->page = NULL;
}
/* Called for REPLY_RX (legacy ABG frames), or
* REPLY_RX_MPDU_CMD (HT high-throughput N frames). */
void iwl_rx_reply_rx(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct ieee80211_hdr *header;
struct ieee80211_rx_status rx_status;
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_rx_phy_res *phy_res;
__le32 rx_pkt_status;
struct iwl4965_rx_mpdu_res_start *amsdu;
u32 len;
u32 ampdu_status;
u32 rate_n_flags;
/**
* REPLY_RX and REPLY_RX_MPDU_CMD are handled differently.
* REPLY_RX: physical layer info is in this buffer
* REPLY_RX_MPDU_CMD: physical layer info was sent in separate
* command and cached in priv->last_phy_res
*
* Here we set up local variables depending on which command is
* received.
*/
if (pkt->hdr.cmd == REPLY_RX) {
phy_res = (struct iwl_rx_phy_res *)pkt->u.raw;
header = (struct ieee80211_hdr *)(pkt->u.raw + sizeof(*phy_res)
+ phy_res->cfg_phy_cnt);
len = le16_to_cpu(phy_res->byte_count);
rx_pkt_status = *(__le32 *)(pkt->u.raw + sizeof(*phy_res) +
phy_res->cfg_phy_cnt + len);
ampdu_status = le32_to_cpu(rx_pkt_status);
} else {
if (!priv->last_phy_res[0]) {
IWL_ERR(priv, "MPDU frame without cached PHY data\n");
return;
}
phy_res = (struct iwl_rx_phy_res *)&priv->last_phy_res[1];
amsdu = (struct iwl4965_rx_mpdu_res_start *)pkt->u.raw;
header = (struct ieee80211_hdr *)(pkt->u.raw + sizeof(*amsdu));
len = le16_to_cpu(amsdu->byte_count);
rx_pkt_status = *(__le32 *)(pkt->u.raw + sizeof(*amsdu) + len);
ampdu_status = iwl_translate_rx_status(priv,
le32_to_cpu(rx_pkt_status));
}
if ((unlikely(phy_res->cfg_phy_cnt > 20))) {
IWL_DEBUG_DROP(priv, "dsp size out of range [0,20]: %d/n",
phy_res->cfg_phy_cnt);
return;
}
if (!(rx_pkt_status & RX_RES_STATUS_NO_CRC32_ERROR) ||
!(rx_pkt_status & RX_RES_STATUS_NO_RXE_OVERFLOW)) {
IWL_DEBUG_RX(priv, "Bad CRC or FIFO: 0x%08X.\n",
le32_to_cpu(rx_pkt_status));
return;
}
/* This will be used in several places later */
rate_n_flags = le32_to_cpu(phy_res->rate_n_flags);
/* rx_status carries information about the packet to mac80211 */
rx_status.mactime = le64_to_cpu(phy_res->timestamp);
rx_status.freq =
ieee80211_channel_to_frequency(le16_to_cpu(phy_res->channel));
rx_status.band = (phy_res->phy_flags & RX_RES_PHY_FLAGS_BAND_24_MSK) ?
IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
rx_status.rate_idx =
iwl_hwrate_to_mac80211_idx(rate_n_flags, rx_status.band);
rx_status.flag = 0;
/* TSF isn't reliable. In order to allow smooth user experience,
* this W/A doesn't propagate it to the mac80211 */
/*rx_status.flag |= RX_FLAG_TSFT;*/
priv->ucode_beacon_time = le32_to_cpu(phy_res->beacon_time_stamp);
/* Find max signal strength (dBm) among 3 antenna/receiver chains */
rx_status.signal = iwl_calc_rssi(priv, phy_res);
/* Meaningful noise values are available only from beacon statistics,
* which are gathered only when associated, and indicate noise
* only for the associated network channel ...
* Ignore these noise values while scanning (other channels) */
if (iwl_is_associated(priv) &&
!test_bit(STATUS_SCANNING, &priv->status)) {
rx_status.noise = priv->last_rx_noise;
} else {
rx_status.noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
}
/* Reset beacon noise level if not associated. */
if (!iwl_is_associated(priv))
priv->last_rx_noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
#ifdef CONFIG_IWLWIFI_DEBUG
/* Set "1" to report good data frames in groups of 100 */
if (unlikely(iwl_get_debug_level(priv) & IWL_DL_RX))
iwl_dbg_report_frame(priv, phy_res, len, header, 1);
#endif
iwl_dbg_log_rx_data_frame(priv, len, header);
IWL_DEBUG_STATS_LIMIT(priv, "Rssi %d, noise %d, TSF %llu\n",
rx_status.signal, rx_status.noise,
(unsigned long long)rx_status.mactime);
/*
* "antenna number"
*
* It seems that the antenna field in the phy flags value
* is actually a bit field. This is undefined by radiotap,
* it wants an actual antenna number but I always get "7"
* for most legacy frames I receive indicating that the
* same frame was received on all three RX chains.
*
* I think this field should be removed in favor of a
* new 802.11n radiotap field "RX chains" that is defined
* as a bitmask.
*/
rx_status.antenna =
(le16_to_cpu(phy_res->phy_flags) & RX_RES_PHY_FLAGS_ANTENNA_MSK)
>> RX_RES_PHY_FLAGS_ANTENNA_POS;
/* set the preamble flag if appropriate */
if (phy_res->phy_flags & RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK)
rx_status.flag |= RX_FLAG_SHORTPRE;
/* Set up the HT phy flags */
if (rate_n_flags & RATE_MCS_HT_MSK)
rx_status.flag |= RX_FLAG_HT;
if (rate_n_flags & RATE_MCS_HT40_MSK)
rx_status.flag |= RX_FLAG_40MHZ;
if (rate_n_flags & RATE_MCS_SGI_MSK)
rx_status.flag |= RX_FLAG_SHORT_GI;
iwl_pass_packet_to_mac80211(priv, header, len, ampdu_status,
rxb, &rx_status);
}
EXPORT_SYMBOL(iwl_rx_reply_rx);
/* Cache phy data (Rx signal strength, etc) for HT frame (REPLY_RX_PHY_CMD).
* This will be used later in iwl_rx_reply_rx() for REPLY_RX_MPDU_CMD. */
void iwl_rx_reply_rx_phy(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
priv->last_phy_res[0] = 1;
memcpy(&priv->last_phy_res[1], &(pkt->u.raw[0]),
sizeof(struct iwl_rx_phy_res));
}
EXPORT_SYMBOL(iwl_rx_reply_rx_phy);