linux/arch/s390/mm/vmem.c
Heiko Carstens 70c9d29632 s390/vmemmap: remove memset call from vmemmap_populate()
If the vmemmap array gets filled with large pages we allocate those
pages with vmemmap_alloc_block(), which returns cleared pages.
Only for single 4k pages we call our own vmem_alloc_pages() which does
not return cleared pages. However we can also call vmemmap_alloc_block()
to allocate the 4k pages.
This way we can also make sure the vmemmap array is cleared after its
population.
Therefore we can remove the memset at the end of the function which
would clear the vmmemmap array a second time on machines which do
support EDAT1.

On very large configurations this can save us several seconds.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-09-25 10:52:07 +02:00

424 lines
9.4 KiB
C

/*
* Copyright IBM Corp. 2006
* Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
*/
#include <linux/bootmem.h>
#include <linux/pfn.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/memblock.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
static DEFINE_MUTEX(vmem_mutex);
struct memory_segment {
struct list_head list;
unsigned long start;
unsigned long size;
};
static LIST_HEAD(mem_segs);
static void __ref *vmem_alloc_pages(unsigned int order)
{
if (slab_is_available())
return (void *)__get_free_pages(GFP_KERNEL, order);
return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
}
static inline pud_t *vmem_pud_alloc(void)
{
pud_t *pud = NULL;
#ifdef CONFIG_64BIT
pud = vmem_alloc_pages(2);
if (!pud)
return NULL;
clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
#endif
return pud;
}
static inline pmd_t *vmem_pmd_alloc(void)
{
pmd_t *pmd = NULL;
#ifdef CONFIG_64BIT
pmd = vmem_alloc_pages(2);
if (!pmd)
return NULL;
clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
#endif
return pmd;
}
static pte_t __ref *vmem_pte_alloc(unsigned long address)
{
pte_t *pte;
if (slab_is_available())
pte = (pte_t *) page_table_alloc(&init_mm, address);
else
pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
PTRS_PER_PTE * sizeof(pte_t));
if (!pte)
return NULL;
clear_table((unsigned long *) pte, _PAGE_INVALID,
PTRS_PER_PTE * sizeof(pte_t));
return pte;
}
/*
* Add a physical memory range to the 1:1 mapping.
*/
static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
{
unsigned long end = start + size;
unsigned long address = start;
pgd_t *pg_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
int ret = -ENOMEM;
while (address < end) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
pu_dir = vmem_pud_alloc();
if (!pu_dir)
goto out;
pgd_populate(&init_mm, pg_dir, pu_dir);
}
pu_dir = pud_offset(pg_dir, address);
#if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
!(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
pud_val(*pu_dir) = __pa(address) |
_REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
(ro ? _REGION_ENTRY_PROTECT : 0);
address += PUD_SIZE;
continue;
}
#endif
if (pud_none(*pu_dir)) {
pm_dir = vmem_pmd_alloc();
if (!pm_dir)
goto out;
pud_populate(&init_mm, pu_dir, pm_dir);
}
pm_dir = pmd_offset(pu_dir, address);
#if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
!(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
pmd_val(*pm_dir) = __pa(address) |
_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
_SEGMENT_ENTRY_YOUNG |
(ro ? _SEGMENT_ENTRY_PROTECT : 0);
address += PMD_SIZE;
continue;
}
#endif
if (pmd_none(*pm_dir)) {
pt_dir = vmem_pte_alloc(address);
if (!pt_dir)
goto out;
pmd_populate(&init_mm, pm_dir, pt_dir);
}
pt_dir = pte_offset_kernel(pm_dir, address);
pte_val(*pt_dir) = __pa(address) |
pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
address += PAGE_SIZE;
}
ret = 0;
out:
return ret;
}
/*
* Remove a physical memory range from the 1:1 mapping.
* Currently only invalidates page table entries.
*/
static void vmem_remove_range(unsigned long start, unsigned long size)
{
unsigned long end = start + size;
unsigned long address = start;
pgd_t *pg_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
pte_t pte;
pte_val(pte) = _PAGE_INVALID;
while (address < end) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
address += PGDIR_SIZE;
continue;
}
pu_dir = pud_offset(pg_dir, address);
if (pud_none(*pu_dir)) {
address += PUD_SIZE;
continue;
}
if (pud_large(*pu_dir)) {
pud_clear(pu_dir);
address += PUD_SIZE;
continue;
}
pm_dir = pmd_offset(pu_dir, address);
if (pmd_none(*pm_dir)) {
address += PMD_SIZE;
continue;
}
if (pmd_large(*pm_dir)) {
pmd_clear(pm_dir);
address += PMD_SIZE;
continue;
}
pt_dir = pte_offset_kernel(pm_dir, address);
*pt_dir = pte;
address += PAGE_SIZE;
}
flush_tlb_kernel_range(start, end);
}
/*
* Add a backed mem_map array to the virtual mem_map array.
*/
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
unsigned long address = start;
pgd_t *pg_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
int ret = -ENOMEM;
for (address = start; address < end;) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
pu_dir = vmem_pud_alloc();
if (!pu_dir)
goto out;
pgd_populate(&init_mm, pg_dir, pu_dir);
}
pu_dir = pud_offset(pg_dir, address);
if (pud_none(*pu_dir)) {
pm_dir = vmem_pmd_alloc();
if (!pm_dir)
goto out;
pud_populate(&init_mm, pu_dir, pm_dir);
}
pm_dir = pmd_offset(pu_dir, address);
if (pmd_none(*pm_dir)) {
#ifdef CONFIG_64BIT
/* Use 1MB frames for vmemmap if available. We always
* use large frames even if they are only partially
* used.
* Otherwise we would have also page tables since
* vmemmap_populate gets called for each section
* separately. */
if (MACHINE_HAS_EDAT1) {
void *new_page;
new_page = vmemmap_alloc_block(PMD_SIZE, node);
if (!new_page)
goto out;
pmd_val(*pm_dir) = __pa(new_page) |
_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
_SEGMENT_ENTRY_CO;
address = (address + PMD_SIZE) & PMD_MASK;
continue;
}
#endif
pt_dir = vmem_pte_alloc(address);
if (!pt_dir)
goto out;
pmd_populate(&init_mm, pm_dir, pt_dir);
} else if (pmd_large(*pm_dir)) {
address = (address + PMD_SIZE) & PMD_MASK;
continue;
}
pt_dir = pte_offset_kernel(pm_dir, address);
if (pte_none(*pt_dir)) {
void *new_page;
new_page = vmemmap_alloc_block(PAGE_SIZE, node);
if (!new_page)
goto out;
pte_val(*pt_dir) =
__pa(new_page) | pgprot_val(PAGE_KERNEL);
}
address += PAGE_SIZE;
}
ret = 0;
out:
return ret;
}
void vmemmap_free(unsigned long start, unsigned long end)
{
}
/*
* Add memory segment to the segment list if it doesn't overlap with
* an already present segment.
*/
static int insert_memory_segment(struct memory_segment *seg)
{
struct memory_segment *tmp;
if (seg->start + seg->size > VMEM_MAX_PHYS ||
seg->start + seg->size < seg->start)
return -ERANGE;
list_for_each_entry(tmp, &mem_segs, list) {
if (seg->start >= tmp->start + tmp->size)
continue;
if (seg->start + seg->size <= tmp->start)
continue;
return -ENOSPC;
}
list_add(&seg->list, &mem_segs);
return 0;
}
/*
* Remove memory segment from the segment list.
*/
static void remove_memory_segment(struct memory_segment *seg)
{
list_del(&seg->list);
}
static void __remove_shared_memory(struct memory_segment *seg)
{
remove_memory_segment(seg);
vmem_remove_range(seg->start, seg->size);
}
int vmem_remove_mapping(unsigned long start, unsigned long size)
{
struct memory_segment *seg;
int ret;
mutex_lock(&vmem_mutex);
ret = -ENOENT;
list_for_each_entry(seg, &mem_segs, list) {
if (seg->start == start && seg->size == size)
break;
}
if (seg->start != start || seg->size != size)
goto out;
ret = 0;
__remove_shared_memory(seg);
kfree(seg);
out:
mutex_unlock(&vmem_mutex);
return ret;
}
int vmem_add_mapping(unsigned long start, unsigned long size)
{
struct memory_segment *seg;
int ret;
mutex_lock(&vmem_mutex);
ret = -ENOMEM;
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
goto out;
seg->start = start;
seg->size = size;
ret = insert_memory_segment(seg);
if (ret)
goto out_free;
ret = vmem_add_mem(start, size, 0);
if (ret)
goto out_remove;
goto out;
out_remove:
__remove_shared_memory(seg);
out_free:
kfree(seg);
out:
mutex_unlock(&vmem_mutex);
return ret;
}
/*
* map whole physical memory to virtual memory (identity mapping)
* we reserve enough space in the vmalloc area for vmemmap to hotplug
* additional memory segments.
*/
void __init vmem_map_init(void)
{
unsigned long ro_start, ro_end;
struct memblock_region *reg;
phys_addr_t start, end;
ro_start = PFN_ALIGN((unsigned long)&_stext);
ro_end = (unsigned long)&_eshared & PAGE_MASK;
for_each_memblock(memory, reg) {
start = reg->base;
end = reg->base + reg->size - 1;
if (start >= ro_end || end <= ro_start)
vmem_add_mem(start, end - start, 0);
else if (start >= ro_start && end <= ro_end)
vmem_add_mem(start, end - start, 1);
else if (start >= ro_start) {
vmem_add_mem(start, ro_end - start, 1);
vmem_add_mem(ro_end, end - ro_end, 0);
} else if (end < ro_end) {
vmem_add_mem(start, ro_start - start, 0);
vmem_add_mem(ro_start, end - ro_start, 1);
} else {
vmem_add_mem(start, ro_start - start, 0);
vmem_add_mem(ro_start, ro_end - ro_start, 1);
vmem_add_mem(ro_end, end - ro_end, 0);
}
}
}
/*
* Convert memblock.memory to a memory segment list so there is a single
* list that contains all memory segments.
*/
static int __init vmem_convert_memory_chunk(void)
{
struct memblock_region *reg;
struct memory_segment *seg;
mutex_lock(&vmem_mutex);
for_each_memblock(memory, reg) {
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
panic("Out of memory...\n");
seg->start = reg->base;
seg->size = reg->size;
insert_memory_segment(seg);
}
mutex_unlock(&vmem_mutex);
return 0;
}
core_initcall(vmem_convert_memory_chunk);