linux/Documentation/filesystems/nfs.txt
Trond Myklebust e571cbf1a4 NFS: Add a dns resolver for use with NFSv4 referrals and migration
The NFSv4 and NFSv4.1 protocols both allow for the redirection of a client
from one server to another in order to support filesystem migration and
replication. For full protocol support, we need to add the ability to
convert a DNS host name into an IP address that we can feed to the RPC
client.

We'll reuse the sunrpc cache, now that it has been converted to work with
rpc_pipefs.

Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2009-08-19 18:22:15 -04:00

98 lines
3 KiB
Text

The NFS client
==============
The NFS version 2 protocol was first documented in RFC1094 (March 1989).
Since then two more major releases of NFS have been published, with NFSv3
being documented in RFC1813 (June 1995), and NFSv4 in RFC3530 (April
2003).
The Linux NFS client currently supports all the above published versions,
and work is in progress on adding support for minor version 1 of the NFSv4
protocol.
The purpose of this document is to provide information on some of the
upcall interfaces that are used in order to provide the NFS client with
some of the information that it requires in order to fully comply with
the NFS spec.
The DNS resolver
================
NFSv4 allows for one server to refer the NFS client to data that has been
migrated onto another server by means of the special "fs_locations"
attribute. See
http://tools.ietf.org/html/rfc3530#section-6
and
http://tools.ietf.org/html/draft-ietf-nfsv4-referrals-00
The fs_locations information can take the form of either an ip address and
a path, or a DNS hostname and a path. The latter requires the NFS client to
do a DNS lookup in order to mount the new volume, and hence the need for an
upcall to allow userland to provide this service.
Assuming that the user has the 'rpc_pipefs' filesystem mounted in the usual
/var/lib/nfs/rpc_pipefs, the upcall consists of the following steps:
(1) The process checks the dns_resolve cache to see if it contains a
valid entry. If so, it returns that entry and exits.
(2) If no valid entry exists, the helper script '/sbin/nfs_cache_getent'
(may be changed using the 'nfs.cache_getent' kernel boot parameter)
is run, with two arguments:
- the cache name, "dns_resolve"
- the hostname to resolve
(3) After looking up the corresponding ip address, the helper script
writes the result into the rpc_pipefs pseudo-file
'/var/lib/nfs/rpc_pipefs/cache/dns_resolve/channel'
in the following (text) format:
"<ip address> <hostname> <ttl>\n"
Where <ip address> is in the usual IPv4 (123.456.78.90) or IPv6
(ffee:ddcc:bbaa:9988:7766:5544:3322:1100, ffee::1100, ...) format.
<hostname> is identical to the second argument of the helper
script, and <ttl> is the 'time to live' of this cache entry (in
units of seconds).
Note: If <ip address> is invalid, say the string "0", then a negative
entry is created, which will cause the kernel to treat the hostname
as having no valid DNS translation.
A basic sample /sbin/nfs_cache_getent
=====================================
#!/bin/bash
#
ttl=600
#
cut=/usr/bin/cut
getent=/usr/bin/getent
rpc_pipefs=/var/lib/nfs/rpc_pipefs
#
die()
{
echo "Usage: $0 cache_name entry_name"
exit 1
}
[ $# -lt 2 ] && die
cachename="$1"
cache_path=${rpc_pipefs}/cache/${cachename}/channel
case "${cachename}" in
dns_resolve)
name="$2"
result="$(${getent} hosts ${name} | ${cut} -f1 -d\ )"
[ -z "${result}" ] && result="0"
;;
*)
die
;;
esac
echo "${result} ${name} ${ttl}" >${cache_path}