linux/fs/netfs/write_issue.c
David Howells 7b589a9b45
netfs: Fix handling of USE_PGPRIV2 and WRITE_TO_CACHE flags
The NETFS_RREQ_USE_PGPRIV2 and NETFS_RREQ_WRITE_TO_CACHE flags aren't used
correctly.  The problem is that we try to set them up in the request
initialisation, but we the cache may be in the process of setting up still,
and so the state may not be correct.  Further, we secondarily sample the
cache state and make contradictory decisions later.

The issue arises because we set up the cache resources, which allows the
cache's ->prepare_read() to switch on NETFS_SREQ_COPY_TO_CACHE - which
triggers cache writing even if we didn't set the flags when allocating.

Fix this in the following way:

 (1) Drop NETFS_ICTX_USE_PGPRIV2 and instead set NETFS_RREQ_USE_PGPRIV2 in
     ->init_request() rather than trying to juggle that in
     netfs_alloc_request().

 (2) Repurpose NETFS_RREQ_USE_PGPRIV2 to merely indicate that if caching is
     to be done, then PG_private_2 is to be used rather than only setting
     it if we decide to cache and then having netfs_rreq_unlock_folios()
     set the non-PG_private_2 writeback-to-cache if it wasn't set.

 (3) Split netfs_rreq_unlock_folios() into two functions, one of which
     contains the deprecated code for using PG_private_2 to avoid
     accidentally doing the writeback path - and always use it if
     USE_PGPRIV2 is set.

 (4) As NETFS_ICTX_USE_PGPRIV2 is removed, make netfs_write_begin() always
     wait for PG_private_2.  This function is deprecated and only used by
     ceph anyway, and so label it so.

 (5) Drop the NETFS_RREQ_WRITE_TO_CACHE flag and use
     fscache_operation_valid() on the cache_resources instead.  This has
     the advantage of picking up the result of netfs_begin_cache_read() and
     fscache_begin_write_operation() - which are called after the object is
     initialised and will wait for the cache to come to a usable state.

Just reverting ae678317b95e[1] isn't a sufficient fix, so this need to be
applied on top of that.  Without this as well, things like:

 rcu: INFO: rcu_sched detected expedited stalls on CPUs/tasks: {

and:

 WARNING: CPU: 13 PID: 3621 at fs/ceph/caps.c:3386

may happen, along with some UAFs due to PG_private_2 not getting used to
wait on writeback completion.

Fixes: 2ff1e97587 ("netfs: Replace PG_fscache by setting folio->private and marking dirty")
Reported-by: Max Kellermann <max.kellermann@ionos.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Xiubo Li <xiubli@redhat.com>
cc: Hristo Venev <hristo@venev.name>
cc: Jeff Layton <jlayton@kernel.org>
cc: Matthew Wilcox <willy@infradead.org>
cc: ceph-devel@vger.kernel.org
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Link: https://lore.kernel.org/r/3575457.1722355300@warthog.procyon.org.uk/ [1]
Link: https://lore.kernel.org/r/1173209.1723152682@warthog.procyon.org.uk
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-08-12 22:03:27 +02:00

693 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Network filesystem high-level (buffered) writeback.
*
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
*
* To support network filesystems with local caching, we manage a situation
* that can be envisioned like the following:
*
* +---+---+-----+-----+---+----------+
* Folios: | | | | | | |
* +---+---+-----+-----+---+----------+
*
* +------+------+ +----+----+
* Upload: | | |.....| | |
* (Stream 0) +------+------+ +----+----+
*
* +------+------+------+------+------+
* Cache: | | | | | |
* (Stream 1) +------+------+------+------+------+
*
* Where we have a sequence of folios of varying sizes that we need to overlay
* with multiple parallel streams of I/O requests, where the I/O requests in a
* stream may also be of various sizes (in cifs, for example, the sizes are
* negotiated with the server; in something like ceph, they may represent the
* sizes of storage objects).
*
* The sequence in each stream may contain gaps and noncontiguous subrequests
* may be glued together into single vectored write RPCs.
*/
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include "internal.h"
/*
* Kill all dirty folios in the event of an unrecoverable error, starting with
* a locked folio we've already obtained from writeback_iter().
*/
static void netfs_kill_dirty_pages(struct address_space *mapping,
struct writeback_control *wbc,
struct folio *folio)
{
int error = 0;
do {
enum netfs_folio_trace why = netfs_folio_trace_kill;
struct netfs_group *group = NULL;
struct netfs_folio *finfo = NULL;
void *priv;
priv = folio_detach_private(folio);
if (priv) {
finfo = __netfs_folio_info(priv);
if (finfo) {
/* Kill folio from streaming write. */
group = finfo->netfs_group;
why = netfs_folio_trace_kill_s;
} else {
group = priv;
if (group == NETFS_FOLIO_COPY_TO_CACHE) {
/* Kill copy-to-cache folio */
why = netfs_folio_trace_kill_cc;
group = NULL;
} else {
/* Kill folio with group */
why = netfs_folio_trace_kill_g;
}
}
}
trace_netfs_folio(folio, why);
folio_start_writeback(folio);
folio_unlock(folio);
folio_end_writeback(folio);
netfs_put_group(group);
kfree(finfo);
} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
}
/*
* Create a write request and set it up appropriately for the origin type.
*/
struct netfs_io_request *netfs_create_write_req(struct address_space *mapping,
struct file *file,
loff_t start,
enum netfs_io_origin origin)
{
struct netfs_io_request *wreq;
struct netfs_inode *ictx;
bool is_buffered = (origin == NETFS_WRITEBACK ||
origin == NETFS_WRITETHROUGH);
wreq = netfs_alloc_request(mapping, file, start, 0, origin);
if (IS_ERR(wreq))
return wreq;
_enter("R=%x", wreq->debug_id);
ictx = netfs_inode(wreq->inode);
if (is_buffered && netfs_is_cache_enabled(ictx))
fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx));
wreq->contiguity = wreq->start;
wreq->cleaned_to = wreq->start;
INIT_WORK(&wreq->work, netfs_write_collection_worker);
wreq->io_streams[0].stream_nr = 0;
wreq->io_streams[0].source = NETFS_UPLOAD_TO_SERVER;
wreq->io_streams[0].prepare_write = ictx->ops->prepare_write;
wreq->io_streams[0].issue_write = ictx->ops->issue_write;
wreq->io_streams[0].collected_to = start;
wreq->io_streams[0].transferred = LONG_MAX;
wreq->io_streams[1].stream_nr = 1;
wreq->io_streams[1].source = NETFS_WRITE_TO_CACHE;
wreq->io_streams[1].collected_to = start;
wreq->io_streams[1].transferred = LONG_MAX;
if (fscache_resources_valid(&wreq->cache_resources)) {
wreq->io_streams[1].avail = true;
wreq->io_streams[1].active = true;
wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq;
wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write;
}
return wreq;
}
/**
* netfs_prepare_write_failed - Note write preparation failed
* @subreq: The subrequest to mark
*
* Mark a subrequest to note that preparation for write failed.
*/
void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq)
{
__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed);
}
EXPORT_SYMBOL(netfs_prepare_write_failed);
/*
* Prepare a write subrequest. We need to allocate a new subrequest
* if we don't have one.
*/
static void netfs_prepare_write(struct netfs_io_request *wreq,
struct netfs_io_stream *stream,
loff_t start)
{
struct netfs_io_subrequest *subreq;
subreq = netfs_alloc_subrequest(wreq);
subreq->source = stream->source;
subreq->start = start;
subreq->max_len = ULONG_MAX;
subreq->max_nr_segs = INT_MAX;
subreq->stream_nr = stream->stream_nr;
_enter("R=%x[%x]", wreq->debug_id, subreq->debug_index);
trace_netfs_sreq_ref(wreq->debug_id, subreq->debug_index,
refcount_read(&subreq->ref),
netfs_sreq_trace_new);
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
switch (stream->source) {
case NETFS_UPLOAD_TO_SERVER:
netfs_stat(&netfs_n_wh_upload);
subreq->max_len = wreq->wsize;
break;
case NETFS_WRITE_TO_CACHE:
netfs_stat(&netfs_n_wh_write);
break;
default:
WARN_ON_ONCE(1);
break;
}
if (stream->prepare_write)
stream->prepare_write(subreq);
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
/* We add to the end of the list whilst the collector may be walking
* the list. The collector only goes nextwards and uses the lock to
* remove entries off of the front.
*/
spin_lock(&wreq->lock);
list_add_tail(&subreq->rreq_link, &stream->subrequests);
if (list_is_first(&subreq->rreq_link, &stream->subrequests)) {
stream->front = subreq;
if (!stream->active) {
stream->collected_to = stream->front->start;
/* Write list pointers before active flag */
smp_store_release(&stream->active, true);
}
}
spin_unlock(&wreq->lock);
stream->construct = subreq;
}
/*
* Set the I/O iterator for the filesystem/cache to use and dispatch the I/O
* operation. The operation may be asynchronous and should call
* netfs_write_subrequest_terminated() when complete.
*/
static void netfs_do_issue_write(struct netfs_io_stream *stream,
struct netfs_io_subrequest *subreq)
{
struct netfs_io_request *wreq = subreq->rreq;
_enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len);
if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
return netfs_write_subrequest_terminated(subreq, subreq->error, false);
// TODO: Use encrypted buffer
if (test_bit(NETFS_RREQ_USE_IO_ITER, &wreq->flags)) {
subreq->io_iter = wreq->io_iter;
iov_iter_advance(&subreq->io_iter,
subreq->start + subreq->transferred - wreq->start);
iov_iter_truncate(&subreq->io_iter,
subreq->len - subreq->transferred);
} else {
iov_iter_xarray(&subreq->io_iter, ITER_SOURCE, &wreq->mapping->i_pages,
subreq->start + subreq->transferred,
subreq->len - subreq->transferred);
}
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
stream->issue_write(subreq);
}
void netfs_reissue_write(struct netfs_io_stream *stream,
struct netfs_io_subrequest *subreq)
{
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
netfs_do_issue_write(stream, subreq);
}
static void netfs_issue_write(struct netfs_io_request *wreq,
struct netfs_io_stream *stream)
{
struct netfs_io_subrequest *subreq = stream->construct;
if (!subreq)
return;
stream->construct = NULL;
if (subreq->start + subreq->len > wreq->start + wreq->submitted)
WRITE_ONCE(wreq->submitted, subreq->start + subreq->len - wreq->start);
netfs_do_issue_write(stream, subreq);
}
/*
* Add data to the write subrequest, dispatching each as we fill it up or if it
* is discontiguous with the previous. We only fill one part at a time so that
* we can avoid overrunning the credits obtained (cifs) and try to parallelise
* content-crypto preparation with network writes.
*/
int netfs_advance_write(struct netfs_io_request *wreq,
struct netfs_io_stream *stream,
loff_t start, size_t len, bool to_eof)
{
struct netfs_io_subrequest *subreq = stream->construct;
size_t part;
if (!stream->avail) {
_leave("no write");
return len;
}
_enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0);
if (subreq && start != subreq->start + subreq->len) {
netfs_issue_write(wreq, stream);
subreq = NULL;
}
if (!stream->construct)
netfs_prepare_write(wreq, stream, start);
subreq = stream->construct;
part = min(subreq->max_len - subreq->len, len);
_debug("part %zx/%zx %zx/%zx", subreq->len, subreq->max_len, part, len);
subreq->len += part;
subreq->nr_segs++;
if (subreq->len >= subreq->max_len ||
subreq->nr_segs >= subreq->max_nr_segs ||
to_eof) {
netfs_issue_write(wreq, stream);
subreq = NULL;
}
return part;
}
/*
* Write some of a pending folio data back to the server.
*/
static int netfs_write_folio(struct netfs_io_request *wreq,
struct writeback_control *wbc,
struct folio *folio)
{
struct netfs_io_stream *upload = &wreq->io_streams[0];
struct netfs_io_stream *cache = &wreq->io_streams[1];
struct netfs_io_stream *stream;
struct netfs_group *fgroup; /* TODO: Use this with ceph */
struct netfs_folio *finfo;
size_t fsize = folio_size(folio), flen = fsize, foff = 0;
loff_t fpos = folio_pos(folio), i_size;
bool to_eof = false, streamw = false;
bool debug = false;
_enter("");
/* netfs_perform_write() may shift i_size around the page or from out
* of the page to beyond it, but cannot move i_size into or through the
* page since we have it locked.
*/
i_size = i_size_read(wreq->inode);
if (fpos >= i_size) {
/* mmap beyond eof. */
_debug("beyond eof");
folio_start_writeback(folio);
folio_unlock(folio);
wreq->nr_group_rel += netfs_folio_written_back(folio);
netfs_put_group_many(wreq->group, wreq->nr_group_rel);
wreq->nr_group_rel = 0;
return 0;
}
if (fpos + fsize > wreq->i_size)
wreq->i_size = i_size;
fgroup = netfs_folio_group(folio);
finfo = netfs_folio_info(folio);
if (finfo) {
foff = finfo->dirty_offset;
flen = foff + finfo->dirty_len;
streamw = true;
}
if (wreq->origin == NETFS_WRITETHROUGH) {
to_eof = false;
if (flen > i_size - fpos)
flen = i_size - fpos;
} else if (flen > i_size - fpos) {
flen = i_size - fpos;
if (!streamw)
folio_zero_segment(folio, flen, fsize);
to_eof = true;
} else if (flen == i_size - fpos) {
to_eof = true;
}
flen -= foff;
_debug("folio %zx %zx %zx", foff, flen, fsize);
/* Deal with discontinuities in the stream of dirty pages. These can
* arise from a number of sources:
*
* (1) Intervening non-dirty pages from random-access writes, multiple
* flushers writing back different parts simultaneously and manual
* syncing.
*
* (2) Partially-written pages from write-streaming.
*
* (3) Pages that belong to a different write-back group (eg. Ceph
* snapshots).
*
* (4) Actually-clean pages that were marked for write to the cache
* when they were read. Note that these appear as a special
* write-back group.
*/
if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
netfs_issue_write(wreq, upload);
} else if (fgroup != wreq->group) {
/* We can't write this page to the server yet. */
kdebug("wrong group");
folio_redirty_for_writepage(wbc, folio);
folio_unlock(folio);
netfs_issue_write(wreq, upload);
netfs_issue_write(wreq, cache);
return 0;
}
if (foff > 0)
netfs_issue_write(wreq, upload);
if (streamw)
netfs_issue_write(wreq, cache);
/* Flip the page to the writeback state and unlock. If we're called
* from write-through, then the page has already been put into the wb
* state.
*/
if (wreq->origin == NETFS_WRITEBACK)
folio_start_writeback(folio);
folio_unlock(folio);
if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
if (!fscache_resources_valid(&wreq->cache_resources)) {
trace_netfs_folio(folio, netfs_folio_trace_cancel_copy);
netfs_issue_write(wreq, upload);
netfs_folio_written_back(folio);
return 0;
}
trace_netfs_folio(folio, netfs_folio_trace_store_copy);
} else if (!upload->construct) {
trace_netfs_folio(folio, netfs_folio_trace_store);
} else {
trace_netfs_folio(folio, netfs_folio_trace_store_plus);
}
/* Move the submission point forward to allow for write-streaming data
* not starting at the front of the page. We don't do write-streaming
* with the cache as the cache requires DIO alignment.
*
* Also skip uploading for data that's been read and just needs copying
* to the cache.
*/
for (int s = 0; s < NR_IO_STREAMS; s++) {
stream = &wreq->io_streams[s];
stream->submit_max_len = fsize;
stream->submit_off = foff;
stream->submit_len = flen;
if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) ||
(stream->source == NETFS_UPLOAD_TO_SERVER &&
fgroup == NETFS_FOLIO_COPY_TO_CACHE)) {
stream->submit_off = UINT_MAX;
stream->submit_len = 0;
stream->submit_max_len = 0;
}
}
/* Attach the folio to one or more subrequests. For a big folio, we
* could end up with thousands of subrequests if the wsize is small -
* but we might need to wait during the creation of subrequests for
* network resources (eg. SMB credits).
*/
for (;;) {
ssize_t part;
size_t lowest_off = ULONG_MAX;
int choose_s = -1;
/* Always add to the lowest-submitted stream first. */
for (int s = 0; s < NR_IO_STREAMS; s++) {
stream = &wreq->io_streams[s];
if (stream->submit_len > 0 &&
stream->submit_off < lowest_off) {
lowest_off = stream->submit_off;
choose_s = s;
}
}
if (choose_s < 0)
break;
stream = &wreq->io_streams[choose_s];
part = netfs_advance_write(wreq, stream, fpos + stream->submit_off,
stream->submit_len, to_eof);
atomic64_set(&wreq->issued_to, fpos + stream->submit_off);
stream->submit_off += part;
stream->submit_max_len -= part;
if (part > stream->submit_len)
stream->submit_len = 0;
else
stream->submit_len -= part;
if (part > 0)
debug = true;
}
atomic64_set(&wreq->issued_to, fpos + fsize);
if (!debug)
kdebug("R=%x: No submit", wreq->debug_id);
if (foff + flen < fsize)
for (int s = 0; s < NR_IO_STREAMS; s++)
netfs_issue_write(wreq, &wreq->io_streams[s]);
_leave(" = 0");
return 0;
}
/*
* Write some of the pending data back to the server
*/
int netfs_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct netfs_inode *ictx = netfs_inode(mapping->host);
struct netfs_io_request *wreq = NULL;
struct folio *folio;
int error = 0;
if (wbc->sync_mode == WB_SYNC_ALL)
mutex_lock(&ictx->wb_lock);
else if (!mutex_trylock(&ictx->wb_lock))
return 0;
/* Need the first folio to be able to set up the op. */
folio = writeback_iter(mapping, wbc, NULL, &error);
if (!folio)
goto out;
wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK);
if (IS_ERR(wreq)) {
error = PTR_ERR(wreq);
goto couldnt_start;
}
trace_netfs_write(wreq, netfs_write_trace_writeback);
netfs_stat(&netfs_n_wh_writepages);
do {
_debug("wbiter %lx %llx", folio->index, wreq->start + wreq->submitted);
/* It appears we don't have to handle cyclic writeback wrapping. */
WARN_ON_ONCE(wreq && folio_pos(folio) < wreq->start + wreq->submitted);
if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE &&
unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) {
set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
wreq->netfs_ops->begin_writeback(wreq);
}
error = netfs_write_folio(wreq, wbc, folio);
if (error < 0)
break;
} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
for (int s = 0; s < NR_IO_STREAMS; s++)
netfs_issue_write(wreq, &wreq->io_streams[s]);
smp_wmb(); /* Write lists before ALL_QUEUED. */
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
mutex_unlock(&ictx->wb_lock);
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
_leave(" = %d", error);
return error;
couldnt_start:
netfs_kill_dirty_pages(mapping, wbc, folio);
out:
mutex_unlock(&ictx->wb_lock);
_leave(" = %d", error);
return error;
}
EXPORT_SYMBOL(netfs_writepages);
/*
* Begin a write operation for writing through the pagecache.
*/
struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len)
{
struct netfs_io_request *wreq = NULL;
struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp));
mutex_lock(&ictx->wb_lock);
wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp,
iocb->ki_pos, NETFS_WRITETHROUGH);
if (IS_ERR(wreq)) {
mutex_unlock(&ictx->wb_lock);
return wreq;
}
wreq->io_streams[0].avail = true;
trace_netfs_write(wreq, netfs_write_trace_writethrough);
return wreq;
}
/*
* Advance the state of the write operation used when writing through the
* pagecache. Data has been copied into the pagecache that we need to append
* to the request. If we've added more than wsize then we need to create a new
* subrequest.
*/
int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
struct folio *folio, size_t copied, bool to_page_end,
struct folio **writethrough_cache)
{
_enter("R=%x ic=%zu ws=%u cp=%zu tp=%u",
wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end);
if (!*writethrough_cache) {
if (folio_test_dirty(folio))
/* Sigh. mmap. */
folio_clear_dirty_for_io(folio);
/* We can make multiple writes to the folio... */
folio_start_writeback(folio);
if (wreq->len == 0)
trace_netfs_folio(folio, netfs_folio_trace_wthru);
else
trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
*writethrough_cache = folio;
}
wreq->len += copied;
if (!to_page_end)
return 0;
*writethrough_cache = NULL;
return netfs_write_folio(wreq, wbc, folio);
}
/*
* End a write operation used when writing through the pagecache.
*/
int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
struct folio *writethrough_cache)
{
struct netfs_inode *ictx = netfs_inode(wreq->inode);
int ret;
_enter("R=%x", wreq->debug_id);
if (writethrough_cache)
netfs_write_folio(wreq, wbc, writethrough_cache);
netfs_issue_write(wreq, &wreq->io_streams[0]);
netfs_issue_write(wreq, &wreq->io_streams[1]);
smp_wmb(); /* Write lists before ALL_QUEUED. */
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
mutex_unlock(&ictx->wb_lock);
if (wreq->iocb) {
ret = -EIOCBQUEUED;
} else {
wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE);
ret = wreq->error;
}
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
return ret;
}
/*
* Write data to the server without going through the pagecache and without
* writing it to the local cache.
*/
int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len)
{
struct netfs_io_stream *upload = &wreq->io_streams[0];
ssize_t part;
loff_t start = wreq->start;
int error = 0;
_enter("%zx", len);
if (wreq->origin == NETFS_DIO_WRITE)
inode_dio_begin(wreq->inode);
while (len) {
// TODO: Prepare content encryption
_debug("unbuffered %zx", len);
part = netfs_advance_write(wreq, upload, start, len, false);
start += part;
len -= part;
if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause);
wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE);
}
if (test_bit(NETFS_RREQ_FAILED, &wreq->flags))
break;
}
netfs_issue_write(wreq, upload);
smp_wmb(); /* Write lists before ALL_QUEUED. */
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
if (list_empty(&upload->subrequests))
netfs_wake_write_collector(wreq, false);
_leave(" = %d", error);
return error;
}