linux/drivers/net/wireless/iwlwifi/iwl-io.c
Stanislaw Gruszka 3a73a30049 iwlwifi: cleanup/fix memory barriers
wmb(), rmb() are not needed when writel(), readl() are used as
accessors for MMIO. We use them indirectly via iowrite32(),
ioread32().

What is needed mmiowb(), for synchronizing writes coming from
different CPUs on PCIe bridge (see in patch comments). This
fortunately is not needed on x86, where mmiowb() is just
defined as compiler barrier. As iwlwifi devices are most likely
not used on anything other than x86, this is not so important
fix.

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Wey-Yi Guy <wey-yi.w.guy@intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2012-03-08 13:59:50 -05:00

318 lines
8.7 KiB
C

/******************************************************************************
*
* Copyright(c) 2003 - 2012 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/delay.h>
#include <linux/device.h>
#include "iwl-io.h"
#include"iwl-csr.h"
#include "iwl-debug.h"
#define IWL_POLL_INTERVAL 10 /* microseconds */
static inline void __iwl_set_bit(struct iwl_trans *trans, u32 reg, u32 mask)
{
iwl_write32(trans, reg, iwl_read32(trans, reg) | mask);
}
static inline void __iwl_clear_bit(struct iwl_trans *trans, u32 reg, u32 mask)
{
iwl_write32(trans, reg, iwl_read32(trans, reg) & ~mask);
}
void iwl_set_bit(struct iwl_trans *trans, u32 reg, u32 mask)
{
unsigned long flags;
spin_lock_irqsave(&trans->reg_lock, flags);
__iwl_set_bit(trans, reg, mask);
spin_unlock_irqrestore(&trans->reg_lock, flags);
}
void iwl_clear_bit(struct iwl_trans *trans, u32 reg, u32 mask)
{
unsigned long flags;
spin_lock_irqsave(&trans->reg_lock, flags);
__iwl_clear_bit(trans, reg, mask);
spin_unlock_irqrestore(&trans->reg_lock, flags);
}
int iwl_poll_bit(struct iwl_trans *trans, u32 addr,
u32 bits, u32 mask, int timeout)
{
int t = 0;
do {
if ((iwl_read32(trans, addr) & mask) == (bits & mask))
return t;
udelay(IWL_POLL_INTERVAL);
t += IWL_POLL_INTERVAL;
} while (t < timeout);
return -ETIMEDOUT;
}
int iwl_grab_nic_access_silent(struct iwl_trans *trans)
{
int ret;
lockdep_assert_held(&trans->reg_lock);
/* this bit wakes up the NIC */
__iwl_set_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/*
* These bits say the device is running, and should keep running for
* at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
* but they do not indicate that embedded SRAM is restored yet;
* 3945 and 4965 have volatile SRAM, and must save/restore contents
* to/from host DRAM when sleeping/waking for power-saving.
* Each direction takes approximately 1/4 millisecond; with this
* overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
* series of register accesses are expected (e.g. reading Event Log),
* to keep device from sleeping.
*
* CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
* SRAM is okay/restored. We don't check that here because this call
* is just for hardware register access; but GP1 MAC_SLEEP check is a
* good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
*
* 5000 series and later (including 1000 series) have non-volatile SRAM,
* and do not save/restore SRAM when power cycling.
*/
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
(CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
if (ret < 0) {
iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
return -EIO;
}
return 0;
}
bool iwl_grab_nic_access(struct iwl_trans *trans)
{
int ret = iwl_grab_nic_access_silent(trans);
if (unlikely(ret)) {
u32 val = iwl_read32(trans, CSR_GP_CNTRL);
WARN_ONCE(1, "Timeout waiting for hardware access "
"(CSR_GP_CNTRL 0x%08x)\n", val);
return false;
}
return true;
}
void iwl_release_nic_access(struct iwl_trans *trans)
{
lockdep_assert_held(&trans->reg_lock);
__iwl_clear_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/*
* Above we read the CSR_GP_CNTRL register, which will flush
* any previous writes, but we need the write that clears the
* MAC_ACCESS_REQ bit to be performed before any other writes
* scheduled on different CPUs (after we drop reg_lock).
*/
mmiowb();
}
u32 iwl_read_direct32(struct iwl_trans *trans, u32 reg)
{
u32 value;
unsigned long flags;
spin_lock_irqsave(&trans->reg_lock, flags);
iwl_grab_nic_access(trans);
value = iwl_read32(trans, reg);
iwl_release_nic_access(trans);
spin_unlock_irqrestore(&trans->reg_lock, flags);
return value;
}
void iwl_write_direct32(struct iwl_trans *trans, u32 reg, u32 value)
{
unsigned long flags;
spin_lock_irqsave(&trans->reg_lock, flags);
if (likely(iwl_grab_nic_access(trans))) {
iwl_write32(trans, reg, value);
iwl_release_nic_access(trans);
}
spin_unlock_irqrestore(&trans->reg_lock, flags);
}
int iwl_poll_direct_bit(struct iwl_trans *trans, u32 addr, u32 mask,
int timeout)
{
int t = 0;
do {
if ((iwl_read_direct32(trans, addr) & mask) == mask)
return t;
udelay(IWL_POLL_INTERVAL);
t += IWL_POLL_INTERVAL;
} while (t < timeout);
return -ETIMEDOUT;
}
static inline u32 __iwl_read_prph(struct iwl_trans *trans, u32 reg)
{
iwl_write32(trans, HBUS_TARG_PRPH_RADDR, reg | (3 << 24));
return iwl_read32(trans, HBUS_TARG_PRPH_RDAT);
}
static inline void __iwl_write_prph(struct iwl_trans *trans, u32 addr, u32 val)
{
iwl_write32(trans, HBUS_TARG_PRPH_WADDR,
((addr & 0x0000FFFF) | (3 << 24)));
iwl_write32(trans, HBUS_TARG_PRPH_WDAT, val);
}
u32 iwl_read_prph(struct iwl_trans *trans, u32 reg)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&trans->reg_lock, flags);
iwl_grab_nic_access(trans);
val = __iwl_read_prph(trans, reg);
iwl_release_nic_access(trans);
spin_unlock_irqrestore(&trans->reg_lock, flags);
return val;
}
void iwl_write_prph(struct iwl_trans *trans, u32 addr, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&trans->reg_lock, flags);
if (likely(iwl_grab_nic_access(trans))) {
__iwl_write_prph(trans, addr, val);
iwl_release_nic_access(trans);
}
spin_unlock_irqrestore(&trans->reg_lock, flags);
}
void iwl_set_bits_prph(struct iwl_trans *trans, u32 reg, u32 mask)
{
unsigned long flags;
spin_lock_irqsave(&trans->reg_lock, flags);
if (likely(iwl_grab_nic_access(trans))) {
__iwl_write_prph(trans, reg,
__iwl_read_prph(trans, reg) | mask);
iwl_release_nic_access(trans);
}
spin_unlock_irqrestore(&trans->reg_lock, flags);
}
void iwl_set_bits_mask_prph(struct iwl_trans *trans, u32 reg,
u32 bits, u32 mask)
{
unsigned long flags;
spin_lock_irqsave(&trans->reg_lock, flags);
if (likely(iwl_grab_nic_access(trans))) {
__iwl_write_prph(trans, reg,
(__iwl_read_prph(trans, reg) & mask) | bits);
iwl_release_nic_access(trans);
}
spin_unlock_irqrestore(&trans->reg_lock, flags);
}
void iwl_clear_bits_prph(struct iwl_trans *trans, u32 reg, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&trans->reg_lock, flags);
if (likely(iwl_grab_nic_access(trans))) {
val = __iwl_read_prph(trans, reg);
__iwl_write_prph(trans, reg, (val & ~mask));
iwl_release_nic_access(trans);
}
spin_unlock_irqrestore(&trans->reg_lock, flags);
}
void _iwl_read_targ_mem_words(struct iwl_trans *trans, u32 addr,
void *buf, int words)
{
unsigned long flags;
int offs;
u32 *vals = buf;
spin_lock_irqsave(&trans->reg_lock, flags);
if (likely(iwl_grab_nic_access(trans))) {
iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr);
for (offs = 0; offs < words; offs++)
vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
iwl_release_nic_access(trans);
}
spin_unlock_irqrestore(&trans->reg_lock, flags);
}
u32 iwl_read_targ_mem(struct iwl_trans *trans, u32 addr)
{
u32 value;
_iwl_read_targ_mem_words(trans, addr, &value, 1);
return value;
}
int _iwl_write_targ_mem_words(struct iwl_trans *trans, u32 addr,
void *buf, int words)
{
unsigned long flags;
int offs, result = 0;
u32 *vals = buf;
spin_lock_irqsave(&trans->reg_lock, flags);
if (likely(iwl_grab_nic_access(trans))) {
iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr);
for (offs = 0; offs < words; offs++)
iwl_write32(trans, HBUS_TARG_MEM_WDAT, vals[offs]);
iwl_release_nic_access(trans);
} else
result = -EBUSY;
spin_unlock_irqrestore(&trans->reg_lock, flags);
return result;
}
int iwl_write_targ_mem(struct iwl_trans *trans, u32 addr, u32 val)
{
return _iwl_write_targ_mem_words(trans, addr, &val, 1);
}