linux/block/blk-core.c
hexue 73e59d3eec block: avoid polling configuration errors
This patch adds a poll queue check, aiming to help users use polled IO
accurately.

If users do polled IO but the device doesn't have poll queues, they will
get suboptimal performance data and waste CPU resources. Add a poll queue
check batching this. If users don't have the device properly configured,
or if it simply doesn't support polled IO, it will error the IO with
-EOPNOTSUPP. This is similar to what we used to do for sync polled IO,
which is no longer supported.

Signed-off-by: hexue <xue01.he@samsung.com>
Link: https://lore.kernel.org/r/20240718070817.1031494-1-xue01.he@samsung.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-07-19 09:35:35 -06:00

1262 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
* Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
* Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
* kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
* - July2000
* bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
*/
/*
* This handles all read/write requests to block devices
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/blk-pm.h>
#include <linux/blk-integrity.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/fault-inject.h>
#include <linux/list_sort.h>
#include <linux/delay.h>
#include <linux/ratelimit.h>
#include <linux/pm_runtime.h>
#include <linux/t10-pi.h>
#include <linux/debugfs.h>
#include <linux/bpf.h>
#include <linux/part_stat.h>
#include <linux/sched/sysctl.h>
#include <linux/blk-crypto.h>
#define CREATE_TRACE_POINTS
#include <trace/events/block.h>
#include "blk.h"
#include "blk-mq-sched.h"
#include "blk-pm.h"
#include "blk-cgroup.h"
#include "blk-throttle.h"
#include "blk-ioprio.h"
struct dentry *blk_debugfs_root;
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
static DEFINE_IDA(blk_queue_ida);
/*
* For queue allocation
*/
static struct kmem_cache *blk_requestq_cachep;
/*
* Controlling structure to kblockd
*/
static struct workqueue_struct *kblockd_workqueue;
/**
* blk_queue_flag_set - atomically set a queue flag
* @flag: flag to be set
* @q: request queue
*/
void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
{
set_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL(blk_queue_flag_set);
/**
* blk_queue_flag_clear - atomically clear a queue flag
* @flag: flag to be cleared
* @q: request queue
*/
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
{
clear_bit(flag, &q->queue_flags);
}
EXPORT_SYMBOL(blk_queue_flag_clear);
#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
static const char *const blk_op_name[] = {
REQ_OP_NAME(READ),
REQ_OP_NAME(WRITE),
REQ_OP_NAME(FLUSH),
REQ_OP_NAME(DISCARD),
REQ_OP_NAME(SECURE_ERASE),
REQ_OP_NAME(ZONE_RESET),
REQ_OP_NAME(ZONE_RESET_ALL),
REQ_OP_NAME(ZONE_OPEN),
REQ_OP_NAME(ZONE_CLOSE),
REQ_OP_NAME(ZONE_FINISH),
REQ_OP_NAME(ZONE_APPEND),
REQ_OP_NAME(WRITE_ZEROES),
REQ_OP_NAME(DRV_IN),
REQ_OP_NAME(DRV_OUT),
};
#undef REQ_OP_NAME
/**
* blk_op_str - Return string XXX in the REQ_OP_XXX.
* @op: REQ_OP_XXX.
*
* Description: Centralize block layer function to convert REQ_OP_XXX into
* string format. Useful in the debugging and tracing bio or request. For
* invalid REQ_OP_XXX it returns string "UNKNOWN".
*/
inline const char *blk_op_str(enum req_op op)
{
const char *op_str = "UNKNOWN";
if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
op_str = blk_op_name[op];
return op_str;
}
EXPORT_SYMBOL_GPL(blk_op_str);
static const struct {
int errno;
const char *name;
} blk_errors[] = {
[BLK_STS_OK] = { 0, "" },
[BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
[BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
[BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
[BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
[BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
[BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
[BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
[BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
[BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
[BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
[BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
[BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
/* device mapper special case, should not leak out: */
[BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
/* zone device specific errors */
[BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
[BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
/* Command duration limit device-side timeout */
[BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
[BLK_STS_INVAL] = { -EINVAL, "invalid" },
/* everything else not covered above: */
[BLK_STS_IOERR] = { -EIO, "I/O" },
};
blk_status_t errno_to_blk_status(int errno)
{
int i;
for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
if (blk_errors[i].errno == errno)
return (__force blk_status_t)i;
}
return BLK_STS_IOERR;
}
EXPORT_SYMBOL_GPL(errno_to_blk_status);
int blk_status_to_errno(blk_status_t status)
{
int idx = (__force int)status;
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
return -EIO;
return blk_errors[idx].errno;
}
EXPORT_SYMBOL_GPL(blk_status_to_errno);
const char *blk_status_to_str(blk_status_t status)
{
int idx = (__force int)status;
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
return "<null>";
return blk_errors[idx].name;
}
EXPORT_SYMBOL_GPL(blk_status_to_str);
/**
* blk_sync_queue - cancel any pending callbacks on a queue
* @q: the queue
*
* Description:
* The block layer may perform asynchronous callback activity
* on a queue, such as calling the unplug function after a timeout.
* A block device may call blk_sync_queue to ensure that any
* such activity is cancelled, thus allowing it to release resources
* that the callbacks might use. The caller must already have made sure
* that its ->submit_bio will not re-add plugging prior to calling
* this function.
*
* This function does not cancel any asynchronous activity arising
* out of elevator or throttling code. That would require elevator_exit()
* and blkcg_exit_queue() to be called with queue lock initialized.
*
*/
void blk_sync_queue(struct request_queue *q)
{
del_timer_sync(&q->timeout);
cancel_work_sync(&q->timeout_work);
}
EXPORT_SYMBOL(blk_sync_queue);
/**
* blk_set_pm_only - increment pm_only counter
* @q: request queue pointer
*/
void blk_set_pm_only(struct request_queue *q)
{
atomic_inc(&q->pm_only);
}
EXPORT_SYMBOL_GPL(blk_set_pm_only);
void blk_clear_pm_only(struct request_queue *q)
{
int pm_only;
pm_only = atomic_dec_return(&q->pm_only);
WARN_ON_ONCE(pm_only < 0);
if (pm_only == 0)
wake_up_all(&q->mq_freeze_wq);
}
EXPORT_SYMBOL_GPL(blk_clear_pm_only);
static void blk_free_queue_rcu(struct rcu_head *rcu_head)
{
struct request_queue *q = container_of(rcu_head,
struct request_queue, rcu_head);
percpu_ref_exit(&q->q_usage_counter);
kmem_cache_free(blk_requestq_cachep, q);
}
static void blk_free_queue(struct request_queue *q)
{
blk_free_queue_stats(q->stats);
if (queue_is_mq(q))
blk_mq_release(q);
ida_free(&blk_queue_ida, q->id);
call_rcu(&q->rcu_head, blk_free_queue_rcu);
}
/**
* blk_put_queue - decrement the request_queue refcount
* @q: the request_queue structure to decrement the refcount for
*
* Decrements the refcount of the request_queue and free it when the refcount
* reaches 0.
*/
void blk_put_queue(struct request_queue *q)
{
if (refcount_dec_and_test(&q->refs))
blk_free_queue(q);
}
EXPORT_SYMBOL(blk_put_queue);
void blk_queue_start_drain(struct request_queue *q)
{
/*
* When queue DYING flag is set, we need to block new req
* entering queue, so we call blk_freeze_queue_start() to
* prevent I/O from crossing blk_queue_enter().
*/
blk_freeze_queue_start(q);
if (queue_is_mq(q))
blk_mq_wake_waiters(q);
/* Make blk_queue_enter() reexamine the DYING flag. */
wake_up_all(&q->mq_freeze_wq);
}
/**
* blk_queue_enter() - try to increase q->q_usage_counter
* @q: request queue pointer
* @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
*/
int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
{
const bool pm = flags & BLK_MQ_REQ_PM;
while (!blk_try_enter_queue(q, pm)) {
if (flags & BLK_MQ_REQ_NOWAIT)
return -EAGAIN;
/*
* read pair of barrier in blk_freeze_queue_start(), we need to
* order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
* reading .mq_freeze_depth or queue dying flag, otherwise the
* following wait may never return if the two reads are
* reordered.
*/
smp_rmb();
wait_event(q->mq_freeze_wq,
(!q->mq_freeze_depth &&
blk_pm_resume_queue(pm, q)) ||
blk_queue_dying(q));
if (blk_queue_dying(q))
return -ENODEV;
}
return 0;
}
int __bio_queue_enter(struct request_queue *q, struct bio *bio)
{
while (!blk_try_enter_queue(q, false)) {
struct gendisk *disk = bio->bi_bdev->bd_disk;
if (bio->bi_opf & REQ_NOWAIT) {
if (test_bit(GD_DEAD, &disk->state))
goto dead;
bio_wouldblock_error(bio);
return -EAGAIN;
}
/*
* read pair of barrier in blk_freeze_queue_start(), we need to
* order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
* reading .mq_freeze_depth or queue dying flag, otherwise the
* following wait may never return if the two reads are
* reordered.
*/
smp_rmb();
wait_event(q->mq_freeze_wq,
(!q->mq_freeze_depth &&
blk_pm_resume_queue(false, q)) ||
test_bit(GD_DEAD, &disk->state));
if (test_bit(GD_DEAD, &disk->state))
goto dead;
}
return 0;
dead:
bio_io_error(bio);
return -ENODEV;
}
void blk_queue_exit(struct request_queue *q)
{
percpu_ref_put(&q->q_usage_counter);
}
static void blk_queue_usage_counter_release(struct percpu_ref *ref)
{
struct request_queue *q =
container_of(ref, struct request_queue, q_usage_counter);
wake_up_all(&q->mq_freeze_wq);
}
static void blk_rq_timed_out_timer(struct timer_list *t)
{
struct request_queue *q = from_timer(q, t, timeout);
kblockd_schedule_work(&q->timeout_work);
}
static void blk_timeout_work(struct work_struct *work)
{
}
struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
{
struct request_queue *q;
int error;
q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
node_id);
if (!q)
return ERR_PTR(-ENOMEM);
q->last_merge = NULL;
q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
if (q->id < 0) {
error = q->id;
goto fail_q;
}
q->stats = blk_alloc_queue_stats();
if (!q->stats) {
error = -ENOMEM;
goto fail_id;
}
error = blk_set_default_limits(lim);
if (error)
goto fail_stats;
q->limits = *lim;
q->node = node_id;
atomic_set(&q->nr_active_requests_shared_tags, 0);
timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
INIT_WORK(&q->timeout_work, blk_timeout_work);
INIT_LIST_HEAD(&q->icq_list);
refcount_set(&q->refs, 1);
mutex_init(&q->debugfs_mutex);
mutex_init(&q->sysfs_lock);
mutex_init(&q->sysfs_dir_lock);
mutex_init(&q->limits_lock);
mutex_init(&q->rq_qos_mutex);
spin_lock_init(&q->queue_lock);
init_waitqueue_head(&q->mq_freeze_wq);
mutex_init(&q->mq_freeze_lock);
blkg_init_queue(q);
/*
* Init percpu_ref in atomic mode so that it's faster to shutdown.
* See blk_register_queue() for details.
*/
error = percpu_ref_init(&q->q_usage_counter,
blk_queue_usage_counter_release,
PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
if (error)
goto fail_stats;
q->nr_requests = BLKDEV_DEFAULT_RQ;
return q;
fail_stats:
blk_free_queue_stats(q->stats);
fail_id:
ida_free(&blk_queue_ida, q->id);
fail_q:
kmem_cache_free(blk_requestq_cachep, q);
return ERR_PTR(error);
}
/**
* blk_get_queue - increment the request_queue refcount
* @q: the request_queue structure to increment the refcount for
*
* Increment the refcount of the request_queue kobject.
*
* Context: Any context.
*/
bool blk_get_queue(struct request_queue *q)
{
if (unlikely(blk_queue_dying(q)))
return false;
refcount_inc(&q->refs);
return true;
}
EXPORT_SYMBOL(blk_get_queue);
#ifdef CONFIG_FAIL_MAKE_REQUEST
static DECLARE_FAULT_ATTR(fail_make_request);
static int __init setup_fail_make_request(char *str)
{
return setup_fault_attr(&fail_make_request, str);
}
__setup("fail_make_request=", setup_fail_make_request);
bool should_fail_request(struct block_device *part, unsigned int bytes)
{
return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
should_fail(&fail_make_request, bytes);
}
static int __init fail_make_request_debugfs(void)
{
struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
NULL, &fail_make_request);
return PTR_ERR_OR_ZERO(dir);
}
late_initcall(fail_make_request_debugfs);
#endif /* CONFIG_FAIL_MAKE_REQUEST */
static inline void bio_check_ro(struct bio *bio)
{
if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
return;
if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
return;
bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
/*
* Use ioctl to set underlying disk of raid/dm to read-only
* will trigger this.
*/
pr_warn("Trying to write to read-only block-device %pg\n",
bio->bi_bdev);
}
}
static noinline int should_fail_bio(struct bio *bio)
{
if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
return -EIO;
return 0;
}
ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
/*
* Check whether this bio extends beyond the end of the device or partition.
* This may well happen - the kernel calls bread() without checking the size of
* the device, e.g., when mounting a file system.
*/
static inline int bio_check_eod(struct bio *bio)
{
sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
unsigned int nr_sectors = bio_sectors(bio);
if (nr_sectors &&
(nr_sectors > maxsector ||
bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
pr_info_ratelimited("%s: attempt to access beyond end of device\n"
"%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
current->comm, bio->bi_bdev, bio->bi_opf,
bio->bi_iter.bi_sector, nr_sectors, maxsector);
return -EIO;
}
return 0;
}
/*
* Remap block n of partition p to block n+start(p) of the disk.
*/
static int blk_partition_remap(struct bio *bio)
{
struct block_device *p = bio->bi_bdev;
if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
return -EIO;
if (bio_sectors(bio)) {
bio->bi_iter.bi_sector += p->bd_start_sect;
trace_block_bio_remap(bio, p->bd_dev,
bio->bi_iter.bi_sector -
p->bd_start_sect);
}
bio_set_flag(bio, BIO_REMAPPED);
return 0;
}
/*
* Check write append to a zoned block device.
*/
static inline blk_status_t blk_check_zone_append(struct request_queue *q,
struct bio *bio)
{
int nr_sectors = bio_sectors(bio);
/* Only applicable to zoned block devices */
if (!bdev_is_zoned(bio->bi_bdev))
return BLK_STS_NOTSUPP;
/* The bio sector must point to the start of a sequential zone */
if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
return BLK_STS_IOERR;
/*
* Not allowed to cross zone boundaries. Otherwise, the BIO will be
* split and could result in non-contiguous sectors being written in
* different zones.
*/
if (nr_sectors > q->limits.chunk_sectors)
return BLK_STS_IOERR;
/* Make sure the BIO is small enough and will not get split */
if (nr_sectors > queue_max_zone_append_sectors(q))
return BLK_STS_IOERR;
bio->bi_opf |= REQ_NOMERGE;
return BLK_STS_OK;
}
static void __submit_bio(struct bio *bio)
{
/* If plug is not used, add new plug here to cache nsecs time. */
struct blk_plug plug;
if (unlikely(!blk_crypto_bio_prep(&bio)))
return;
blk_start_plug(&plug);
if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
blk_mq_submit_bio(bio);
} else if (likely(bio_queue_enter(bio) == 0)) {
struct gendisk *disk = bio->bi_bdev->bd_disk;
disk->fops->submit_bio(bio);
blk_queue_exit(disk->queue);
}
blk_finish_plug(&plug);
}
/*
* The loop in this function may be a bit non-obvious, and so deserves some
* explanation:
*
* - Before entering the loop, bio->bi_next is NULL (as all callers ensure
* that), so we have a list with a single bio.
* - We pretend that we have just taken it off a longer list, so we assign
* bio_list to a pointer to the bio_list_on_stack, thus initialising the
* bio_list of new bios to be added. ->submit_bio() may indeed add some more
* bios through a recursive call to submit_bio_noacct. If it did, we find a
* non-NULL value in bio_list and re-enter the loop from the top.
* - In this case we really did just take the bio of the top of the list (no
* pretending) and so remove it from bio_list, and call into ->submit_bio()
* again.
*
* bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
* bio_list_on_stack[1] contains bios that were submitted before the current
* ->submit_bio, but that haven't been processed yet.
*/
static void __submit_bio_noacct(struct bio *bio)
{
struct bio_list bio_list_on_stack[2];
BUG_ON(bio->bi_next);
bio_list_init(&bio_list_on_stack[0]);
current->bio_list = bio_list_on_stack;
do {
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
struct bio_list lower, same;
/*
* Create a fresh bio_list for all subordinate requests.
*/
bio_list_on_stack[1] = bio_list_on_stack[0];
bio_list_init(&bio_list_on_stack[0]);
__submit_bio(bio);
/*
* Sort new bios into those for a lower level and those for the
* same level.
*/
bio_list_init(&lower);
bio_list_init(&same);
while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
if (q == bdev_get_queue(bio->bi_bdev))
bio_list_add(&same, bio);
else
bio_list_add(&lower, bio);
/*
* Now assemble so we handle the lowest level first.
*/
bio_list_merge(&bio_list_on_stack[0], &lower);
bio_list_merge(&bio_list_on_stack[0], &same);
bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
current->bio_list = NULL;
}
static void __submit_bio_noacct_mq(struct bio *bio)
{
struct bio_list bio_list[2] = { };
current->bio_list = bio_list;
do {
__submit_bio(bio);
} while ((bio = bio_list_pop(&bio_list[0])));
current->bio_list = NULL;
}
void submit_bio_noacct_nocheck(struct bio *bio)
{
blk_cgroup_bio_start(bio);
blkcg_bio_issue_init(bio);
if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
trace_block_bio_queue(bio);
/*
* Now that enqueuing has been traced, we need to trace
* completion as well.
*/
bio_set_flag(bio, BIO_TRACE_COMPLETION);
}
/*
* We only want one ->submit_bio to be active at a time, else stack
* usage with stacked devices could be a problem. Use current->bio_list
* to collect a list of requests submited by a ->submit_bio method while
* it is active, and then process them after it returned.
*/
if (current->bio_list)
bio_list_add(&current->bio_list[0], bio);
else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
__submit_bio_noacct_mq(bio);
else
__submit_bio_noacct(bio);
}
static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
struct bio *bio)
{
if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
return BLK_STS_INVAL;
if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
return BLK_STS_INVAL;
return BLK_STS_OK;
}
/**
* submit_bio_noacct - re-submit a bio to the block device layer for I/O
* @bio: The bio describing the location in memory and on the device.
*
* This is a version of submit_bio() that shall only be used for I/O that is
* resubmitted to lower level drivers by stacking block drivers. All file
* systems and other upper level users of the block layer should use
* submit_bio() instead.
*/
void submit_bio_noacct(struct bio *bio)
{
struct block_device *bdev = bio->bi_bdev;
struct request_queue *q = bdev_get_queue(bdev);
blk_status_t status = BLK_STS_IOERR;
might_sleep();
/*
* For a REQ_NOWAIT based request, return -EOPNOTSUPP
* if queue does not support NOWAIT.
*/
if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
goto not_supported;
if (should_fail_bio(bio))
goto end_io;
bio_check_ro(bio);
if (!bio_flagged(bio, BIO_REMAPPED)) {
if (unlikely(bio_check_eod(bio)))
goto end_io;
if (bdev_is_partition(bdev) &&
unlikely(blk_partition_remap(bio)))
goto end_io;
}
/*
* Filter flush bio's early so that bio based drivers without flush
* support don't have to worry about them.
*/
if (op_is_flush(bio->bi_opf)) {
if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
bio_op(bio) != REQ_OP_ZONE_APPEND))
goto end_io;
if (!bdev_write_cache(bdev)) {
bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
if (!bio_sectors(bio)) {
status = BLK_STS_OK;
goto end_io;
}
}
}
if (!(q->limits.features & BLK_FEAT_POLL) &&
(bio->bi_opf & REQ_POLLED)) {
bio_clear_polled(bio);
goto not_supported;
}
switch (bio_op(bio)) {
case REQ_OP_READ:
case REQ_OP_WRITE:
if (bio->bi_opf & REQ_ATOMIC) {
status = blk_validate_atomic_write_op_size(q, bio);
if (status != BLK_STS_OK)
goto end_io;
}
break;
case REQ_OP_FLUSH:
/*
* REQ_OP_FLUSH can't be submitted through bios, it is only
* synthetized in struct request by the flush state machine.
*/
goto not_supported;
case REQ_OP_DISCARD:
if (!bdev_max_discard_sectors(bdev))
goto not_supported;
break;
case REQ_OP_SECURE_ERASE:
if (!bdev_max_secure_erase_sectors(bdev))
goto not_supported;
break;
case REQ_OP_ZONE_APPEND:
status = blk_check_zone_append(q, bio);
if (status != BLK_STS_OK)
goto end_io;
break;
case REQ_OP_WRITE_ZEROES:
if (!q->limits.max_write_zeroes_sectors)
goto not_supported;
break;
case REQ_OP_ZONE_RESET:
case REQ_OP_ZONE_OPEN:
case REQ_OP_ZONE_CLOSE:
case REQ_OP_ZONE_FINISH:
case REQ_OP_ZONE_RESET_ALL:
if (!bdev_is_zoned(bio->bi_bdev))
goto not_supported;
break;
case REQ_OP_DRV_IN:
case REQ_OP_DRV_OUT:
/*
* Driver private operations are only used with passthrough
* requests.
*/
fallthrough;
default:
goto not_supported;
}
if (blk_throtl_bio(bio))
return;
submit_bio_noacct_nocheck(bio);
return;
not_supported:
status = BLK_STS_NOTSUPP;
end_io:
bio->bi_status = status;
bio_endio(bio);
}
EXPORT_SYMBOL(submit_bio_noacct);
static void bio_set_ioprio(struct bio *bio)
{
/* Nobody set ioprio so far? Initialize it based on task's nice value */
if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
bio->bi_ioprio = get_current_ioprio();
blkcg_set_ioprio(bio);
}
/**
* submit_bio - submit a bio to the block device layer for I/O
* @bio: The &struct bio which describes the I/O
*
* submit_bio() is used to submit I/O requests to block devices. It is passed a
* fully set up &struct bio that describes the I/O that needs to be done. The
* bio will be send to the device described by the bi_bdev field.
*
* The success/failure status of the request, along with notification of
* completion, is delivered asynchronously through the ->bi_end_io() callback
* in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
* been called.
*/
void submit_bio(struct bio *bio)
{
if (bio_op(bio) == REQ_OP_READ) {
task_io_account_read(bio->bi_iter.bi_size);
count_vm_events(PGPGIN, bio_sectors(bio));
} else if (bio_op(bio) == REQ_OP_WRITE) {
count_vm_events(PGPGOUT, bio_sectors(bio));
}
bio_set_ioprio(bio);
submit_bio_noacct(bio);
}
EXPORT_SYMBOL(submit_bio);
/**
* bio_poll - poll for BIO completions
* @bio: bio to poll for
* @iob: batches of IO
* @flags: BLK_POLL_* flags that control the behavior
*
* Poll for completions on queue associated with the bio. Returns number of
* completed entries found.
*
* Note: the caller must either be the context that submitted @bio, or
* be in a RCU critical section to prevent freeing of @bio.
*/
int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
{
blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
struct block_device *bdev;
struct request_queue *q;
int ret = 0;
bdev = READ_ONCE(bio->bi_bdev);
if (!bdev)
return 0;
q = bdev_get_queue(bdev);
if (cookie == BLK_QC_T_NONE || !(q->limits.features & BLK_FEAT_POLL))
return 0;
blk_flush_plug(current->plug, false);
/*
* We need to be able to enter a frozen queue, similar to how
* timeouts also need to do that. If that is blocked, then we can
* have pending IO when a queue freeze is started, and then the
* wait for the freeze to finish will wait for polled requests to
* timeout as the poller is preventer from entering the queue and
* completing them. As long as we prevent new IO from being queued,
* that should be all that matters.
*/
if (!percpu_ref_tryget(&q->q_usage_counter))
return 0;
if (queue_is_mq(q)) {
ret = blk_mq_poll(q, cookie, iob, flags);
} else {
struct gendisk *disk = q->disk;
if (disk && disk->fops->poll_bio)
ret = disk->fops->poll_bio(bio, iob, flags);
}
blk_queue_exit(q);
return ret;
}
EXPORT_SYMBOL_GPL(bio_poll);
/*
* Helper to implement file_operations.iopoll. Requires the bio to be stored
* in iocb->private, and cleared before freeing the bio.
*/
int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
unsigned int flags)
{
struct bio *bio;
int ret = 0;
/*
* Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
* point to a freshly allocated bio at this point. If that happens
* we have a few cases to consider:
*
* 1) the bio is beeing initialized and bi_bdev is NULL. We can just
* simply nothing in this case
* 2) the bio points to a not poll enabled device. bio_poll will catch
* this and return 0
* 3) the bio points to a poll capable device, including but not
* limited to the one that the original bio pointed to. In this
* case we will call into the actual poll method and poll for I/O,
* even if we don't need to, but it won't cause harm either.
*
* For cases 2) and 3) above the RCU grace period ensures that bi_bdev
* is still allocated. Because partitions hold a reference to the whole
* device bdev and thus disk, the disk is also still valid. Grabbing
* a reference to the queue in bio_poll() ensures the hctxs and requests
* are still valid as well.
*/
rcu_read_lock();
bio = READ_ONCE(kiocb->private);
if (bio)
ret = bio_poll(bio, iob, flags);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
void update_io_ticks(struct block_device *part, unsigned long now, bool end)
{
unsigned long stamp;
again:
stamp = READ_ONCE(part->bd_stamp);
if (unlikely(time_after(now, stamp)) &&
likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
(end || part_in_flight(part)))
__part_stat_add(part, io_ticks, now - stamp);
if (bdev_is_partition(part)) {
part = bdev_whole(part);
goto again;
}
}
unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
unsigned long start_time)
{
part_stat_lock();
update_io_ticks(bdev, start_time, false);
part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
part_stat_unlock();
return start_time;
}
EXPORT_SYMBOL(bdev_start_io_acct);
/**
* bio_start_io_acct - start I/O accounting for bio based drivers
* @bio: bio to start account for
*
* Returns the start time that should be passed back to bio_end_io_acct().
*/
unsigned long bio_start_io_acct(struct bio *bio)
{
return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
}
EXPORT_SYMBOL_GPL(bio_start_io_acct);
void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
unsigned int sectors, unsigned long start_time)
{
const int sgrp = op_stat_group(op);
unsigned long now = READ_ONCE(jiffies);
unsigned long duration = now - start_time;
part_stat_lock();
update_io_ticks(bdev, now, true);
part_stat_inc(bdev, ios[sgrp]);
part_stat_add(bdev, sectors[sgrp], sectors);
part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
part_stat_unlock();
}
EXPORT_SYMBOL(bdev_end_io_acct);
void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
struct block_device *orig_bdev)
{
bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
}
EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
/**
* blk_lld_busy - Check if underlying low-level drivers of a device are busy
* @q : the queue of the device being checked
*
* Description:
* Check if underlying low-level drivers of a device are busy.
* If the drivers want to export their busy state, they must set own
* exporting function using blk_queue_lld_busy() first.
*
* Basically, this function is used only by request stacking drivers
* to stop dispatching requests to underlying devices when underlying
* devices are busy. This behavior helps more I/O merging on the queue
* of the request stacking driver and prevents I/O throughput regression
* on burst I/O load.
*
* Return:
* 0 - Not busy (The request stacking driver should dispatch request)
* 1 - Busy (The request stacking driver should stop dispatching request)
*/
int blk_lld_busy(struct request_queue *q)
{
if (queue_is_mq(q) && q->mq_ops->busy)
return q->mq_ops->busy(q);
return 0;
}
EXPORT_SYMBOL_GPL(blk_lld_busy);
int kblockd_schedule_work(struct work_struct *work)
{
return queue_work(kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work);
int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
unsigned long delay)
{
return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
}
EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
{
struct task_struct *tsk = current;
/*
* If this is a nested plug, don't actually assign it.
*/
if (tsk->plug)
return;
plug->cur_ktime = 0;
plug->mq_list = NULL;
plug->cached_rq = NULL;
plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
plug->rq_count = 0;
plug->multiple_queues = false;
plug->has_elevator = false;
INIT_LIST_HEAD(&plug->cb_list);
/*
* Store ordering should not be needed here, since a potential
* preempt will imply a full memory barrier
*/
tsk->plug = plug;
}
/**
* blk_start_plug - initialize blk_plug and track it inside the task_struct
* @plug: The &struct blk_plug that needs to be initialized
*
* Description:
* blk_start_plug() indicates to the block layer an intent by the caller
* to submit multiple I/O requests in a batch. The block layer may use
* this hint to defer submitting I/Os from the caller until blk_finish_plug()
* is called. However, the block layer may choose to submit requests
* before a call to blk_finish_plug() if the number of queued I/Os
* exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
* %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
* the task schedules (see below).
*
* Tracking blk_plug inside the task_struct will help with auto-flushing the
* pending I/O should the task end up blocking between blk_start_plug() and
* blk_finish_plug(). This is important from a performance perspective, but
* also ensures that we don't deadlock. For instance, if the task is blocking
* for a memory allocation, memory reclaim could end up wanting to free a
* page belonging to that request that is currently residing in our private
* plug. By flushing the pending I/O when the process goes to sleep, we avoid
* this kind of deadlock.
*/
void blk_start_plug(struct blk_plug *plug)
{
blk_start_plug_nr_ios(plug, 1);
}
EXPORT_SYMBOL(blk_start_plug);
static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
{
LIST_HEAD(callbacks);
while (!list_empty(&plug->cb_list)) {
list_splice_init(&plug->cb_list, &callbacks);
while (!list_empty(&callbacks)) {
struct blk_plug_cb *cb = list_first_entry(&callbacks,
struct blk_plug_cb,
list);
list_del(&cb->list);
cb->callback(cb, from_schedule);
}
}
}
struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
int size)
{
struct blk_plug *plug = current->plug;
struct blk_plug_cb *cb;
if (!plug)
return NULL;
list_for_each_entry(cb, &plug->cb_list, list)
if (cb->callback == unplug && cb->data == data)
return cb;
/* Not currently on the callback list */
BUG_ON(size < sizeof(*cb));
cb = kzalloc(size, GFP_ATOMIC);
if (cb) {
cb->data = data;
cb->callback = unplug;
list_add(&cb->list, &plug->cb_list);
}
return cb;
}
EXPORT_SYMBOL(blk_check_plugged);
void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
{
if (!list_empty(&plug->cb_list))
flush_plug_callbacks(plug, from_schedule);
blk_mq_flush_plug_list(plug, from_schedule);
/*
* Unconditionally flush out cached requests, even if the unplug
* event came from schedule. Since we know hold references to the
* queue for cached requests, we don't want a blocked task holding
* up a queue freeze/quiesce event.
*/
if (unlikely(!rq_list_empty(plug->cached_rq)))
blk_mq_free_plug_rqs(plug);
plug->cur_ktime = 0;
current->flags &= ~PF_BLOCK_TS;
}
/**
* blk_finish_plug - mark the end of a batch of submitted I/O
* @plug: The &struct blk_plug passed to blk_start_plug()
*
* Description:
* Indicate that a batch of I/O submissions is complete. This function
* must be paired with an initial call to blk_start_plug(). The intent
* is to allow the block layer to optimize I/O submission. See the
* documentation for blk_start_plug() for more information.
*/
void blk_finish_plug(struct blk_plug *plug)
{
if (plug == current->plug) {
__blk_flush_plug(plug, false);
current->plug = NULL;
}
}
EXPORT_SYMBOL(blk_finish_plug);
void blk_io_schedule(void)
{
/* Prevent hang_check timer from firing at us during very long I/O */
unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
if (timeout)
io_schedule_timeout(timeout);
else
io_schedule();
}
EXPORT_SYMBOL_GPL(blk_io_schedule);
int __init blk_dev_init(void)
{
BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
sizeof_field(struct request, cmd_flags));
BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
sizeof_field(struct bio, bi_opf));
/* used for unplugging and affects IO latency/throughput - HIGHPRI */
kblockd_workqueue = alloc_workqueue("kblockd",
WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
if (!kblockd_workqueue)
panic("Failed to create kblockd\n");
blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
blk_debugfs_root = debugfs_create_dir("block", NULL);
return 0;
}