linux/virt/kvm/arm/vgic/vgic-v2.c
Christoffer Dall 8ac76ef4b5 KVM: arm/arm64: vgic: Improve sync_hwstate performance
There is no need to call any functions to fold LRs when we don't use any
LRs and we don't need to mess with overflow flags, take spinlocks, or
prune the AP list if the AP list is empty.

Note: list_empty is a single atomic read (uses READ_ONCE) and can
therefore check if a list is empty or not without the need to take the
spinlock protecting the list.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-04-09 07:49:12 -07:00

366 lines
9.6 KiB
C

/*
* Copyright (C) 2015, 2016 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/irqchip/arm-gic.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"
void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
cpuif->vgic_hcr |= GICH_HCR_UIE;
}
static bool lr_signals_eoi_mi(u32 lr_val)
{
return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
!(lr_val & GICH_LR_HW);
}
/*
* transfer the content of the LRs back into the corresponding ap_list:
* - active bit is transferred as is
* - pending bit is
* - transferred as is in case of edge sensitive IRQs
* - set to the line-level (resample time) for level sensitive IRQs
*/
void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
int lr;
cpuif->vgic_hcr &= ~GICH_HCR_UIE;
for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
u32 val = cpuif->vgic_lr[lr];
u32 intid = val & GICH_LR_VIRTUALID;
struct vgic_irq *irq;
/* Notify fds when the guest EOI'ed a level-triggered SPI */
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
spin_lock(&irq->irq_lock);
/* Always preserve the active bit */
irq->active = !!(val & GICH_LR_ACTIVE_BIT);
/* Edge is the only case where we preserve the pending bit */
if (irq->config == VGIC_CONFIG_EDGE &&
(val & GICH_LR_PENDING_BIT)) {
irq->pending_latch = true;
if (vgic_irq_is_sgi(intid)) {
u32 cpuid = val & GICH_LR_PHYSID_CPUID;
cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
irq->source |= (1 << cpuid);
}
}
/*
* Clear soft pending state when level irqs have been acked.
* Always regenerate the pending state.
*/
if (irq->config == VGIC_CONFIG_LEVEL) {
if (!(val & GICH_LR_PENDING_BIT))
irq->pending_latch = false;
}
spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
vgic_cpu->used_lrs = 0;
}
/*
* Populates the particular LR with the state of a given IRQ:
* - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
* - for a level sensitive IRQ the pending state value is unchanged;
* it is dictated directly by the input level
*
* If @irq describes an SGI with multiple sources, we choose the
* lowest-numbered source VCPU and clear that bit in the source bitmap.
*
* The irq_lock must be held by the caller.
*/
void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
u32 val = irq->intid;
if (irq_is_pending(irq)) {
val |= GICH_LR_PENDING_BIT;
if (irq->config == VGIC_CONFIG_EDGE)
irq->pending_latch = false;
if (vgic_irq_is_sgi(irq->intid)) {
u32 src = ffs(irq->source);
BUG_ON(!src);
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
irq->source &= ~(1 << (src - 1));
if (irq->source)
irq->pending_latch = true;
}
}
if (irq->active)
val |= GICH_LR_ACTIVE_BIT;
if (irq->hw) {
val |= GICH_LR_HW;
val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
} else {
if (irq->config == VGIC_CONFIG_LEVEL)
val |= GICH_LR_EOI;
}
/* The GICv2 LR only holds five bits of priority. */
val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
}
void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
}
void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u32 vmcr;
vmcr = (vmcrp->ctlr << GICH_VMCR_CTRL_SHIFT) & GICH_VMCR_CTRL_MASK;
vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
GICH_VMCR_ALIAS_BINPOINT_MASK;
vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
GICH_VMCR_BINPOINT_MASK;
vmcr |= (vmcrp->pmr << GICH_VMCR_PRIMASK_SHIFT) &
GICH_VMCR_PRIMASK_MASK;
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
vmcrp->ctlr = (vmcr & GICH_VMCR_CTRL_MASK) >>
GICH_VMCR_CTRL_SHIFT;
vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
GICH_VMCR_ALIAS_BINPOINT_SHIFT;
vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
GICH_VMCR_BINPOINT_SHIFT;
vmcrp->pmr = (vmcr & GICH_VMCR_PRIMASK_MASK) >>
GICH_VMCR_PRIMASK_SHIFT;
}
void vgic_v2_enable(struct kvm_vcpu *vcpu)
{
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr = ~0;
/* Get the show on the road... */
vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
}
/* check for overlapping regions and for regions crossing the end of memory */
static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
{
if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
return false;
if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
return false;
if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
return true;
if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
return true;
return false;
}
int vgic_v2_map_resources(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int ret = 0;
if (vgic_ready(kvm))
goto out;
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
kvm_err("Need to set vgic cpu and dist addresses first\n");
ret = -ENXIO;
goto out;
}
if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
kvm_err("VGIC CPU and dist frames overlap\n");
ret = -EINVAL;
goto out;
}
/*
* Initialize the vgic if this hasn't already been done on demand by
* accessing the vgic state from userspace.
*/
ret = vgic_init(kvm);
if (ret) {
kvm_err("Unable to initialize VGIC dynamic data structures\n");
goto out;
}
ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2);
if (ret) {
kvm_err("Unable to register VGIC MMIO regions\n");
goto out;
}
if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
kvm_vgic_global_state.vcpu_base,
KVM_VGIC_V2_CPU_SIZE, true);
if (ret) {
kvm_err("Unable to remap VGIC CPU to VCPU\n");
goto out;
}
}
dist->ready = true;
out:
return ret;
}
DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);
/**
* vgic_v2_probe - probe for a GICv2 compatible interrupt controller in DT
* @node: pointer to the DT node
*
* Returns 0 if a GICv2 has been found, returns an error code otherwise
*/
int vgic_v2_probe(const struct gic_kvm_info *info)
{
int ret;
u32 vtr;
if (!info->vctrl.start) {
kvm_err("GICH not present in the firmware table\n");
return -ENXIO;
}
if (!PAGE_ALIGNED(info->vcpu.start) ||
!PAGE_ALIGNED(resource_size(&info->vcpu))) {
kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
kvm_vgic_global_state.vcpu_base_va = ioremap(info->vcpu.start,
resource_size(&info->vcpu));
if (!kvm_vgic_global_state.vcpu_base_va) {
kvm_err("Cannot ioremap GICV\n");
return -ENOMEM;
}
ret = create_hyp_io_mappings(kvm_vgic_global_state.vcpu_base_va,
kvm_vgic_global_state.vcpu_base_va + resource_size(&info->vcpu),
info->vcpu.start);
if (ret) {
kvm_err("Cannot map GICV into hyp\n");
goto out;
}
static_branch_enable(&vgic_v2_cpuif_trap);
}
kvm_vgic_global_state.vctrl_base = ioremap(info->vctrl.start,
resource_size(&info->vctrl));
if (!kvm_vgic_global_state.vctrl_base) {
kvm_err("Cannot ioremap GICH\n");
ret = -ENOMEM;
goto out;
}
vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
ret = create_hyp_io_mappings(kvm_vgic_global_state.vctrl_base,
kvm_vgic_global_state.vctrl_base +
resource_size(&info->vctrl),
info->vctrl.start);
if (ret) {
kvm_err("Cannot map VCTRL into hyp\n");
goto out;
}
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device\n");
goto out;
}
kvm_vgic_global_state.can_emulate_gicv2 = true;
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.type = VGIC_V2;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
kvm_info("vgic-v2@%llx\n", info->vctrl.start);
return 0;
out:
if (kvm_vgic_global_state.vctrl_base)
iounmap(kvm_vgic_global_state.vctrl_base);
if (kvm_vgic_global_state.vcpu_base_va)
iounmap(kvm_vgic_global_state.vcpu_base_va);
return ret;
}
void vgic_v2_load(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
writel_relaxed(cpu_if->vgic_vmcr, vgic->vctrl_base + GICH_VMCR);
}
void vgic_v2_put(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
cpu_if->vgic_vmcr = readl_relaxed(vgic->vctrl_base + GICH_VMCR);
}