linux/mm/shmem.c
Linus Torvalds 78273df7f6 header cleanups for 6.8
The goal is to get sched.h down to a type only header, so the main thing
 happening in this patchset is splitting out various _types.h headers and
 dependency fixups, as well as moving some things out of sched.h to
 better locations.
 
 This is prep work for the memory allocation profiling patchset which
 adds new sched.h interdepencencies.
 
 Testing - it's been in -next, and fixes from pretty much all
 architectures have percolated in - nothing major.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmWfBwwACgkQE6szbY3K
 bnZPwBAAmuRojXaeWxi01IPIOehSGDe68vw44PR9glEMZvxdnZuPOdvE4/+245/L
 bRKU2WBCjBUokUbV9msIShwRkFTZAmEMPNfPAAsFMA+VXeDYHKB+ZRdwTggNAQ+I
 SG6fZgh5m0HsewCDxU8oqVHkjVq4fXn0cy+aL6xLEd9gu67GoBzX2pDieS2Kvy6j
 jnyoKTxFwb+LTQgph0P4EIpq5I2umAsdLwdSR8EJ+8e9NiNvMo1pI00Lx/ntAnFZ
 JftWUJcMy3TQ5u1GkyfQN9y/yThX1bZK5GvmHS9SJ2Dkacaus5d+xaKCHtRuFS1I
 7C6b8PsNgRczUMumBXus44HdlNfNs1yU3lvVxFvBIPE1qC9pYRHrkWIXXIocXLLC
 oxTEJ6B2G3BQZVQgLIA4fOaxMVhmvKffi/aEZLi9vN9VVosd1a6XNKI6KbyRnXFp
 GSs9qDqszhn5I3GYNlDNQTc/8UsRlhPFgS6nS0By6QnvxtGi9QkU2tBRBsXvqwCy
 cLoCYIhc2tvugHvld70dz26umiJ4rnmxGlobStNoigDvIKAIUt1UmIdr1so8P8eH
 xehnL9ZcOX6xnANDL0AqMFFHV6I58CJynhFdUoXfVQf/DWLGX48mpi9LVNsYBzsI
 CAwVOAQ0UjGrpdWmJ9ueY/ABYqg9vRjzaDEXQ+MhAYO55CLaVsg=
 =3tyT
 -----END PGP SIGNATURE-----

Merge tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs

Pull header cleanups from Kent Overstreet:
 "The goal is to get sched.h down to a type only header, so the main
  thing happening in this patchset is splitting out various _types.h
  headers and dependency fixups, as well as moving some things out of
  sched.h to better locations.

  This is prep work for the memory allocation profiling patchset which
  adds new sched.h interdepencencies"

* tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs: (51 commits)
  Kill sched.h dependency on rcupdate.h
  kill unnecessary thread_info.h include
  Kill unnecessary kernel.h include
  preempt.h: Kill dependency on list.h
  rseq: Split out rseq.h from sched.h
  LoongArch: signal.c: add header file to fix build error
  restart_block: Trim includes
  lockdep: move held_lock to lockdep_types.h
  sem: Split out sem_types.h
  uidgid: Split out uidgid_types.h
  seccomp: Split out seccomp_types.h
  refcount: Split out refcount_types.h
  uapi/linux/resource.h: fix include
  x86/signal: kill dependency on time.h
  syscall_user_dispatch.h: split out *_types.h
  mm_types_task.h: Trim dependencies
  Split out irqflags_types.h
  ipc: Kill bogus dependency on spinlock.h
  shm: Slim down dependencies
  workqueue: Split out workqueue_types.h
  ...
2024-01-10 16:43:55 -08:00

4947 lines
129 KiB
C

/*
* Resizable virtual memory filesystem for Linux.
*
* Copyright (C) 2000 Linus Torvalds.
* 2000 Transmeta Corp.
* 2000-2001 Christoph Rohland
* 2000-2001 SAP AG
* 2002 Red Hat Inc.
* Copyright (C) 2002-2011 Hugh Dickins.
* Copyright (C) 2011 Google Inc.
* Copyright (C) 2002-2005 VERITAS Software Corporation.
* Copyright (C) 2004 Andi Kleen, SuSE Labs
*
* Extended attribute support for tmpfs:
* Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
* Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
*
* tiny-shmem:
* Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
*
* This file is released under the GPL.
*/
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/vfs.h>
#include <linux/mount.h>
#include <linux/ramfs.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/fileattr.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/sched/signal.h>
#include <linux/export.h>
#include <linux/shmem_fs.h>
#include <linux/swap.h>
#include <linux/uio.h>
#include <linux/hugetlb.h>
#include <linux/fs_parser.h>
#include <linux/swapfile.h>
#include <linux/iversion.h>
#include "swap.h"
static struct vfsmount *shm_mnt __ro_after_init;
#ifdef CONFIG_SHMEM
/*
* This virtual memory filesystem is heavily based on the ramfs. It
* extends ramfs by the ability to use swap and honor resource limits
* which makes it a completely usable filesystem.
*/
#include <linux/xattr.h>
#include <linux/exportfs.h>
#include <linux/posix_acl.h>
#include <linux/posix_acl_xattr.h>
#include <linux/mman.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/percpu_counter.h>
#include <linux/falloc.h>
#include <linux/splice.h>
#include <linux/security.h>
#include <linux/swapops.h>
#include <linux/mempolicy.h>
#include <linux/namei.h>
#include <linux/ctype.h>
#include <linux/migrate.h>
#include <linux/highmem.h>
#include <linux/seq_file.h>
#include <linux/magic.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <uapi/linux/memfd.h>
#include <linux/rmap.h>
#include <linux/uuid.h>
#include <linux/quotaops.h>
#include <linux/rcupdate_wait.h>
#include <linux/uaccess.h>
#include "internal.h"
#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
/* Pretend that each entry is of this size in directory's i_size */
#define BOGO_DIRENT_SIZE 20
/* Pretend that one inode + its dentry occupy this much memory */
#define BOGO_INODE_SIZE 1024
/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
#define SHORT_SYMLINK_LEN 128
/*
* shmem_fallocate communicates with shmem_fault or shmem_writepage via
* inode->i_private (with i_rwsem making sure that it has only one user at
* a time): we would prefer not to enlarge the shmem inode just for that.
*/
struct shmem_falloc {
wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
pgoff_t start; /* start of range currently being fallocated */
pgoff_t next; /* the next page offset to be fallocated */
pgoff_t nr_falloced; /* how many new pages have been fallocated */
pgoff_t nr_unswapped; /* how often writepage refused to swap out */
};
struct shmem_options {
unsigned long long blocks;
unsigned long long inodes;
struct mempolicy *mpol;
kuid_t uid;
kgid_t gid;
umode_t mode;
bool full_inums;
int huge;
int seen;
bool noswap;
unsigned short quota_types;
struct shmem_quota_limits qlimits;
#define SHMEM_SEEN_BLOCKS 1
#define SHMEM_SEEN_INODES 2
#define SHMEM_SEEN_HUGE 4
#define SHMEM_SEEN_INUMS 8
#define SHMEM_SEEN_NOSWAP 16
#define SHMEM_SEEN_QUOTA 32
};
#ifdef CONFIG_TMPFS
static unsigned long shmem_default_max_blocks(void)
{
return totalram_pages() / 2;
}
static unsigned long shmem_default_max_inodes(void)
{
unsigned long nr_pages = totalram_pages();
return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
ULONG_MAX / BOGO_INODE_SIZE);
}
#endif
static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
struct mm_struct *fault_mm, vm_fault_t *fault_type);
static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
/*
* shmem_file_setup pre-accounts the whole fixed size of a VM object,
* for shared memory and for shared anonymous (/dev/zero) mappings
* (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
* consistent with the pre-accounting of private mappings ...
*/
static inline int shmem_acct_size(unsigned long flags, loff_t size)
{
return (flags & VM_NORESERVE) ?
0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
}
static inline void shmem_unacct_size(unsigned long flags, loff_t size)
{
if (!(flags & VM_NORESERVE))
vm_unacct_memory(VM_ACCT(size));
}
static inline int shmem_reacct_size(unsigned long flags,
loff_t oldsize, loff_t newsize)
{
if (!(flags & VM_NORESERVE)) {
if (VM_ACCT(newsize) > VM_ACCT(oldsize))
return security_vm_enough_memory_mm(current->mm,
VM_ACCT(newsize) - VM_ACCT(oldsize));
else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
}
return 0;
}
/*
* ... whereas tmpfs objects are accounted incrementally as
* pages are allocated, in order to allow large sparse files.
* shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
* so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
*/
static inline int shmem_acct_blocks(unsigned long flags, long pages)
{
if (!(flags & VM_NORESERVE))
return 0;
return security_vm_enough_memory_mm(current->mm,
pages * VM_ACCT(PAGE_SIZE));
}
static inline void shmem_unacct_blocks(unsigned long flags, long pages)
{
if (flags & VM_NORESERVE)
vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
}
static int shmem_inode_acct_blocks(struct inode *inode, long pages)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
int err = -ENOSPC;
if (shmem_acct_blocks(info->flags, pages))
return err;
might_sleep(); /* when quotas */
if (sbinfo->max_blocks) {
if (!percpu_counter_limited_add(&sbinfo->used_blocks,
sbinfo->max_blocks, pages))
goto unacct;
err = dquot_alloc_block_nodirty(inode, pages);
if (err) {
percpu_counter_sub(&sbinfo->used_blocks, pages);
goto unacct;
}
} else {
err = dquot_alloc_block_nodirty(inode, pages);
if (err)
goto unacct;
}
return 0;
unacct:
shmem_unacct_blocks(info->flags, pages);
return err;
}
static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
might_sleep(); /* when quotas */
dquot_free_block_nodirty(inode, pages);
if (sbinfo->max_blocks)
percpu_counter_sub(&sbinfo->used_blocks, pages);
shmem_unacct_blocks(info->flags, pages);
}
static const struct super_operations shmem_ops;
const struct address_space_operations shmem_aops;
static const struct file_operations shmem_file_operations;
static const struct inode_operations shmem_inode_operations;
static const struct inode_operations shmem_dir_inode_operations;
static const struct inode_operations shmem_special_inode_operations;
static const struct vm_operations_struct shmem_vm_ops;
static const struct vm_operations_struct shmem_anon_vm_ops;
static struct file_system_type shmem_fs_type;
bool vma_is_anon_shmem(struct vm_area_struct *vma)
{
return vma->vm_ops == &shmem_anon_vm_ops;
}
bool vma_is_shmem(struct vm_area_struct *vma)
{
return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
}
static LIST_HEAD(shmem_swaplist);
static DEFINE_MUTEX(shmem_swaplist_mutex);
#ifdef CONFIG_TMPFS_QUOTA
static int shmem_enable_quotas(struct super_block *sb,
unsigned short quota_types)
{
int type, err = 0;
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
if (!(quota_types & (1 << type)))
continue;
err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
DQUOT_USAGE_ENABLED |
DQUOT_LIMITS_ENABLED);
if (err)
goto out_err;
}
return 0;
out_err:
pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
type, err);
for (type--; type >= 0; type--)
dquot_quota_off(sb, type);
return err;
}
static void shmem_disable_quotas(struct super_block *sb)
{
int type;
for (type = 0; type < SHMEM_MAXQUOTAS; type++)
dquot_quota_off(sb, type);
}
static struct dquot **shmem_get_dquots(struct inode *inode)
{
return SHMEM_I(inode)->i_dquot;
}
#endif /* CONFIG_TMPFS_QUOTA */
/*
* shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
* produces a novel ino for the newly allocated inode.
*
* It may also be called when making a hard link to permit the space needed by
* each dentry. However, in that case, no new inode number is needed since that
* internally draws from another pool of inode numbers (currently global
* get_next_ino()). This case is indicated by passing NULL as inop.
*/
#define SHMEM_INO_BATCH 1024
static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
ino_t ino;
if (!(sb->s_flags & SB_KERNMOUNT)) {
raw_spin_lock(&sbinfo->stat_lock);
if (sbinfo->max_inodes) {
if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
raw_spin_unlock(&sbinfo->stat_lock);
return -ENOSPC;
}
sbinfo->free_ispace -= BOGO_INODE_SIZE;
}
if (inop) {
ino = sbinfo->next_ino++;
if (unlikely(is_zero_ino(ino)))
ino = sbinfo->next_ino++;
if (unlikely(!sbinfo->full_inums &&
ino > UINT_MAX)) {
/*
* Emulate get_next_ino uint wraparound for
* compatibility
*/
if (IS_ENABLED(CONFIG_64BIT))
pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
__func__, MINOR(sb->s_dev));
sbinfo->next_ino = 1;
ino = sbinfo->next_ino++;
}
*inop = ino;
}
raw_spin_unlock(&sbinfo->stat_lock);
} else if (inop) {
/*
* __shmem_file_setup, one of our callers, is lock-free: it
* doesn't hold stat_lock in shmem_reserve_inode since
* max_inodes is always 0, and is called from potentially
* unknown contexts. As such, use a per-cpu batched allocator
* which doesn't require the per-sb stat_lock unless we are at
* the batch boundary.
*
* We don't need to worry about inode{32,64} since SB_KERNMOUNT
* shmem mounts are not exposed to userspace, so we don't need
* to worry about things like glibc compatibility.
*/
ino_t *next_ino;
next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
ino = *next_ino;
if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
raw_spin_lock(&sbinfo->stat_lock);
ino = sbinfo->next_ino;
sbinfo->next_ino += SHMEM_INO_BATCH;
raw_spin_unlock(&sbinfo->stat_lock);
if (unlikely(is_zero_ino(ino)))
ino++;
}
*inop = ino;
*next_ino = ++ino;
put_cpu();
}
return 0;
}
static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
if (sbinfo->max_inodes) {
raw_spin_lock(&sbinfo->stat_lock);
sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
raw_spin_unlock(&sbinfo->stat_lock);
}
}
/**
* shmem_recalc_inode - recalculate the block usage of an inode
* @inode: inode to recalc
* @alloced: the change in number of pages allocated to inode
* @swapped: the change in number of pages swapped from inode
*
* We have to calculate the free blocks since the mm can drop
* undirtied hole pages behind our back.
*
* But normally info->alloced == inode->i_mapping->nrpages + info->swapped
* So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
*/
static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
{
struct shmem_inode_info *info = SHMEM_I(inode);
long freed;
spin_lock(&info->lock);
info->alloced += alloced;
info->swapped += swapped;
freed = info->alloced - info->swapped -
READ_ONCE(inode->i_mapping->nrpages);
/*
* Special case: whereas normally shmem_recalc_inode() is called
* after i_mapping->nrpages has already been adjusted (up or down),
* shmem_writepage() has to raise swapped before nrpages is lowered -
* to stop a racing shmem_recalc_inode() from thinking that a page has
* been freed. Compensate here, to avoid the need for a followup call.
*/
if (swapped > 0)
freed += swapped;
if (freed > 0)
info->alloced -= freed;
spin_unlock(&info->lock);
/* The quota case may block */
if (freed > 0)
shmem_inode_unacct_blocks(inode, freed);
}
bool shmem_charge(struct inode *inode, long pages)
{
struct address_space *mapping = inode->i_mapping;
if (shmem_inode_acct_blocks(inode, pages))
return false;
/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
xa_lock_irq(&mapping->i_pages);
mapping->nrpages += pages;
xa_unlock_irq(&mapping->i_pages);
shmem_recalc_inode(inode, pages, 0);
return true;
}
void shmem_uncharge(struct inode *inode, long pages)
{
/* pages argument is currently unused: keep it to help debugging */
/* nrpages adjustment done by __filemap_remove_folio() or caller */
shmem_recalc_inode(inode, 0, 0);
}
/*
* Replace item expected in xarray by a new item, while holding xa_lock.
*/
static int shmem_replace_entry(struct address_space *mapping,
pgoff_t index, void *expected, void *replacement)
{
XA_STATE(xas, &mapping->i_pages, index);
void *item;
VM_BUG_ON(!expected);
VM_BUG_ON(!replacement);
item = xas_load(&xas);
if (item != expected)
return -ENOENT;
xas_store(&xas, replacement);
return 0;
}
/*
* Sometimes, before we decide whether to proceed or to fail, we must check
* that an entry was not already brought back from swap by a racing thread.
*
* Checking page is not enough: by the time a SwapCache page is locked, it
* might be reused, and again be SwapCache, using the same swap as before.
*/
static bool shmem_confirm_swap(struct address_space *mapping,
pgoff_t index, swp_entry_t swap)
{
return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
}
/*
* Definitions for "huge tmpfs": tmpfs mounted with the huge= option
*
* SHMEM_HUGE_NEVER:
* disables huge pages for the mount;
* SHMEM_HUGE_ALWAYS:
* enables huge pages for the mount;
* SHMEM_HUGE_WITHIN_SIZE:
* only allocate huge pages if the page will be fully within i_size,
* also respect fadvise()/madvise() hints;
* SHMEM_HUGE_ADVISE:
* only allocate huge pages if requested with fadvise()/madvise();
*/
#define SHMEM_HUGE_NEVER 0
#define SHMEM_HUGE_ALWAYS 1
#define SHMEM_HUGE_WITHIN_SIZE 2
#define SHMEM_HUGE_ADVISE 3
/*
* Special values.
* Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
*
* SHMEM_HUGE_DENY:
* disables huge on shm_mnt and all mounts, for emergency use;
* SHMEM_HUGE_FORCE:
* enables huge on shm_mnt and all mounts, w/o needing option, for testing;
*
*/
#define SHMEM_HUGE_DENY (-1)
#define SHMEM_HUGE_FORCE (-2)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/* ifdef here to avoid bloating shmem.o when not necessary */
static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
struct mm_struct *mm, unsigned long vm_flags)
{
loff_t i_size;
if (!S_ISREG(inode->i_mode))
return false;
if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
return false;
if (shmem_huge == SHMEM_HUGE_DENY)
return false;
if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
return true;
switch (SHMEM_SB(inode->i_sb)->huge) {
case SHMEM_HUGE_ALWAYS:
return true;
case SHMEM_HUGE_WITHIN_SIZE:
index = round_up(index + 1, HPAGE_PMD_NR);
i_size = round_up(i_size_read(inode), PAGE_SIZE);
if (i_size >> PAGE_SHIFT >= index)
return true;
fallthrough;
case SHMEM_HUGE_ADVISE:
if (mm && (vm_flags & VM_HUGEPAGE))
return true;
fallthrough;
default:
return false;
}
}
#if defined(CONFIG_SYSFS)
static int shmem_parse_huge(const char *str)
{
if (!strcmp(str, "never"))
return SHMEM_HUGE_NEVER;
if (!strcmp(str, "always"))
return SHMEM_HUGE_ALWAYS;
if (!strcmp(str, "within_size"))
return SHMEM_HUGE_WITHIN_SIZE;
if (!strcmp(str, "advise"))
return SHMEM_HUGE_ADVISE;
if (!strcmp(str, "deny"))
return SHMEM_HUGE_DENY;
if (!strcmp(str, "force"))
return SHMEM_HUGE_FORCE;
return -EINVAL;
}
#endif
#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
static const char *shmem_format_huge(int huge)
{
switch (huge) {
case SHMEM_HUGE_NEVER:
return "never";
case SHMEM_HUGE_ALWAYS:
return "always";
case SHMEM_HUGE_WITHIN_SIZE:
return "within_size";
case SHMEM_HUGE_ADVISE:
return "advise";
case SHMEM_HUGE_DENY:
return "deny";
case SHMEM_HUGE_FORCE:
return "force";
default:
VM_BUG_ON(1);
return "bad_val";
}
}
#endif
static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
struct shrink_control *sc, unsigned long nr_to_split)
{
LIST_HEAD(list), *pos, *next;
LIST_HEAD(to_remove);
struct inode *inode;
struct shmem_inode_info *info;
struct folio *folio;
unsigned long batch = sc ? sc->nr_to_scan : 128;
int split = 0;
if (list_empty(&sbinfo->shrinklist))
return SHRINK_STOP;
spin_lock(&sbinfo->shrinklist_lock);
list_for_each_safe(pos, next, &sbinfo->shrinklist) {
info = list_entry(pos, struct shmem_inode_info, shrinklist);
/* pin the inode */
inode = igrab(&info->vfs_inode);
/* inode is about to be evicted */
if (!inode) {
list_del_init(&info->shrinklist);
goto next;
}
/* Check if there's anything to gain */
if (round_up(inode->i_size, PAGE_SIZE) ==
round_up(inode->i_size, HPAGE_PMD_SIZE)) {
list_move(&info->shrinklist, &to_remove);
goto next;
}
list_move(&info->shrinklist, &list);
next:
sbinfo->shrinklist_len--;
if (!--batch)
break;
}
spin_unlock(&sbinfo->shrinklist_lock);
list_for_each_safe(pos, next, &to_remove) {
info = list_entry(pos, struct shmem_inode_info, shrinklist);
inode = &info->vfs_inode;
list_del_init(&info->shrinklist);
iput(inode);
}
list_for_each_safe(pos, next, &list) {
int ret;
pgoff_t index;
info = list_entry(pos, struct shmem_inode_info, shrinklist);
inode = &info->vfs_inode;
if (nr_to_split && split >= nr_to_split)
goto move_back;
index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
folio = filemap_get_folio(inode->i_mapping, index);
if (IS_ERR(folio))
goto drop;
/* No huge page at the end of the file: nothing to split */
if (!folio_test_large(folio)) {
folio_put(folio);
goto drop;
}
/*
* Move the inode on the list back to shrinklist if we failed
* to lock the page at this time.
*
* Waiting for the lock may lead to deadlock in the
* reclaim path.
*/
if (!folio_trylock(folio)) {
folio_put(folio);
goto move_back;
}
ret = split_folio(folio);
folio_unlock(folio);
folio_put(folio);
/* If split failed move the inode on the list back to shrinklist */
if (ret)
goto move_back;
split++;
drop:
list_del_init(&info->shrinklist);
goto put;
move_back:
/*
* Make sure the inode is either on the global list or deleted
* from any local list before iput() since it could be deleted
* in another thread once we put the inode (then the local list
* is corrupted).
*/
spin_lock(&sbinfo->shrinklist_lock);
list_move(&info->shrinklist, &sbinfo->shrinklist);
sbinfo->shrinklist_len++;
spin_unlock(&sbinfo->shrinklist_lock);
put:
iput(inode);
}
return split;
}
static long shmem_unused_huge_scan(struct super_block *sb,
struct shrink_control *sc)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
if (!READ_ONCE(sbinfo->shrinklist_len))
return SHRINK_STOP;
return shmem_unused_huge_shrink(sbinfo, sc, 0);
}
static long shmem_unused_huge_count(struct super_block *sb,
struct shrink_control *sc)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
return READ_ONCE(sbinfo->shrinklist_len);
}
#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
#define shmem_huge SHMEM_HUGE_DENY
bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
struct mm_struct *mm, unsigned long vm_flags)
{
return false;
}
static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
struct shrink_control *sc, unsigned long nr_to_split)
{
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* Somewhat like filemap_add_folio, but error if expected item has gone.
*/
static int shmem_add_to_page_cache(struct folio *folio,
struct address_space *mapping,
pgoff_t index, void *expected, gfp_t gfp)
{
XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
long nr = folio_nr_pages(folio);
VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
VM_BUG_ON(expected && folio_test_large(folio));
folio_ref_add(folio, nr);
folio->mapping = mapping;
folio->index = index;
gfp &= GFP_RECLAIM_MASK;
folio_throttle_swaprate(folio, gfp);
do {
xas_lock_irq(&xas);
if (expected != xas_find_conflict(&xas)) {
xas_set_err(&xas, -EEXIST);
goto unlock;
}
if (expected && xas_find_conflict(&xas)) {
xas_set_err(&xas, -EEXIST);
goto unlock;
}
xas_store(&xas, folio);
if (xas_error(&xas))
goto unlock;
if (folio_test_pmd_mappable(folio))
__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
mapping->nrpages += nr;
unlock:
xas_unlock_irq(&xas);
} while (xas_nomem(&xas, gfp));
if (xas_error(&xas)) {
folio->mapping = NULL;
folio_ref_sub(folio, nr);
return xas_error(&xas);
}
return 0;
}
/*
* Somewhat like filemap_remove_folio, but substitutes swap for @folio.
*/
static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
{
struct address_space *mapping = folio->mapping;
long nr = folio_nr_pages(folio);
int error;
xa_lock_irq(&mapping->i_pages);
error = shmem_replace_entry(mapping, folio->index, folio, radswap);
folio->mapping = NULL;
mapping->nrpages -= nr;
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
xa_unlock_irq(&mapping->i_pages);
folio_put(folio);
BUG_ON(error);
}
/*
* Remove swap entry from page cache, free the swap and its page cache.
*/
static int shmem_free_swap(struct address_space *mapping,
pgoff_t index, void *radswap)
{
void *old;
old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
if (old != radswap)
return -ENOENT;
free_swap_and_cache(radix_to_swp_entry(radswap));
return 0;
}
/*
* Determine (in bytes) how many of the shmem object's pages mapped by the
* given offsets are swapped out.
*
* This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
* as long as the inode doesn't go away and racy results are not a problem.
*/
unsigned long shmem_partial_swap_usage(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
XA_STATE(xas, &mapping->i_pages, start);
struct page *page;
unsigned long swapped = 0;
unsigned long max = end - 1;
rcu_read_lock();
xas_for_each(&xas, page, max) {
if (xas_retry(&xas, page))
continue;
if (xa_is_value(page))
swapped++;
if (xas.xa_index == max)
break;
if (need_resched()) {
xas_pause(&xas);
cond_resched_rcu();
}
}
rcu_read_unlock();
return swapped << PAGE_SHIFT;
}
/*
* Determine (in bytes) how many of the shmem object's pages mapped by the
* given vma is swapped out.
*
* This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
* as long as the inode doesn't go away and racy results are not a problem.
*/
unsigned long shmem_swap_usage(struct vm_area_struct *vma)
{
struct inode *inode = file_inode(vma->vm_file);
struct shmem_inode_info *info = SHMEM_I(inode);
struct address_space *mapping = inode->i_mapping;
unsigned long swapped;
/* Be careful as we don't hold info->lock */
swapped = READ_ONCE(info->swapped);
/*
* The easier cases are when the shmem object has nothing in swap, or
* the vma maps it whole. Then we can simply use the stats that we
* already track.
*/
if (!swapped)
return 0;
if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
return swapped << PAGE_SHIFT;
/* Here comes the more involved part */
return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
vma->vm_pgoff + vma_pages(vma));
}
/*
* SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
*/
void shmem_unlock_mapping(struct address_space *mapping)
{
struct folio_batch fbatch;
pgoff_t index = 0;
folio_batch_init(&fbatch);
/*
* Minor point, but we might as well stop if someone else SHM_LOCKs it.
*/
while (!mapping_unevictable(mapping) &&
filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
check_move_unevictable_folios(&fbatch);
folio_batch_release(&fbatch);
cond_resched();
}
}
static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
{
struct folio *folio;
/*
* At first avoid shmem_get_folio(,,,SGP_READ): that fails
* beyond i_size, and reports fallocated folios as holes.
*/
folio = filemap_get_entry(inode->i_mapping, index);
if (!folio)
return folio;
if (!xa_is_value(folio)) {
folio_lock(folio);
if (folio->mapping == inode->i_mapping)
return folio;
/* The folio has been swapped out */
folio_unlock(folio);
folio_put(folio);
}
/*
* But read a folio back from swap if any of it is within i_size
* (although in some cases this is just a waste of time).
*/
folio = NULL;
shmem_get_folio(inode, index, &folio, SGP_READ);
return folio;
}
/*
* Remove range of pages and swap entries from page cache, and free them.
* If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
*/
static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
bool unfalloc)
{
struct address_space *mapping = inode->i_mapping;
struct shmem_inode_info *info = SHMEM_I(inode);
pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
pgoff_t end = (lend + 1) >> PAGE_SHIFT;
struct folio_batch fbatch;
pgoff_t indices[PAGEVEC_SIZE];
struct folio *folio;
bool same_folio;
long nr_swaps_freed = 0;
pgoff_t index;
int i;
if (lend == -1)
end = -1; /* unsigned, so actually very big */
if (info->fallocend > start && info->fallocend <= end && !unfalloc)
info->fallocend = start;
folio_batch_init(&fbatch);
index = start;
while (index < end && find_lock_entries(mapping, &index, end - 1,
&fbatch, indices)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
folio = fbatch.folios[i];
if (xa_is_value(folio)) {
if (unfalloc)
continue;
nr_swaps_freed += !shmem_free_swap(mapping,
indices[i], folio);
continue;
}
if (!unfalloc || !folio_test_uptodate(folio))
truncate_inode_folio(mapping, folio);
folio_unlock(folio);
}
folio_batch_remove_exceptionals(&fbatch);
folio_batch_release(&fbatch);
cond_resched();
}
/*
* When undoing a failed fallocate, we want none of the partial folio
* zeroing and splitting below, but shall want to truncate the whole
* folio when !uptodate indicates that it was added by this fallocate,
* even when [lstart, lend] covers only a part of the folio.
*/
if (unfalloc)
goto whole_folios;
same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
if (folio) {
same_folio = lend < folio_pos(folio) + folio_size(folio);
folio_mark_dirty(folio);
if (!truncate_inode_partial_folio(folio, lstart, lend)) {
start = folio_next_index(folio);
if (same_folio)
end = folio->index;
}
folio_unlock(folio);
folio_put(folio);
folio = NULL;
}
if (!same_folio)
folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
if (folio) {
folio_mark_dirty(folio);
if (!truncate_inode_partial_folio(folio, lstart, lend))
end = folio->index;
folio_unlock(folio);
folio_put(folio);
}
whole_folios:
index = start;
while (index < end) {
cond_resched();
if (!find_get_entries(mapping, &index, end - 1, &fbatch,
indices)) {
/* If all gone or hole-punch or unfalloc, we're done */
if (index == start || end != -1)
break;
/* But if truncating, restart to make sure all gone */
index = start;
continue;
}
for (i = 0; i < folio_batch_count(&fbatch); i++) {
folio = fbatch.folios[i];
if (xa_is_value(folio)) {
if (unfalloc)
continue;
if (shmem_free_swap(mapping, indices[i], folio)) {
/* Swap was replaced by page: retry */
index = indices[i];
break;
}
nr_swaps_freed++;
continue;
}
folio_lock(folio);
if (!unfalloc || !folio_test_uptodate(folio)) {
if (folio_mapping(folio) != mapping) {
/* Page was replaced by swap: retry */
folio_unlock(folio);
index = indices[i];
break;
}
VM_BUG_ON_FOLIO(folio_test_writeback(folio),
folio);
if (!folio_test_large(folio)) {
truncate_inode_folio(mapping, folio);
} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
/*
* If we split a page, reset the loop so
* that we pick up the new sub pages.
* Otherwise the THP was entirely
* dropped or the target range was
* zeroed, so just continue the loop as
* is.
*/
if (!folio_test_large(folio)) {
folio_unlock(folio);
index = start;
break;
}
}
}
folio_unlock(folio);
}
folio_batch_remove_exceptionals(&fbatch);
folio_batch_release(&fbatch);
}
shmem_recalc_inode(inode, 0, -nr_swaps_freed);
}
void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
{
shmem_undo_range(inode, lstart, lend, false);
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
inode_inc_iversion(inode);
}
EXPORT_SYMBOL_GPL(shmem_truncate_range);
static int shmem_getattr(struct mnt_idmap *idmap,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = path->dentry->d_inode;
struct shmem_inode_info *info = SHMEM_I(inode);
if (info->alloced - info->swapped != inode->i_mapping->nrpages)
shmem_recalc_inode(inode, 0, 0);
if (info->fsflags & FS_APPEND_FL)
stat->attributes |= STATX_ATTR_APPEND;
if (info->fsflags & FS_IMMUTABLE_FL)
stat->attributes |= STATX_ATTR_IMMUTABLE;
if (info->fsflags & FS_NODUMP_FL)
stat->attributes |= STATX_ATTR_NODUMP;
stat->attributes_mask |= (STATX_ATTR_APPEND |
STATX_ATTR_IMMUTABLE |
STATX_ATTR_NODUMP);
generic_fillattr(idmap, request_mask, inode, stat);
if (shmem_is_huge(inode, 0, false, NULL, 0))
stat->blksize = HPAGE_PMD_SIZE;
if (request_mask & STATX_BTIME) {
stat->result_mask |= STATX_BTIME;
stat->btime.tv_sec = info->i_crtime.tv_sec;
stat->btime.tv_nsec = info->i_crtime.tv_nsec;
}
return 0;
}
static int shmem_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
struct shmem_inode_info *info = SHMEM_I(inode);
int error;
bool update_mtime = false;
bool update_ctime = true;
error = setattr_prepare(idmap, dentry, attr);
if (error)
return error;
if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
if ((inode->i_mode ^ attr->ia_mode) & 0111) {
return -EPERM;
}
}
if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
loff_t oldsize = inode->i_size;
loff_t newsize = attr->ia_size;
/* protected by i_rwsem */
if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
(newsize > oldsize && (info->seals & F_SEAL_GROW)))
return -EPERM;
if (newsize != oldsize) {
error = shmem_reacct_size(SHMEM_I(inode)->flags,
oldsize, newsize);
if (error)
return error;
i_size_write(inode, newsize);
update_mtime = true;
} else {
update_ctime = false;
}
if (newsize <= oldsize) {
loff_t holebegin = round_up(newsize, PAGE_SIZE);
if (oldsize > holebegin)
unmap_mapping_range(inode->i_mapping,
holebegin, 0, 1);
if (info->alloced)
shmem_truncate_range(inode,
newsize, (loff_t)-1);
/* unmap again to remove racily COWed private pages */
if (oldsize > holebegin)
unmap_mapping_range(inode->i_mapping,
holebegin, 0, 1);
}
}
if (is_quota_modification(idmap, inode, attr)) {
error = dquot_initialize(inode);
if (error)
return error;
}
/* Transfer quota accounting */
if (i_uid_needs_update(idmap, attr, inode) ||
i_gid_needs_update(idmap, attr, inode)) {
error = dquot_transfer(idmap, inode, attr);
if (error)
return error;
}
setattr_copy(idmap, inode, attr);
if (attr->ia_valid & ATTR_MODE)
error = posix_acl_chmod(idmap, dentry, inode->i_mode);
if (!error && update_ctime) {
inode_set_ctime_current(inode);
if (update_mtime)
inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
inode_inc_iversion(inode);
}
return error;
}
static void shmem_evict_inode(struct inode *inode)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
size_t freed = 0;
if (shmem_mapping(inode->i_mapping)) {
shmem_unacct_size(info->flags, inode->i_size);
inode->i_size = 0;
mapping_set_exiting(inode->i_mapping);
shmem_truncate_range(inode, 0, (loff_t)-1);
if (!list_empty(&info->shrinklist)) {
spin_lock(&sbinfo->shrinklist_lock);
if (!list_empty(&info->shrinklist)) {
list_del_init(&info->shrinklist);
sbinfo->shrinklist_len--;
}
spin_unlock(&sbinfo->shrinklist_lock);
}
while (!list_empty(&info->swaplist)) {
/* Wait while shmem_unuse() is scanning this inode... */
wait_var_event(&info->stop_eviction,
!atomic_read(&info->stop_eviction));
mutex_lock(&shmem_swaplist_mutex);
/* ...but beware of the race if we peeked too early */
if (!atomic_read(&info->stop_eviction))
list_del_init(&info->swaplist);
mutex_unlock(&shmem_swaplist_mutex);
}
}
simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
shmem_free_inode(inode->i_sb, freed);
WARN_ON(inode->i_blocks);
clear_inode(inode);
#ifdef CONFIG_TMPFS_QUOTA
dquot_free_inode(inode);
dquot_drop(inode);
#endif
}
static int shmem_find_swap_entries(struct address_space *mapping,
pgoff_t start, struct folio_batch *fbatch,
pgoff_t *indices, unsigned int type)
{
XA_STATE(xas, &mapping->i_pages, start);
struct folio *folio;
swp_entry_t entry;
rcu_read_lock();
xas_for_each(&xas, folio, ULONG_MAX) {
if (xas_retry(&xas, folio))
continue;
if (!xa_is_value(folio))
continue;
entry = radix_to_swp_entry(folio);
/*
* swapin error entries can be found in the mapping. But they're
* deliberately ignored here as we've done everything we can do.
*/
if (swp_type(entry) != type)
continue;
indices[folio_batch_count(fbatch)] = xas.xa_index;
if (!folio_batch_add(fbatch, folio))
break;
if (need_resched()) {
xas_pause(&xas);
cond_resched_rcu();
}
}
rcu_read_unlock();
return xas.xa_index;
}
/*
* Move the swapped pages for an inode to page cache. Returns the count
* of pages swapped in, or the error in case of failure.
*/
static int shmem_unuse_swap_entries(struct inode *inode,
struct folio_batch *fbatch, pgoff_t *indices)
{
int i = 0;
int ret = 0;
int error = 0;
struct address_space *mapping = inode->i_mapping;
for (i = 0; i < folio_batch_count(fbatch); i++) {
struct folio *folio = fbatch->folios[i];
if (!xa_is_value(folio))
continue;
error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
mapping_gfp_mask(mapping), NULL, NULL);
if (error == 0) {
folio_unlock(folio);
folio_put(folio);
ret++;
}
if (error == -ENOMEM)
break;
error = 0;
}
return error ? error : ret;
}
/*
* If swap found in inode, free it and move page from swapcache to filecache.
*/
static int shmem_unuse_inode(struct inode *inode, unsigned int type)
{
struct address_space *mapping = inode->i_mapping;
pgoff_t start = 0;
struct folio_batch fbatch;
pgoff_t indices[PAGEVEC_SIZE];
int ret = 0;
do {
folio_batch_init(&fbatch);
shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
if (folio_batch_count(&fbatch) == 0) {
ret = 0;
break;
}
ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
if (ret < 0)
break;
start = indices[folio_batch_count(&fbatch) - 1];
} while (true);
return ret;
}
/*
* Read all the shared memory data that resides in the swap
* device 'type' back into memory, so the swap device can be
* unused.
*/
int shmem_unuse(unsigned int type)
{
struct shmem_inode_info *info, *next;
int error = 0;
if (list_empty(&shmem_swaplist))
return 0;
mutex_lock(&shmem_swaplist_mutex);
list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
if (!info->swapped) {
list_del_init(&info->swaplist);
continue;
}
/*
* Drop the swaplist mutex while searching the inode for swap;
* but before doing so, make sure shmem_evict_inode() will not
* remove placeholder inode from swaplist, nor let it be freed
* (igrab() would protect from unlink, but not from unmount).
*/
atomic_inc(&info->stop_eviction);
mutex_unlock(&shmem_swaplist_mutex);
error = shmem_unuse_inode(&info->vfs_inode, type);
cond_resched();
mutex_lock(&shmem_swaplist_mutex);
next = list_next_entry(info, swaplist);
if (!info->swapped)
list_del_init(&info->swaplist);
if (atomic_dec_and_test(&info->stop_eviction))
wake_up_var(&info->stop_eviction);
if (error)
break;
}
mutex_unlock(&shmem_swaplist_mutex);
return error;
}
/*
* Move the page from the page cache to the swap cache.
*/
static int shmem_writepage(struct page *page, struct writeback_control *wbc)
{
struct folio *folio = page_folio(page);
struct address_space *mapping = folio->mapping;
struct inode *inode = mapping->host;
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
swp_entry_t swap;
pgoff_t index;
/*
* Our capabilities prevent regular writeback or sync from ever calling
* shmem_writepage; but a stacking filesystem might use ->writepage of
* its underlying filesystem, in which case tmpfs should write out to
* swap only in response to memory pressure, and not for the writeback
* threads or sync.
*/
if (WARN_ON_ONCE(!wbc->for_reclaim))
goto redirty;
if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
goto redirty;
if (!total_swap_pages)
goto redirty;
/*
* If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
* "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
* and its shmem_writeback() needs them to be split when swapping.
*/
if (folio_test_large(folio)) {
/* Ensure the subpages are still dirty */
folio_test_set_dirty(folio);
if (split_huge_page(page) < 0)
goto redirty;
folio = page_folio(page);
folio_clear_dirty(folio);
}
index = folio->index;
/*
* This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
* value into swapfile.c, the only way we can correctly account for a
* fallocated folio arriving here is now to initialize it and write it.
*
* That's okay for a folio already fallocated earlier, but if we have
* not yet completed the fallocation, then (a) we want to keep track
* of this folio in case we have to undo it, and (b) it may not be a
* good idea to continue anyway, once we're pushing into swap. So
* reactivate the folio, and let shmem_fallocate() quit when too many.
*/
if (!folio_test_uptodate(folio)) {
if (inode->i_private) {
struct shmem_falloc *shmem_falloc;
spin_lock(&inode->i_lock);
shmem_falloc = inode->i_private;
if (shmem_falloc &&
!shmem_falloc->waitq &&
index >= shmem_falloc->start &&
index < shmem_falloc->next)
shmem_falloc->nr_unswapped++;
else
shmem_falloc = NULL;
spin_unlock(&inode->i_lock);
if (shmem_falloc)
goto redirty;
}
folio_zero_range(folio, 0, folio_size(folio));
flush_dcache_folio(folio);
folio_mark_uptodate(folio);
}
swap = folio_alloc_swap(folio);
if (!swap.val)
goto redirty;
/*
* Add inode to shmem_unuse()'s list of swapped-out inodes,
* if it's not already there. Do it now before the folio is
* moved to swap cache, when its pagelock no longer protects
* the inode from eviction. But don't unlock the mutex until
* we've incremented swapped, because shmem_unuse_inode() will
* prune a !swapped inode from the swaplist under this mutex.
*/
mutex_lock(&shmem_swaplist_mutex);
if (list_empty(&info->swaplist))
list_add(&info->swaplist, &shmem_swaplist);
if (add_to_swap_cache(folio, swap,
__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
NULL) == 0) {
shmem_recalc_inode(inode, 0, 1);
swap_shmem_alloc(swap);
shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
mutex_unlock(&shmem_swaplist_mutex);
BUG_ON(folio_mapped(folio));
return swap_writepage(&folio->page, wbc);
}
mutex_unlock(&shmem_swaplist_mutex);
put_swap_folio(folio, swap);
redirty:
folio_mark_dirty(folio);
if (wbc->for_reclaim)
return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
folio_unlock(folio);
return 0;
}
#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
{
char buffer[64];
if (!mpol || mpol->mode == MPOL_DEFAULT)
return; /* show nothing */
mpol_to_str(buffer, sizeof(buffer), mpol);
seq_printf(seq, ",mpol=%s", buffer);
}
static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
{
struct mempolicy *mpol = NULL;
if (sbinfo->mpol) {
raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
mpol = sbinfo->mpol;
mpol_get(mpol);
raw_spin_unlock(&sbinfo->stat_lock);
}
return mpol;
}
#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
{
}
static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
{
return NULL;
}
#endif /* CONFIG_NUMA && CONFIG_TMPFS */
static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
pgoff_t index, unsigned int order, pgoff_t *ilx);
static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index)
{
struct mempolicy *mpol;
pgoff_t ilx;
struct folio *folio;
mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
mpol_cond_put(mpol);
return folio;
}
/*
* Make sure huge_gfp is always more limited than limit_gfp.
* Some of the flags set permissions, while others set limitations.
*/
static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
{
gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
/* Allow allocations only from the originally specified zones. */
result |= zoneflags;
/*
* Minimize the result gfp by taking the union with the deny flags,
* and the intersection of the allow flags.
*/
result |= (limit_gfp & denyflags);
result |= (huge_gfp & limit_gfp) & allowflags;
return result;
}
static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index)
{
struct mempolicy *mpol;
pgoff_t ilx;
struct page *page;
mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx);
page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id());
mpol_cond_put(mpol);
return page_rmappable_folio(page);
}
static struct folio *shmem_alloc_folio(gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index)
{
struct mempolicy *mpol;
pgoff_t ilx;
struct page *page;
mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id());
mpol_cond_put(mpol);
return (struct folio *)page;
}
static struct folio *shmem_alloc_and_add_folio(gfp_t gfp,
struct inode *inode, pgoff_t index,
struct mm_struct *fault_mm, bool huge)
{
struct address_space *mapping = inode->i_mapping;
struct shmem_inode_info *info = SHMEM_I(inode);
struct folio *folio;
long pages;
int error;
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
huge = false;
if (huge) {
pages = HPAGE_PMD_NR;
index = round_down(index, HPAGE_PMD_NR);
/*
* Check for conflict before waiting on a huge allocation.
* Conflict might be that a huge page has just been allocated
* and added to page cache by a racing thread, or that there
* is already at least one small page in the huge extent.
* Be careful to retry when appropriate, but not forever!
* Elsewhere -EEXIST would be the right code, but not here.
*/
if (xa_find(&mapping->i_pages, &index,
index + HPAGE_PMD_NR - 1, XA_PRESENT))
return ERR_PTR(-E2BIG);
folio = shmem_alloc_hugefolio(gfp, info, index);
if (!folio)
count_vm_event(THP_FILE_FALLBACK);
} else {
pages = 1;
folio = shmem_alloc_folio(gfp, info, index);
}
if (!folio)
return ERR_PTR(-ENOMEM);
__folio_set_locked(folio);
__folio_set_swapbacked(folio);
gfp &= GFP_RECLAIM_MASK;
error = mem_cgroup_charge(folio, fault_mm, gfp);
if (error) {
if (xa_find(&mapping->i_pages, &index,
index + pages - 1, XA_PRESENT)) {
error = -EEXIST;
} else if (huge) {
count_vm_event(THP_FILE_FALLBACK);
count_vm_event(THP_FILE_FALLBACK_CHARGE);
}
goto unlock;
}
error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
if (error)
goto unlock;
error = shmem_inode_acct_blocks(inode, pages);
if (error) {
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
long freed;
/*
* Try to reclaim some space by splitting a few
* large folios beyond i_size on the filesystem.
*/
shmem_unused_huge_shrink(sbinfo, NULL, 2);
/*
* And do a shmem_recalc_inode() to account for freed pages:
* except our folio is there in cache, so not quite balanced.
*/
spin_lock(&info->lock);
freed = pages + info->alloced - info->swapped -
READ_ONCE(mapping->nrpages);
if (freed > 0)
info->alloced -= freed;
spin_unlock(&info->lock);
if (freed > 0)
shmem_inode_unacct_blocks(inode, freed);
error = shmem_inode_acct_blocks(inode, pages);
if (error) {
filemap_remove_folio(folio);
goto unlock;
}
}
shmem_recalc_inode(inode, pages, 0);
folio_add_lru(folio);
return folio;
unlock:
folio_unlock(folio);
folio_put(folio);
return ERR_PTR(error);
}
/*
* When a page is moved from swapcache to shmem filecache (either by the
* usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
* shmem_unuse_inode()), it may have been read in earlier from swap, in
* ignorance of the mapping it belongs to. If that mapping has special
* constraints (like the gma500 GEM driver, which requires RAM below 4GB),
* we may need to copy to a suitable page before moving to filecache.
*
* In a future release, this may well be extended to respect cpuset and
* NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
* but for now it is a simple matter of zone.
*/
static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
{
return folio_zonenum(folio) > gfp_zone(gfp);
}
static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index)
{
struct folio *old, *new;
struct address_space *swap_mapping;
swp_entry_t entry;
pgoff_t swap_index;
int error;
old = *foliop;
entry = old->swap;
swap_index = swp_offset(entry);
swap_mapping = swap_address_space(entry);
/*
* We have arrived here because our zones are constrained, so don't
* limit chance of success by further cpuset and node constraints.
*/
gfp &= ~GFP_CONSTRAINT_MASK;
VM_BUG_ON_FOLIO(folio_test_large(old), old);
new = shmem_alloc_folio(gfp, info, index);
if (!new)
return -ENOMEM;
folio_get(new);
folio_copy(new, old);
flush_dcache_folio(new);
__folio_set_locked(new);
__folio_set_swapbacked(new);
folio_mark_uptodate(new);
new->swap = entry;
folio_set_swapcache(new);
/*
* Our caller will very soon move newpage out of swapcache, but it's
* a nice clean interface for us to replace oldpage by newpage there.
*/
xa_lock_irq(&swap_mapping->i_pages);
error = shmem_replace_entry(swap_mapping, swap_index, old, new);
if (!error) {
mem_cgroup_migrate(old, new);
__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
}
xa_unlock_irq(&swap_mapping->i_pages);
if (unlikely(error)) {
/*
* Is this possible? I think not, now that our callers check
* both PageSwapCache and page_private after getting page lock;
* but be defensive. Reverse old to newpage for clear and free.
*/
old = new;
} else {
folio_add_lru(new);
*foliop = new;
}
folio_clear_swapcache(old);
old->private = NULL;
folio_unlock(old);
folio_put_refs(old, 2);
return error;
}
static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
struct folio *folio, swp_entry_t swap)
{
struct address_space *mapping = inode->i_mapping;
swp_entry_t swapin_error;
void *old;
swapin_error = make_poisoned_swp_entry();
old = xa_cmpxchg_irq(&mapping->i_pages, index,
swp_to_radix_entry(swap),
swp_to_radix_entry(swapin_error), 0);
if (old != swp_to_radix_entry(swap))
return;
folio_wait_writeback(folio);
delete_from_swap_cache(folio);
/*
* Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
* won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
* in shmem_evict_inode().
*/
shmem_recalc_inode(inode, -1, -1);
swap_free(swap);
}
/*
* Swap in the folio pointed to by *foliop.
* Caller has to make sure that *foliop contains a valid swapped folio.
* Returns 0 and the folio in foliop if success. On failure, returns the
* error code and NULL in *foliop.
*/
static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
struct folio **foliop, enum sgp_type sgp,
gfp_t gfp, struct mm_struct *fault_mm,
vm_fault_t *fault_type)
{
struct address_space *mapping = inode->i_mapping;
struct shmem_inode_info *info = SHMEM_I(inode);
struct swap_info_struct *si;
struct folio *folio = NULL;
swp_entry_t swap;
int error;
VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
swap = radix_to_swp_entry(*foliop);
*foliop = NULL;
if (is_poisoned_swp_entry(swap))
return -EIO;
si = get_swap_device(swap);
if (!si) {
if (!shmem_confirm_swap(mapping, index, swap))
return -EEXIST;
else
return -EINVAL;
}
/* Look it up and read it in.. */
folio = swap_cache_get_folio(swap, NULL, 0);
if (!folio) {
/* Or update major stats only when swapin succeeds?? */
if (fault_type) {
*fault_type |= VM_FAULT_MAJOR;
count_vm_event(PGMAJFAULT);
count_memcg_event_mm(fault_mm, PGMAJFAULT);
}
/* Here we actually start the io */
folio = shmem_swapin_cluster(swap, gfp, info, index);
if (!folio) {
error = -ENOMEM;
goto failed;
}
}
/* We have to do this with folio locked to prevent races */
folio_lock(folio);
if (!folio_test_swapcache(folio) ||
folio->swap.val != swap.val ||
!shmem_confirm_swap(mapping, index, swap)) {
error = -EEXIST;
goto unlock;
}
if (!folio_test_uptodate(folio)) {
error = -EIO;
goto failed;
}
folio_wait_writeback(folio);
/*
* Some architectures may have to restore extra metadata to the
* folio after reading from swap.
*/
arch_swap_restore(swap, folio);
if (shmem_should_replace_folio(folio, gfp)) {
error = shmem_replace_folio(&folio, gfp, info, index);
if (error)
goto failed;
}
error = shmem_add_to_page_cache(folio, mapping, index,
swp_to_radix_entry(swap), gfp);
if (error)
goto failed;
shmem_recalc_inode(inode, 0, -1);
if (sgp == SGP_WRITE)
folio_mark_accessed(folio);
delete_from_swap_cache(folio);
folio_mark_dirty(folio);
swap_free(swap);
put_swap_device(si);
*foliop = folio;
return 0;
failed:
if (!shmem_confirm_swap(mapping, index, swap))
error = -EEXIST;
if (error == -EIO)
shmem_set_folio_swapin_error(inode, index, folio, swap);
unlock:
if (folio) {
folio_unlock(folio);
folio_put(folio);
}
put_swap_device(si);
return error;
}
/*
* shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
*
* If we allocate a new one we do not mark it dirty. That's up to the
* vm. If we swap it in we mark it dirty since we also free the swap
* entry since a page cannot live in both the swap and page cache.
*
* vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
*/
static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
struct vm_fault *vmf, vm_fault_t *fault_type)
{
struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
struct mm_struct *fault_mm;
struct folio *folio;
int error;
bool alloced;
if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
return -EFBIG;
repeat:
if (sgp <= SGP_CACHE &&
((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
return -EINVAL;
alloced = false;
fault_mm = vma ? vma->vm_mm : NULL;
folio = filemap_get_entry(inode->i_mapping, index);
if (folio && vma && userfaultfd_minor(vma)) {
if (!xa_is_value(folio))
folio_put(folio);
*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
return 0;
}
if (xa_is_value(folio)) {
error = shmem_swapin_folio(inode, index, &folio,
sgp, gfp, fault_mm, fault_type);
if (error == -EEXIST)
goto repeat;
*foliop = folio;
return error;
}
if (folio) {
folio_lock(folio);
/* Has the folio been truncated or swapped out? */
if (unlikely(folio->mapping != inode->i_mapping)) {
folio_unlock(folio);
folio_put(folio);
goto repeat;
}
if (sgp == SGP_WRITE)
folio_mark_accessed(folio);
if (folio_test_uptodate(folio))
goto out;
/* fallocated folio */
if (sgp != SGP_READ)
goto clear;
folio_unlock(folio);
folio_put(folio);
}
/*
* SGP_READ: succeed on hole, with NULL folio, letting caller zero.
* SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
*/
*foliop = NULL;
if (sgp == SGP_READ)
return 0;
if (sgp == SGP_NOALLOC)
return -ENOENT;
/*
* Fast cache lookup and swap lookup did not find it: allocate.
*/
if (vma && userfaultfd_missing(vma)) {
*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
return 0;
}
if (shmem_is_huge(inode, index, false, fault_mm,
vma ? vma->vm_flags : 0)) {
gfp_t huge_gfp;
huge_gfp = vma_thp_gfp_mask(vma);
huge_gfp = limit_gfp_mask(huge_gfp, gfp);
folio = shmem_alloc_and_add_folio(huge_gfp,
inode, index, fault_mm, true);
if (!IS_ERR(folio)) {
count_vm_event(THP_FILE_ALLOC);
goto alloced;
}
if (PTR_ERR(folio) == -EEXIST)
goto repeat;
}
folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false);
if (IS_ERR(folio)) {
error = PTR_ERR(folio);
if (error == -EEXIST)
goto repeat;
folio = NULL;
goto unlock;
}
alloced:
alloced = true;
if (folio_test_pmd_mappable(folio) &&
DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
folio_next_index(folio) - 1) {
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
struct shmem_inode_info *info = SHMEM_I(inode);
/*
* Part of the large folio is beyond i_size: subject
* to shrink under memory pressure.
*/
spin_lock(&sbinfo->shrinklist_lock);
/*
* _careful to defend against unlocked access to
* ->shrink_list in shmem_unused_huge_shrink()
*/
if (list_empty_careful(&info->shrinklist)) {
list_add_tail(&info->shrinklist,
&sbinfo->shrinklist);
sbinfo->shrinklist_len++;
}
spin_unlock(&sbinfo->shrinklist_lock);
}
if (sgp == SGP_WRITE)
folio_set_referenced(folio);
/*
* Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
*/
if (sgp == SGP_FALLOC)
sgp = SGP_WRITE;
clear:
/*
* Let SGP_WRITE caller clear ends if write does not fill folio;
* but SGP_FALLOC on a folio fallocated earlier must initialize
* it now, lest undo on failure cancel our earlier guarantee.
*/
if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
long i, n = folio_nr_pages(folio);
for (i = 0; i < n; i++)
clear_highpage(folio_page(folio, i));
flush_dcache_folio(folio);
folio_mark_uptodate(folio);
}
/* Perhaps the file has been truncated since we checked */
if (sgp <= SGP_CACHE &&
((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
error = -EINVAL;
goto unlock;
}
out:
*foliop = folio;
return 0;
/*
* Error recovery.
*/
unlock:
if (alloced)
filemap_remove_folio(folio);
shmem_recalc_inode(inode, 0, 0);
if (folio) {
folio_unlock(folio);
folio_put(folio);
}
return error;
}
int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
enum sgp_type sgp)
{
return shmem_get_folio_gfp(inode, index, foliop, sgp,
mapping_gfp_mask(inode->i_mapping), NULL, NULL);
}
/*
* This is like autoremove_wake_function, but it removes the wait queue
* entry unconditionally - even if something else had already woken the
* target.
*/
static int synchronous_wake_function(wait_queue_entry_t *wait,
unsigned int mode, int sync, void *key)
{
int ret = default_wake_function(wait, mode, sync, key);
list_del_init(&wait->entry);
return ret;
}
/*
* Trinity finds that probing a hole which tmpfs is punching can
* prevent the hole-punch from ever completing: which in turn
* locks writers out with its hold on i_rwsem. So refrain from
* faulting pages into the hole while it's being punched. Although
* shmem_undo_range() does remove the additions, it may be unable to
* keep up, as each new page needs its own unmap_mapping_range() call,
* and the i_mmap tree grows ever slower to scan if new vmas are added.
*
* It does not matter if we sometimes reach this check just before the
* hole-punch begins, so that one fault then races with the punch:
* we just need to make racing faults a rare case.
*
* The implementation below would be much simpler if we just used a
* standard mutex or completion: but we cannot take i_rwsem in fault,
* and bloating every shmem inode for this unlikely case would be sad.
*/
static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
{
struct shmem_falloc *shmem_falloc;
struct file *fpin = NULL;
vm_fault_t ret = 0;
spin_lock(&inode->i_lock);
shmem_falloc = inode->i_private;
if (shmem_falloc &&
shmem_falloc->waitq &&
vmf->pgoff >= shmem_falloc->start &&
vmf->pgoff < shmem_falloc->next) {
wait_queue_head_t *shmem_falloc_waitq;
DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
ret = VM_FAULT_NOPAGE;
fpin = maybe_unlock_mmap_for_io(vmf, NULL);
shmem_falloc_waitq = shmem_falloc->waitq;
prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
TASK_UNINTERRUPTIBLE);
spin_unlock(&inode->i_lock);
schedule();
/*
* shmem_falloc_waitq points into the shmem_fallocate()
* stack of the hole-punching task: shmem_falloc_waitq
* is usually invalid by the time we reach here, but
* finish_wait() does not dereference it in that case;
* though i_lock needed lest racing with wake_up_all().
*/
spin_lock(&inode->i_lock);
finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
}
spin_unlock(&inode->i_lock);
if (fpin) {
fput(fpin);
ret = VM_FAULT_RETRY;
}
return ret;
}
static vm_fault_t shmem_fault(struct vm_fault *vmf)
{
struct inode *inode = file_inode(vmf->vma->vm_file);
gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
struct folio *folio = NULL;
vm_fault_t ret = 0;
int err;
/*
* Trinity finds that probing a hole which tmpfs is punching can
* prevent the hole-punch from ever completing: noted in i_private.
*/
if (unlikely(inode->i_private)) {
ret = shmem_falloc_wait(vmf, inode);
if (ret)
return ret;
}
WARN_ON_ONCE(vmf->page != NULL);
err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
gfp, vmf, &ret);
if (err)
return vmf_error(err);
if (folio) {
vmf->page = folio_file_page(folio, vmf->pgoff);
ret |= VM_FAULT_LOCKED;
}
return ret;
}
unsigned long shmem_get_unmapped_area(struct file *file,
unsigned long uaddr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
unsigned long (*get_area)(struct file *,
unsigned long, unsigned long, unsigned long, unsigned long);
unsigned long addr;
unsigned long offset;
unsigned long inflated_len;
unsigned long inflated_addr;
unsigned long inflated_offset;
if (len > TASK_SIZE)
return -ENOMEM;
get_area = current->mm->get_unmapped_area;
addr = get_area(file, uaddr, len, pgoff, flags);
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
return addr;
if (IS_ERR_VALUE(addr))
return addr;
if (addr & ~PAGE_MASK)
return addr;
if (addr > TASK_SIZE - len)
return addr;
if (shmem_huge == SHMEM_HUGE_DENY)
return addr;
if (len < HPAGE_PMD_SIZE)
return addr;
if (flags & MAP_FIXED)
return addr;
/*
* Our priority is to support MAP_SHARED mapped hugely;
* and support MAP_PRIVATE mapped hugely too, until it is COWed.
* But if caller specified an address hint and we allocated area there
* successfully, respect that as before.
*/
if (uaddr == addr)
return addr;
if (shmem_huge != SHMEM_HUGE_FORCE) {
struct super_block *sb;
if (file) {
VM_BUG_ON(file->f_op != &shmem_file_operations);
sb = file_inode(file)->i_sb;
} else {
/*
* Called directly from mm/mmap.c, or drivers/char/mem.c
* for "/dev/zero", to create a shared anonymous object.
*/
if (IS_ERR(shm_mnt))
return addr;
sb = shm_mnt->mnt_sb;
}
if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
return addr;
}
offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
return addr;
if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
return addr;
inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
if (inflated_len > TASK_SIZE)
return addr;
if (inflated_len < len)
return addr;
inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
if (IS_ERR_VALUE(inflated_addr))
return addr;
if (inflated_addr & ~PAGE_MASK)
return addr;
inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
inflated_addr += offset - inflated_offset;
if (inflated_offset > offset)
inflated_addr += HPAGE_PMD_SIZE;
if (inflated_addr > TASK_SIZE - len)
return addr;
return inflated_addr;
}
#ifdef CONFIG_NUMA
static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
{
struct inode *inode = file_inode(vma->vm_file);
return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
}
static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
unsigned long addr, pgoff_t *ilx)
{
struct inode *inode = file_inode(vma->vm_file);
pgoff_t index;
/*
* Bias interleave by inode number to distribute better across nodes;
* but this interface is independent of which page order is used, so
* supplies only that bias, letting caller apply the offset (adjusted
* by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
*/
*ilx = inode->i_ino;
index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
}
static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
pgoff_t index, unsigned int order, pgoff_t *ilx)
{
struct mempolicy *mpol;
/* Bias interleave by inode number to distribute better across nodes */
*ilx = info->vfs_inode.i_ino + (index >> order);
mpol = mpol_shared_policy_lookup(&info->policy, index);
return mpol ? mpol : get_task_policy(current);
}
#else
static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
pgoff_t index, unsigned int order, pgoff_t *ilx)
{
*ilx = 0;
return NULL;
}
#endif /* CONFIG_NUMA */
int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
{
struct inode *inode = file_inode(file);
struct shmem_inode_info *info = SHMEM_I(inode);
int retval = -ENOMEM;
/*
* What serializes the accesses to info->flags?
* ipc_lock_object() when called from shmctl_do_lock(),
* no serialization needed when called from shm_destroy().
*/
if (lock && !(info->flags & VM_LOCKED)) {
if (!user_shm_lock(inode->i_size, ucounts))
goto out_nomem;
info->flags |= VM_LOCKED;
mapping_set_unevictable(file->f_mapping);
}
if (!lock && (info->flags & VM_LOCKED) && ucounts) {
user_shm_unlock(inode->i_size, ucounts);
info->flags &= ~VM_LOCKED;
mapping_clear_unevictable(file->f_mapping);
}
retval = 0;
out_nomem:
return retval;
}
static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
{
struct inode *inode = file_inode(file);
struct shmem_inode_info *info = SHMEM_I(inode);
int ret;
ret = seal_check_write(info->seals, vma);
if (ret)
return ret;
/* arm64 - allow memory tagging on RAM-based files */
vm_flags_set(vma, VM_MTE_ALLOWED);
file_accessed(file);
/* This is anonymous shared memory if it is unlinked at the time of mmap */
if (inode->i_nlink)
vma->vm_ops = &shmem_vm_ops;
else
vma->vm_ops = &shmem_anon_vm_ops;
return 0;
}
static int shmem_file_open(struct inode *inode, struct file *file)
{
file->f_mode |= FMODE_CAN_ODIRECT;
return generic_file_open(inode, file);
}
#ifdef CONFIG_TMPFS_XATTR
static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
/*
* chattr's fsflags are unrelated to extended attributes,
* but tmpfs has chosen to enable them under the same config option.
*/
static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
{
unsigned int i_flags = 0;
if (fsflags & FS_NOATIME_FL)
i_flags |= S_NOATIME;
if (fsflags & FS_APPEND_FL)
i_flags |= S_APPEND;
if (fsflags & FS_IMMUTABLE_FL)
i_flags |= S_IMMUTABLE;
/*
* But FS_NODUMP_FL does not require any action in i_flags.
*/
inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
}
#else
static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
{
}
#define shmem_initxattrs NULL
#endif
static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
{
return &SHMEM_I(inode)->dir_offsets;
}
static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
struct super_block *sb,
struct inode *dir, umode_t mode,
dev_t dev, unsigned long flags)
{
struct inode *inode;
struct shmem_inode_info *info;
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
ino_t ino;
int err;
err = shmem_reserve_inode(sb, &ino);
if (err)
return ERR_PTR(err);
inode = new_inode(sb);
if (!inode) {
shmem_free_inode(sb, 0);
return ERR_PTR(-ENOSPC);
}
inode->i_ino = ino;
inode_init_owner(idmap, inode, dir, mode);
inode->i_blocks = 0;
simple_inode_init_ts(inode);
inode->i_generation = get_random_u32();
info = SHMEM_I(inode);
memset(info, 0, (char *)inode - (char *)info);
spin_lock_init(&info->lock);
atomic_set(&info->stop_eviction, 0);
info->seals = F_SEAL_SEAL;
info->flags = flags & VM_NORESERVE;
info->i_crtime = inode_get_mtime(inode);
info->fsflags = (dir == NULL) ? 0 :
SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
if (info->fsflags)
shmem_set_inode_flags(inode, info->fsflags);
INIT_LIST_HEAD(&info->shrinklist);
INIT_LIST_HEAD(&info->swaplist);
simple_xattrs_init(&info->xattrs);
cache_no_acl(inode);
if (sbinfo->noswap)
mapping_set_unevictable(inode->i_mapping);
mapping_set_large_folios(inode->i_mapping);
switch (mode & S_IFMT) {
default:
inode->i_op = &shmem_special_inode_operations;
init_special_inode(inode, mode, dev);
break;
case S_IFREG:
inode->i_mapping->a_ops = &shmem_aops;
inode->i_op = &shmem_inode_operations;
inode->i_fop = &shmem_file_operations;
mpol_shared_policy_init(&info->policy,
shmem_get_sbmpol(sbinfo));
break;
case S_IFDIR:
inc_nlink(inode);
/* Some things misbehave if size == 0 on a directory */
inode->i_size = 2 * BOGO_DIRENT_SIZE;
inode->i_op = &shmem_dir_inode_operations;
inode->i_fop = &simple_offset_dir_operations;
simple_offset_init(shmem_get_offset_ctx(inode));
break;
case S_IFLNK:
/*
* Must not load anything in the rbtree,
* mpol_free_shared_policy will not be called.
*/
mpol_shared_policy_init(&info->policy, NULL);
break;
}
lockdep_annotate_inode_mutex_key(inode);
return inode;
}
#ifdef CONFIG_TMPFS_QUOTA
static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
struct super_block *sb, struct inode *dir,
umode_t mode, dev_t dev, unsigned long flags)
{
int err;
struct inode *inode;
inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
if (IS_ERR(inode))
return inode;
err = dquot_initialize(inode);
if (err)
goto errout;
err = dquot_alloc_inode(inode);
if (err) {
dquot_drop(inode);
goto errout;
}
return inode;
errout:
inode->i_flags |= S_NOQUOTA;
iput(inode);
return ERR_PTR(err);
}
#else
static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
struct super_block *sb, struct inode *dir,
umode_t mode, dev_t dev, unsigned long flags)
{
return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
}
#endif /* CONFIG_TMPFS_QUOTA */
#ifdef CONFIG_USERFAULTFD
int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
uffd_flags_t flags,
struct folio **foliop)
{
struct inode *inode = file_inode(dst_vma->vm_file);
struct shmem_inode_info *info = SHMEM_I(inode);
struct address_space *mapping = inode->i_mapping;
gfp_t gfp = mapping_gfp_mask(mapping);
pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
void *page_kaddr;
struct folio *folio;
int ret;
pgoff_t max_off;
if (shmem_inode_acct_blocks(inode, 1)) {
/*
* We may have got a page, returned -ENOENT triggering a retry,
* and now we find ourselves with -ENOMEM. Release the page, to
* avoid a BUG_ON in our caller.
*/
if (unlikely(*foliop)) {
folio_put(*foliop);
*foliop = NULL;
}
return -ENOMEM;
}
if (!*foliop) {
ret = -ENOMEM;
folio = shmem_alloc_folio(gfp, info, pgoff);
if (!folio)
goto out_unacct_blocks;
if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
page_kaddr = kmap_local_folio(folio, 0);
/*
* The read mmap_lock is held here. Despite the
* mmap_lock being read recursive a deadlock is still
* possible if a writer has taken a lock. For example:
*
* process A thread 1 takes read lock on own mmap_lock
* process A thread 2 calls mmap, blocks taking write lock
* process B thread 1 takes page fault, read lock on own mmap lock
* process B thread 2 calls mmap, blocks taking write lock
* process A thread 1 blocks taking read lock on process B
* process B thread 1 blocks taking read lock on process A
*
* Disable page faults to prevent potential deadlock
* and retry the copy outside the mmap_lock.
*/
pagefault_disable();
ret = copy_from_user(page_kaddr,
(const void __user *)src_addr,
PAGE_SIZE);
pagefault_enable();
kunmap_local(page_kaddr);
/* fallback to copy_from_user outside mmap_lock */
if (unlikely(ret)) {
*foliop = folio;
ret = -ENOENT;
/* don't free the page */
goto out_unacct_blocks;
}
flush_dcache_folio(folio);
} else { /* ZEROPAGE */
clear_user_highpage(&folio->page, dst_addr);
}
} else {
folio = *foliop;
VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
*foliop = NULL;
}
VM_BUG_ON(folio_test_locked(folio));
VM_BUG_ON(folio_test_swapbacked(folio));
__folio_set_locked(folio);
__folio_set_swapbacked(folio);
__folio_mark_uptodate(folio);
ret = -EFAULT;
max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
if (unlikely(pgoff >= max_off))
goto out_release;
ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
if (ret)
goto out_release;
ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
if (ret)
goto out_release;
ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
&folio->page, true, flags);
if (ret)
goto out_delete_from_cache;
shmem_recalc_inode(inode, 1, 0);
folio_unlock(folio);
return 0;
out_delete_from_cache:
filemap_remove_folio(folio);
out_release:
folio_unlock(folio);
folio_put(folio);
out_unacct_blocks:
shmem_inode_unacct_blocks(inode, 1);
return ret;
}
#endif /* CONFIG_USERFAULTFD */
#ifdef CONFIG_TMPFS
static const struct inode_operations shmem_symlink_inode_operations;
static const struct inode_operations shmem_short_symlink_operations;
static int
shmem_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct shmem_inode_info *info = SHMEM_I(inode);
pgoff_t index = pos >> PAGE_SHIFT;
struct folio *folio;
int ret = 0;
/* i_rwsem is held by caller */
if (unlikely(info->seals & (F_SEAL_GROW |
F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
return -EPERM;
if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
return -EPERM;
}
ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
if (ret)
return ret;
*pagep = folio_file_page(folio, index);
if (PageHWPoison(*pagep)) {
folio_unlock(folio);
folio_put(folio);
*pagep = NULL;
return -EIO;
}
return 0;
}
static int
shmem_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct folio *folio = page_folio(page);
struct inode *inode = mapping->host;
if (pos + copied > inode->i_size)
i_size_write(inode, pos + copied);
if (!folio_test_uptodate(folio)) {
if (copied < folio_size(folio)) {
size_t from = offset_in_folio(folio, pos);
folio_zero_segments(folio, 0, from,
from + copied, folio_size(folio));
}
folio_mark_uptodate(folio);
}
folio_mark_dirty(folio);
folio_unlock(folio);
folio_put(folio);
return copied;
}
static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct address_space *mapping = inode->i_mapping;
pgoff_t index;
unsigned long offset;
int error = 0;
ssize_t retval = 0;
loff_t *ppos = &iocb->ki_pos;
index = *ppos >> PAGE_SHIFT;
offset = *ppos & ~PAGE_MASK;
for (;;) {
struct folio *folio = NULL;
struct page *page = NULL;
pgoff_t end_index;
unsigned long nr, ret;
loff_t i_size = i_size_read(inode);
end_index = i_size >> PAGE_SHIFT;
if (index > end_index)
break;
if (index == end_index) {
nr = i_size & ~PAGE_MASK;
if (nr <= offset)
break;
}
error = shmem_get_folio(inode, index, &folio, SGP_READ);
if (error) {
if (error == -EINVAL)
error = 0;
break;
}
if (folio) {
folio_unlock(folio);
page = folio_file_page(folio, index);
if (PageHWPoison(page)) {
folio_put(folio);
error = -EIO;
break;
}
}
/*
* We must evaluate after, since reads (unlike writes)
* are called without i_rwsem protection against truncate
*/
nr = PAGE_SIZE;
i_size = i_size_read(inode);
end_index = i_size >> PAGE_SHIFT;
if (index == end_index) {
nr = i_size & ~PAGE_MASK;
if (nr <= offset) {
if (folio)
folio_put(folio);
break;
}
}
nr -= offset;
if (folio) {
/*
* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (mapping_writably_mapped(mapping))
flush_dcache_page(page);
/*
* Mark the page accessed if we read the beginning.
*/
if (!offset)
folio_mark_accessed(folio);
/*
* Ok, we have the page, and it's up-to-date, so
* now we can copy it to user space...
*/
ret = copy_page_to_iter(page, offset, nr, to);
folio_put(folio);
} else if (user_backed_iter(to)) {
/*
* Copy to user tends to be so well optimized, but
* clear_user() not so much, that it is noticeably
* faster to copy the zero page instead of clearing.
*/
ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
} else {
/*
* But submitting the same page twice in a row to
* splice() - or others? - can result in confusion:
* so don't attempt that optimization on pipes etc.
*/
ret = iov_iter_zero(nr, to);
}
retval += ret;
offset += ret;
index += offset >> PAGE_SHIFT;
offset &= ~PAGE_MASK;
if (!iov_iter_count(to))
break;
if (ret < nr) {
error = -EFAULT;
break;
}
cond_resched();
}
*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
file_accessed(file);
return retval ? retval : error;
}
static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
ssize_t ret;
inode_lock(inode);
ret = generic_write_checks(iocb, from);
if (ret <= 0)
goto unlock;
ret = file_remove_privs(file);
if (ret)
goto unlock;
ret = file_update_time(file);
if (ret)
goto unlock;
ret = generic_perform_write(iocb, from);
unlock:
inode_unlock(inode);
return ret;
}
static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
return true;
}
static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
}
static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
return false;
}
static const struct pipe_buf_operations zero_pipe_buf_ops = {
.release = zero_pipe_buf_release,
.try_steal = zero_pipe_buf_try_steal,
.get = zero_pipe_buf_get,
};
static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
loff_t fpos, size_t size)
{
size_t offset = fpos & ~PAGE_MASK;
size = min_t(size_t, size, PAGE_SIZE - offset);
if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
struct pipe_buffer *buf = pipe_head_buf(pipe);
*buf = (struct pipe_buffer) {
.ops = &zero_pipe_buf_ops,
.page = ZERO_PAGE(0),
.offset = offset,
.len = size,
};
pipe->head++;
}
return size;
}
static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
struct pipe_inode_info *pipe,
size_t len, unsigned int flags)
{
struct inode *inode = file_inode(in);
struct address_space *mapping = inode->i_mapping;
struct folio *folio = NULL;
size_t total_spliced = 0, used, npages, n, part;
loff_t isize;
int error = 0;
/* Work out how much data we can actually add into the pipe */
used = pipe_occupancy(pipe->head, pipe->tail);
npages = max_t(ssize_t, pipe->max_usage - used, 0);
len = min_t(size_t, len, npages * PAGE_SIZE);
do {
if (*ppos >= i_size_read(inode))
break;
error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
SGP_READ);
if (error) {
if (error == -EINVAL)
error = 0;
break;
}
if (folio) {
folio_unlock(folio);
if (folio_test_hwpoison(folio) ||
(folio_test_large(folio) &&
folio_test_has_hwpoisoned(folio))) {
error = -EIO;
break;
}
}
/*
* i_size must be checked after we know the pages are Uptodate.
*
* Checking i_size after the check allows us to calculate
* the correct value for "nr", which means the zero-filled
* part of the page is not copied back to userspace (unless
* another truncate extends the file - this is desired though).
*/
isize = i_size_read(inode);
if (unlikely(*ppos >= isize))
break;
part = min_t(loff_t, isize - *ppos, len);
if (folio) {
/*
* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (mapping_writably_mapped(mapping))
flush_dcache_folio(folio);
folio_mark_accessed(folio);
/*
* Ok, we have the page, and it's up-to-date, so we can
* now splice it into the pipe.
*/
n = splice_folio_into_pipe(pipe, folio, *ppos, part);
folio_put(folio);
folio = NULL;
} else {
n = splice_zeropage_into_pipe(pipe, *ppos, part);
}
if (!n)
break;
len -= n;
total_spliced += n;
*ppos += n;
in->f_ra.prev_pos = *ppos;
if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
break;
cond_resched();
} while (len);
if (folio)
folio_put(folio);
file_accessed(in);
return total_spliced ? total_spliced : error;
}
static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
{
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
if (whence != SEEK_DATA && whence != SEEK_HOLE)
return generic_file_llseek_size(file, offset, whence,
MAX_LFS_FILESIZE, i_size_read(inode));
if (offset < 0)
return -ENXIO;
inode_lock(inode);
/* We're holding i_rwsem so we can access i_size directly */
offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
if (offset >= 0)
offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
inode_unlock(inode);
return offset;
}
static long shmem_fallocate(struct file *file, int mode, loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_falloc shmem_falloc;
pgoff_t start, index, end, undo_fallocend;
int error;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
inode_lock(inode);
if (mode & FALLOC_FL_PUNCH_HOLE) {
struct address_space *mapping = file->f_mapping;
loff_t unmap_start = round_up(offset, PAGE_SIZE);
loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
/* protected by i_rwsem */
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
error = -EPERM;
goto out;
}
shmem_falloc.waitq = &shmem_falloc_waitq;
shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
spin_lock(&inode->i_lock);
inode->i_private = &shmem_falloc;
spin_unlock(&inode->i_lock);
if ((u64)unmap_end > (u64)unmap_start)
unmap_mapping_range(mapping, unmap_start,
1 + unmap_end - unmap_start, 0);
shmem_truncate_range(inode, offset, offset + len - 1);
/* No need to unmap again: hole-punching leaves COWed pages */
spin_lock(&inode->i_lock);
inode->i_private = NULL;
wake_up_all(&shmem_falloc_waitq);
WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
spin_unlock(&inode->i_lock);
error = 0;
goto out;
}
/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
error = inode_newsize_ok(inode, offset + len);
if (error)
goto out;
if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
error = -EPERM;
goto out;
}
start = offset >> PAGE_SHIFT;
end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* Try to avoid a swapstorm if len is impossible to satisfy */
if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
error = -ENOSPC;
goto out;
}
shmem_falloc.waitq = NULL;
shmem_falloc.start = start;
shmem_falloc.next = start;
shmem_falloc.nr_falloced = 0;
shmem_falloc.nr_unswapped = 0;
spin_lock(&inode->i_lock);
inode->i_private = &shmem_falloc;
spin_unlock(&inode->i_lock);
/*
* info->fallocend is only relevant when huge pages might be
* involved: to prevent split_huge_page() freeing fallocated
* pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
*/
undo_fallocend = info->fallocend;
if (info->fallocend < end)
info->fallocend = end;
for (index = start; index < end; ) {
struct folio *folio;
/*
* Good, the fallocate(2) manpage permits EINTR: we may have
* been interrupted because we are using up too much memory.
*/
if (signal_pending(current))
error = -EINTR;
else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
error = -ENOMEM;
else
error = shmem_get_folio(inode, index, &folio,
SGP_FALLOC);
if (error) {
info->fallocend = undo_fallocend;
/* Remove the !uptodate folios we added */
if (index > start) {
shmem_undo_range(inode,
(loff_t)start << PAGE_SHIFT,
((loff_t)index << PAGE_SHIFT) - 1, true);
}
goto undone;
}
/*
* Here is a more important optimization than it appears:
* a second SGP_FALLOC on the same large folio will clear it,
* making it uptodate and un-undoable if we fail later.
*/
index = folio_next_index(folio);
/* Beware 32-bit wraparound */
if (!index)
index--;
/*
* Inform shmem_writepage() how far we have reached.
* No need for lock or barrier: we have the page lock.
*/
if (!folio_test_uptodate(folio))
shmem_falloc.nr_falloced += index - shmem_falloc.next;
shmem_falloc.next = index;
/*
* If !uptodate, leave it that way so that freeable folios
* can be recognized if we need to rollback on error later.
* But mark it dirty so that memory pressure will swap rather
* than free the folios we are allocating (and SGP_CACHE folios
* might still be clean: we now need to mark those dirty too).
*/
folio_mark_dirty(folio);
folio_unlock(folio);
folio_put(folio);
cond_resched();
}
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
i_size_write(inode, offset + len);
undone:
spin_lock(&inode->i_lock);
inode->i_private = NULL;
spin_unlock(&inode->i_lock);
out:
if (!error)
file_modified(file);
inode_unlock(inode);
return error;
}
static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
buf->f_type = TMPFS_MAGIC;
buf->f_bsize = PAGE_SIZE;
buf->f_namelen = NAME_MAX;
if (sbinfo->max_blocks) {
buf->f_blocks = sbinfo->max_blocks;
buf->f_bavail =
buf->f_bfree = sbinfo->max_blocks -
percpu_counter_sum(&sbinfo->used_blocks);
}
if (sbinfo->max_inodes) {
buf->f_files = sbinfo->max_inodes;
buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
}
/* else leave those fields 0 like simple_statfs */
buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
return 0;
}
/*
* File creation. Allocate an inode, and we're done..
*/
static int
shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode, dev_t dev)
{
struct inode *inode;
int error;
inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
if (IS_ERR(inode))
return PTR_ERR(inode);
error = simple_acl_create(dir, inode);
if (error)
goto out_iput;
error = security_inode_init_security(inode, dir, &dentry->d_name,
shmem_initxattrs, NULL);
if (error && error != -EOPNOTSUPP)
goto out_iput;
error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
if (error)
goto out_iput;
dir->i_size += BOGO_DIRENT_SIZE;
inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
inode_inc_iversion(dir);
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
return error;
out_iput:
iput(inode);
return error;
}
static int
shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
struct file *file, umode_t mode)
{
struct inode *inode;
int error;
inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
if (IS_ERR(inode)) {
error = PTR_ERR(inode);
goto err_out;
}
error = security_inode_init_security(inode, dir, NULL,
shmem_initxattrs, NULL);
if (error && error != -EOPNOTSUPP)
goto out_iput;
error = simple_acl_create(dir, inode);
if (error)
goto out_iput;
d_tmpfile(file, inode);
err_out:
return finish_open_simple(file, error);
out_iput:
iput(inode);
return error;
}
static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode)
{
int error;
error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
if (error)
return error;
inc_nlink(dir);
return 0;
}
static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode, bool excl)
{
return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
}
/*
* Link a file..
*/
static int shmem_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *dentry)
{
struct inode *inode = d_inode(old_dentry);
int ret = 0;
/*
* No ordinary (disk based) filesystem counts links as inodes;
* but each new link needs a new dentry, pinning lowmem, and
* tmpfs dentries cannot be pruned until they are unlinked.
* But if an O_TMPFILE file is linked into the tmpfs, the
* first link must skip that, to get the accounting right.
*/
if (inode->i_nlink) {
ret = shmem_reserve_inode(inode->i_sb, NULL);
if (ret)
goto out;
}
ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
if (ret) {
if (inode->i_nlink)
shmem_free_inode(inode->i_sb, 0);
goto out;
}
dir->i_size += BOGO_DIRENT_SIZE;
inode_set_mtime_to_ts(dir,
inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
inode_inc_iversion(dir);
inc_nlink(inode);
ihold(inode); /* New dentry reference */
dget(dentry); /* Extra pinning count for the created dentry */
d_instantiate(dentry, inode);
out:
return ret;
}
static int shmem_unlink(struct inode *dir, struct dentry *dentry)
{
struct inode *inode = d_inode(dentry);
if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
shmem_free_inode(inode->i_sb, 0);
simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
dir->i_size -= BOGO_DIRENT_SIZE;
inode_set_mtime_to_ts(dir,
inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
inode_inc_iversion(dir);
drop_nlink(inode);
dput(dentry); /* Undo the count from "create" - does all the work */
return 0;
}
static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
{
if (!simple_empty(dentry))
return -ENOTEMPTY;
drop_nlink(d_inode(dentry));
drop_nlink(dir);
return shmem_unlink(dir, dentry);
}
static int shmem_whiteout(struct mnt_idmap *idmap,
struct inode *old_dir, struct dentry *old_dentry)
{
struct dentry *whiteout;
int error;
whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
if (!whiteout)
return -ENOMEM;
error = shmem_mknod(idmap, old_dir, whiteout,
S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
dput(whiteout);
if (error)
return error;
/*
* Cheat and hash the whiteout while the old dentry is still in
* place, instead of playing games with FS_RENAME_DOES_D_MOVE.
*
* d_lookup() will consistently find one of them at this point,
* not sure which one, but that isn't even important.
*/
d_rehash(whiteout);
return 0;
}
/*
* The VFS layer already does all the dentry stuff for rename,
* we just have to decrement the usage count for the target if
* it exists so that the VFS layer correctly free's it when it
* gets overwritten.
*/
static int shmem_rename2(struct mnt_idmap *idmap,
struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
struct inode *inode = d_inode(old_dentry);
int they_are_dirs = S_ISDIR(inode->i_mode);
int error;
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
return -EINVAL;
if (flags & RENAME_EXCHANGE)
return simple_offset_rename_exchange(old_dir, old_dentry,
new_dir, new_dentry);
if (!simple_empty(new_dentry))
return -ENOTEMPTY;
if (flags & RENAME_WHITEOUT) {
error = shmem_whiteout(idmap, old_dir, old_dentry);
if (error)
return error;
}
simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
if (error)
return error;
if (d_really_is_positive(new_dentry)) {
(void) shmem_unlink(new_dir, new_dentry);
if (they_are_dirs) {
drop_nlink(d_inode(new_dentry));
drop_nlink(old_dir);
}
} else if (they_are_dirs) {
drop_nlink(old_dir);
inc_nlink(new_dir);
}
old_dir->i_size -= BOGO_DIRENT_SIZE;
new_dir->i_size += BOGO_DIRENT_SIZE;
simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
inode_inc_iversion(old_dir);
inode_inc_iversion(new_dir);
return 0;
}
static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, const char *symname)
{
int error;
int len;
struct inode *inode;
struct folio *folio;
len = strlen(symname) + 1;
if (len > PAGE_SIZE)
return -ENAMETOOLONG;
inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
VM_NORESERVE);
if (IS_ERR(inode))
return PTR_ERR(inode);
error = security_inode_init_security(inode, dir, &dentry->d_name,
shmem_initxattrs, NULL);
if (error && error != -EOPNOTSUPP)
goto out_iput;
error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
if (error)
goto out_iput;
inode->i_size = len-1;
if (len <= SHORT_SYMLINK_LEN) {
inode->i_link = kmemdup(symname, len, GFP_KERNEL);
if (!inode->i_link) {
error = -ENOMEM;
goto out_remove_offset;
}
inode->i_op = &shmem_short_symlink_operations;
} else {
inode_nohighmem(inode);
error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
if (error)
goto out_remove_offset;
inode->i_mapping->a_ops = &shmem_aops;
inode->i_op = &shmem_symlink_inode_operations;
memcpy(folio_address(folio), symname, len);
folio_mark_uptodate(folio);
folio_mark_dirty(folio);
folio_unlock(folio);
folio_put(folio);
}
dir->i_size += BOGO_DIRENT_SIZE;
inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
inode_inc_iversion(dir);
d_instantiate(dentry, inode);
dget(dentry);
return 0;
out_remove_offset:
simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
out_iput:
iput(inode);
return error;
}
static void shmem_put_link(void *arg)
{
folio_mark_accessed(arg);
folio_put(arg);
}
static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
struct delayed_call *done)
{
struct folio *folio = NULL;
int error;
if (!dentry) {
folio = filemap_get_folio(inode->i_mapping, 0);
if (IS_ERR(folio))
return ERR_PTR(-ECHILD);
if (PageHWPoison(folio_page(folio, 0)) ||
!folio_test_uptodate(folio)) {
folio_put(folio);
return ERR_PTR(-ECHILD);
}
} else {
error = shmem_get_folio(inode, 0, &folio, SGP_READ);
if (error)
return ERR_PTR(error);
if (!folio)
return ERR_PTR(-ECHILD);
if (PageHWPoison(folio_page(folio, 0))) {
folio_unlock(folio);
folio_put(folio);
return ERR_PTR(-ECHILD);
}
folio_unlock(folio);
}
set_delayed_call(done, shmem_put_link, folio);
return folio_address(folio);
}
#ifdef CONFIG_TMPFS_XATTR
static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
{
struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
return 0;
}
static int shmem_fileattr_set(struct mnt_idmap *idmap,
struct dentry *dentry, struct fileattr *fa)
{
struct inode *inode = d_inode(dentry);
struct shmem_inode_info *info = SHMEM_I(inode);
if (fileattr_has_fsx(fa))
return -EOPNOTSUPP;
if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
return -EOPNOTSUPP;
info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
(fa->flags & SHMEM_FL_USER_MODIFIABLE);
shmem_set_inode_flags(inode, info->fsflags);
inode_set_ctime_current(inode);
inode_inc_iversion(inode);
return 0;
}
/*
* Superblocks without xattr inode operations may get some security.* xattr
* support from the LSM "for free". As soon as we have any other xattrs
* like ACLs, we also need to implement the security.* handlers at
* filesystem level, though.
*/
/*
* Callback for security_inode_init_security() for acquiring xattrs.
*/
static int shmem_initxattrs(struct inode *inode,
const struct xattr *xattr_array, void *fs_info)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
const struct xattr *xattr;
struct simple_xattr *new_xattr;
size_t ispace = 0;
size_t len;
if (sbinfo->max_inodes) {
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
ispace += simple_xattr_space(xattr->name,
xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
}
if (ispace) {
raw_spin_lock(&sbinfo->stat_lock);
if (sbinfo->free_ispace < ispace)
ispace = 0;
else
sbinfo->free_ispace -= ispace;
raw_spin_unlock(&sbinfo->stat_lock);
if (!ispace)
return -ENOSPC;
}
}
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
if (!new_xattr)
break;
len = strlen(xattr->name) + 1;
new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
GFP_KERNEL_ACCOUNT);
if (!new_xattr->name) {
kvfree(new_xattr);
break;
}
memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN);
memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
xattr->name, len);
simple_xattr_add(&info->xattrs, new_xattr);
}
if (xattr->name != NULL) {
if (ispace) {
raw_spin_lock(&sbinfo->stat_lock);
sbinfo->free_ispace += ispace;
raw_spin_unlock(&sbinfo->stat_lock);
}
simple_xattrs_free(&info->xattrs, NULL);
return -ENOMEM;
}
return 0;
}
static int shmem_xattr_handler_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
struct shmem_inode_info *info = SHMEM_I(inode);
name = xattr_full_name(handler, name);
return simple_xattr_get(&info->xattrs, name, buffer, size);
}
static int shmem_xattr_handler_set(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
struct simple_xattr *old_xattr;
size_t ispace = 0;
name = xattr_full_name(handler, name);
if (value && sbinfo->max_inodes) {
ispace = simple_xattr_space(name, size);
raw_spin_lock(&sbinfo->stat_lock);
if (sbinfo->free_ispace < ispace)
ispace = 0;
else
sbinfo->free_ispace -= ispace;
raw_spin_unlock(&sbinfo->stat_lock);
if (!ispace)
return -ENOSPC;
}
old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
if (!IS_ERR(old_xattr)) {
ispace = 0;
if (old_xattr && sbinfo->max_inodes)
ispace = simple_xattr_space(old_xattr->name,
old_xattr->size);
simple_xattr_free(old_xattr);
old_xattr = NULL;
inode_set_ctime_current(inode);
inode_inc_iversion(inode);
}
if (ispace) {
raw_spin_lock(&sbinfo->stat_lock);
sbinfo->free_ispace += ispace;
raw_spin_unlock(&sbinfo->stat_lock);
}
return PTR_ERR(old_xattr);
}
static const struct xattr_handler shmem_security_xattr_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.get = shmem_xattr_handler_get,
.set = shmem_xattr_handler_set,
};
static const struct xattr_handler shmem_trusted_xattr_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.get = shmem_xattr_handler_get,
.set = shmem_xattr_handler_set,
};
static const struct xattr_handler shmem_user_xattr_handler = {
.prefix = XATTR_USER_PREFIX,
.get = shmem_xattr_handler_get,
.set = shmem_xattr_handler_set,
};
static const struct xattr_handler * const shmem_xattr_handlers[] = {
&shmem_security_xattr_handler,
&shmem_trusted_xattr_handler,
&shmem_user_xattr_handler,
NULL
};
static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
{
struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
}
#endif /* CONFIG_TMPFS_XATTR */
static const struct inode_operations shmem_short_symlink_operations = {
.getattr = shmem_getattr,
.setattr = shmem_setattr,
.get_link = simple_get_link,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
};
static const struct inode_operations shmem_symlink_inode_operations = {
.getattr = shmem_getattr,
.setattr = shmem_setattr,
.get_link = shmem_get_link,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
};
static struct dentry *shmem_get_parent(struct dentry *child)
{
return ERR_PTR(-ESTALE);
}
static int shmem_match(struct inode *ino, void *vfh)
{
__u32 *fh = vfh;
__u64 inum = fh[2];
inum = (inum << 32) | fh[1];
return ino->i_ino == inum && fh[0] == ino->i_generation;
}
/* Find any alias of inode, but prefer a hashed alias */
static struct dentry *shmem_find_alias(struct inode *inode)
{
struct dentry *alias = d_find_alias(inode);
return alias ?: d_find_any_alias(inode);
}
static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len, int fh_type)
{
struct inode *inode;
struct dentry *dentry = NULL;
u64 inum;
if (fh_len < 3)
return NULL;
inum = fid->raw[2];
inum = (inum << 32) | fid->raw[1];
inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
shmem_match, fid->raw);
if (inode) {
dentry = shmem_find_alias(inode);
iput(inode);
}
return dentry;
}
static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
struct inode *parent)
{
if (*len < 3) {
*len = 3;
return FILEID_INVALID;
}
if (inode_unhashed(inode)) {
/* Unfortunately insert_inode_hash is not idempotent,
* so as we hash inodes here rather than at creation
* time, we need a lock to ensure we only try
* to do it once
*/
static DEFINE_SPINLOCK(lock);
spin_lock(&lock);
if (inode_unhashed(inode))
__insert_inode_hash(inode,
inode->i_ino + inode->i_generation);
spin_unlock(&lock);
}
fh[0] = inode->i_generation;
fh[1] = inode->i_ino;
fh[2] = ((__u64)inode->i_ino) >> 32;
*len = 3;
return 1;
}
static const struct export_operations shmem_export_ops = {
.get_parent = shmem_get_parent,
.encode_fh = shmem_encode_fh,
.fh_to_dentry = shmem_fh_to_dentry,
};
enum shmem_param {
Opt_gid,
Opt_huge,
Opt_mode,
Opt_mpol,
Opt_nr_blocks,
Opt_nr_inodes,
Opt_size,
Opt_uid,
Opt_inode32,
Opt_inode64,
Opt_noswap,
Opt_quota,
Opt_usrquota,
Opt_grpquota,
Opt_usrquota_block_hardlimit,
Opt_usrquota_inode_hardlimit,
Opt_grpquota_block_hardlimit,
Opt_grpquota_inode_hardlimit,
};
static const struct constant_table shmem_param_enums_huge[] = {
{"never", SHMEM_HUGE_NEVER },
{"always", SHMEM_HUGE_ALWAYS },
{"within_size", SHMEM_HUGE_WITHIN_SIZE },
{"advise", SHMEM_HUGE_ADVISE },
{}
};
const struct fs_parameter_spec shmem_fs_parameters[] = {
fsparam_u32 ("gid", Opt_gid),
fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
fsparam_u32oct("mode", Opt_mode),
fsparam_string("mpol", Opt_mpol),
fsparam_string("nr_blocks", Opt_nr_blocks),
fsparam_string("nr_inodes", Opt_nr_inodes),
fsparam_string("size", Opt_size),
fsparam_u32 ("uid", Opt_uid),
fsparam_flag ("inode32", Opt_inode32),
fsparam_flag ("inode64", Opt_inode64),
fsparam_flag ("noswap", Opt_noswap),
#ifdef CONFIG_TMPFS_QUOTA
fsparam_flag ("quota", Opt_quota),
fsparam_flag ("usrquota", Opt_usrquota),
fsparam_flag ("grpquota", Opt_grpquota),
fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
#endif
{}
};
static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
{
struct shmem_options *ctx = fc->fs_private;
struct fs_parse_result result;
unsigned long long size;
char *rest;
int opt;
kuid_t kuid;
kgid_t kgid;
opt = fs_parse(fc, shmem_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_size:
size = memparse(param->string, &rest);
if (*rest == '%') {
size <<= PAGE_SHIFT;
size *= totalram_pages();
do_div(size, 100);
rest++;
}
if (*rest)
goto bad_value;
ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
ctx->seen |= SHMEM_SEEN_BLOCKS;
break;
case Opt_nr_blocks:
ctx->blocks = memparse(param->string, &rest);
if (*rest || ctx->blocks > LONG_MAX)
goto bad_value;
ctx->seen |= SHMEM_SEEN_BLOCKS;
break;
case Opt_nr_inodes:
ctx->inodes = memparse(param->string, &rest);
if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
goto bad_value;
ctx->seen |= SHMEM_SEEN_INODES;
break;
case Opt_mode:
ctx->mode = result.uint_32 & 07777;
break;
case Opt_uid:
kuid = make_kuid(current_user_ns(), result.uint_32);
if (!uid_valid(kuid))
goto bad_value;
/*
* The requested uid must be representable in the
* filesystem's idmapping.
*/
if (!kuid_has_mapping(fc->user_ns, kuid))
goto bad_value;
ctx->uid = kuid;
break;
case Opt_gid:
kgid = make_kgid(current_user_ns(), result.uint_32);
if (!gid_valid(kgid))
goto bad_value;
/*
* The requested gid must be representable in the
* filesystem's idmapping.
*/
if (!kgid_has_mapping(fc->user_ns, kgid))
goto bad_value;
ctx->gid = kgid;
break;
case Opt_huge:
ctx->huge = result.uint_32;
if (ctx->huge != SHMEM_HUGE_NEVER &&
!(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
has_transparent_hugepage()))
goto unsupported_parameter;
ctx->seen |= SHMEM_SEEN_HUGE;
break;
case Opt_mpol:
if (IS_ENABLED(CONFIG_NUMA)) {
mpol_put(ctx->mpol);
ctx->mpol = NULL;
if (mpol_parse_str(param->string, &ctx->mpol))
goto bad_value;
break;
}
goto unsupported_parameter;
case Opt_inode32:
ctx->full_inums = false;
ctx->seen |= SHMEM_SEEN_INUMS;
break;
case Opt_inode64:
if (sizeof(ino_t) < 8) {
return invalfc(fc,
"Cannot use inode64 with <64bit inums in kernel\n");
}
ctx->full_inums = true;
ctx->seen |= SHMEM_SEEN_INUMS;
break;
case Opt_noswap:
if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
return invalfc(fc,
"Turning off swap in unprivileged tmpfs mounts unsupported");
}
ctx->noswap = true;
ctx->seen |= SHMEM_SEEN_NOSWAP;
break;
case Opt_quota:
if (fc->user_ns != &init_user_ns)
return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
ctx->seen |= SHMEM_SEEN_QUOTA;
ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
break;
case Opt_usrquota:
if (fc->user_ns != &init_user_ns)
return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
ctx->seen |= SHMEM_SEEN_QUOTA;
ctx->quota_types |= QTYPE_MASK_USR;
break;
case Opt_grpquota:
if (fc->user_ns != &init_user_ns)
return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
ctx->seen |= SHMEM_SEEN_QUOTA;
ctx->quota_types |= QTYPE_MASK_GRP;
break;
case Opt_usrquota_block_hardlimit:
size = memparse(param->string, &rest);
if (*rest || !size)
goto bad_value;
if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
return invalfc(fc,
"User quota block hardlimit too large.");
ctx->qlimits.usrquota_bhardlimit = size;
break;
case Opt_grpquota_block_hardlimit:
size = memparse(param->string, &rest);
if (*rest || !size)
goto bad_value;
if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
return invalfc(fc,
"Group quota block hardlimit too large.");
ctx->qlimits.grpquota_bhardlimit = size;
break;
case Opt_usrquota_inode_hardlimit:
size = memparse(param->string, &rest);
if (*rest || !size)
goto bad_value;
if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
return invalfc(fc,
"User quota inode hardlimit too large.");
ctx->qlimits.usrquota_ihardlimit = size;
break;
case Opt_grpquota_inode_hardlimit:
size = memparse(param->string, &rest);
if (*rest || !size)
goto bad_value;
if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
return invalfc(fc,
"Group quota inode hardlimit too large.");
ctx->qlimits.grpquota_ihardlimit = size;
break;
}
return 0;
unsupported_parameter:
return invalfc(fc, "Unsupported parameter '%s'", param->key);
bad_value:
return invalfc(fc, "Bad value for '%s'", param->key);
}
static int shmem_parse_options(struct fs_context *fc, void *data)
{
char *options = data;
if (options) {
int err = security_sb_eat_lsm_opts(options, &fc->security);
if (err)
return err;
}
while (options != NULL) {
char *this_char = options;
for (;;) {
/*
* NUL-terminate this option: unfortunately,
* mount options form a comma-separated list,
* but mpol's nodelist may also contain commas.
*/
options = strchr(options, ',');
if (options == NULL)
break;
options++;
if (!isdigit(*options)) {
options[-1] = '\0';
break;
}
}
if (*this_char) {
char *value = strchr(this_char, '=');
size_t len = 0;
int err;
if (value) {
*value++ = '\0';
len = strlen(value);
}
err = vfs_parse_fs_string(fc, this_char, value, len);
if (err < 0)
return err;
}
}
return 0;
}
/*
* Reconfigure a shmem filesystem.
*/
static int shmem_reconfigure(struct fs_context *fc)
{
struct shmem_options *ctx = fc->fs_private;
struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
unsigned long used_isp;
struct mempolicy *mpol = NULL;
const char *err;
raw_spin_lock(&sbinfo->stat_lock);
used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
if (!sbinfo->max_blocks) {
err = "Cannot retroactively limit size";
goto out;
}
if (percpu_counter_compare(&sbinfo->used_blocks,
ctx->blocks) > 0) {
err = "Too small a size for current use";
goto out;
}
}
if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
if (!sbinfo->max_inodes) {
err = "Cannot retroactively limit inodes";
goto out;
}
if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
err = "Too few inodes for current use";
goto out;
}
}
if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
sbinfo->next_ino > UINT_MAX) {
err = "Current inum too high to switch to 32-bit inums";
goto out;
}
if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
err = "Cannot disable swap on remount";
goto out;
}
if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
err = "Cannot enable swap on remount if it was disabled on first mount";
goto out;
}
if (ctx->seen & SHMEM_SEEN_QUOTA &&
!sb_any_quota_loaded(fc->root->d_sb)) {
err = "Cannot enable quota on remount";
goto out;
}
#ifdef CONFIG_TMPFS_QUOTA
#define CHANGED_LIMIT(name) \
(ctx->qlimits.name## hardlimit && \
(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
err = "Cannot change global quota limit on remount";
goto out;
}
#endif /* CONFIG_TMPFS_QUOTA */
if (ctx->seen & SHMEM_SEEN_HUGE)
sbinfo->huge = ctx->huge;
if (ctx->seen & SHMEM_SEEN_INUMS)
sbinfo->full_inums = ctx->full_inums;
if (ctx->seen & SHMEM_SEEN_BLOCKS)
sbinfo->max_blocks = ctx->blocks;
if (ctx->seen & SHMEM_SEEN_INODES) {
sbinfo->max_inodes = ctx->inodes;
sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
}
/*
* Preserve previous mempolicy unless mpol remount option was specified.
*/
if (ctx->mpol) {
mpol = sbinfo->mpol;
sbinfo->mpol = ctx->mpol; /* transfers initial ref */
ctx->mpol = NULL;
}
if (ctx->noswap)
sbinfo->noswap = true;
raw_spin_unlock(&sbinfo->stat_lock);
mpol_put(mpol);
return 0;
out:
raw_spin_unlock(&sbinfo->stat_lock);
return invalfc(fc, "%s", err);
}
static int shmem_show_options(struct seq_file *seq, struct dentry *root)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
struct mempolicy *mpol;
if (sbinfo->max_blocks != shmem_default_max_blocks())
seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
if (sbinfo->max_inodes != shmem_default_max_inodes())
seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
if (sbinfo->mode != (0777 | S_ISVTX))
seq_printf(seq, ",mode=%03ho", sbinfo->mode);
if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
seq_printf(seq, ",uid=%u",
from_kuid_munged(&init_user_ns, sbinfo->uid));
if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
seq_printf(seq, ",gid=%u",
from_kgid_munged(&init_user_ns, sbinfo->gid));
/*
* Showing inode{64,32} might be useful even if it's the system default,
* since then people don't have to resort to checking both here and
* /proc/config.gz to confirm 64-bit inums were successfully applied
* (which may not even exist if IKCONFIG_PROC isn't enabled).
*
* We hide it when inode64 isn't the default and we are using 32-bit
* inodes, since that probably just means the feature isn't even under
* consideration.
*
* As such:
*
* +-----------------+-----------------+
* | TMPFS_INODE64=y | TMPFS_INODE64=n |
* +------------------+-----------------+-----------------+
* | full_inums=true | show | show |
* | full_inums=false | show | hide |
* +------------------+-----------------+-----------------+
*
*/
if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
if (sbinfo->huge)
seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
#endif
mpol = shmem_get_sbmpol(sbinfo);
shmem_show_mpol(seq, mpol);
mpol_put(mpol);
if (sbinfo->noswap)
seq_printf(seq, ",noswap");
return 0;
}
#endif /* CONFIG_TMPFS */
static void shmem_put_super(struct super_block *sb)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
#ifdef CONFIG_TMPFS_QUOTA
shmem_disable_quotas(sb);
#endif
free_percpu(sbinfo->ino_batch);
percpu_counter_destroy(&sbinfo->used_blocks);
mpol_put(sbinfo->mpol);
kfree(sbinfo);
sb->s_fs_info = NULL;
}
static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
{
struct shmem_options *ctx = fc->fs_private;
struct inode *inode;
struct shmem_sb_info *sbinfo;
int error = -ENOMEM;
/* Round up to L1_CACHE_BYTES to resist false sharing */
sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
L1_CACHE_BYTES), GFP_KERNEL);
if (!sbinfo)
return error;
sb->s_fs_info = sbinfo;
#ifdef CONFIG_TMPFS
/*
* Per default we only allow half of the physical ram per
* tmpfs instance, limiting inodes to one per page of lowmem;
* but the internal instance is left unlimited.
*/
if (!(sb->s_flags & SB_KERNMOUNT)) {
if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
ctx->blocks = shmem_default_max_blocks();
if (!(ctx->seen & SHMEM_SEEN_INODES))
ctx->inodes = shmem_default_max_inodes();
if (!(ctx->seen & SHMEM_SEEN_INUMS))
ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
sbinfo->noswap = ctx->noswap;
} else {
sb->s_flags |= SB_NOUSER;
}
sb->s_export_op = &shmem_export_ops;
sb->s_flags |= SB_NOSEC | SB_I_VERSION;
#else
sb->s_flags |= SB_NOUSER;
#endif
sbinfo->max_blocks = ctx->blocks;
sbinfo->max_inodes = ctx->inodes;
sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
if (sb->s_flags & SB_KERNMOUNT) {
sbinfo->ino_batch = alloc_percpu(ino_t);
if (!sbinfo->ino_batch)
goto failed;
}
sbinfo->uid = ctx->uid;
sbinfo->gid = ctx->gid;
sbinfo->full_inums = ctx->full_inums;
sbinfo->mode = ctx->mode;
sbinfo->huge = ctx->huge;
sbinfo->mpol = ctx->mpol;
ctx->mpol = NULL;
raw_spin_lock_init(&sbinfo->stat_lock);
if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
goto failed;
spin_lock_init(&sbinfo->shrinklist_lock);
INIT_LIST_HEAD(&sbinfo->shrinklist);
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
sb->s_magic = TMPFS_MAGIC;
sb->s_op = &shmem_ops;
sb->s_time_gran = 1;
#ifdef CONFIG_TMPFS_XATTR
sb->s_xattr = shmem_xattr_handlers;
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
sb->s_flags |= SB_POSIXACL;
#endif
uuid_gen(&sb->s_uuid);
#ifdef CONFIG_TMPFS_QUOTA
if (ctx->seen & SHMEM_SEEN_QUOTA) {
sb->dq_op = &shmem_quota_operations;
sb->s_qcop = &dquot_quotactl_sysfile_ops;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
/* Copy the default limits from ctx into sbinfo */
memcpy(&sbinfo->qlimits, &ctx->qlimits,
sizeof(struct shmem_quota_limits));
if (shmem_enable_quotas(sb, ctx->quota_types))
goto failed;
}
#endif /* CONFIG_TMPFS_QUOTA */
inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
if (IS_ERR(inode)) {
error = PTR_ERR(inode);
goto failed;
}
inode->i_uid = sbinfo->uid;
inode->i_gid = sbinfo->gid;
sb->s_root = d_make_root(inode);
if (!sb->s_root)
goto failed;
return 0;
failed:
shmem_put_super(sb);
return error;
}
static int shmem_get_tree(struct fs_context *fc)
{
return get_tree_nodev(fc, shmem_fill_super);
}
static void shmem_free_fc(struct fs_context *fc)
{
struct shmem_options *ctx = fc->fs_private;
if (ctx) {
mpol_put(ctx->mpol);
kfree(ctx);
}
}
static const struct fs_context_operations shmem_fs_context_ops = {
.free = shmem_free_fc,
.get_tree = shmem_get_tree,
#ifdef CONFIG_TMPFS
.parse_monolithic = shmem_parse_options,
.parse_param = shmem_parse_one,
.reconfigure = shmem_reconfigure,
#endif
};
static struct kmem_cache *shmem_inode_cachep __ro_after_init;
static struct inode *shmem_alloc_inode(struct super_block *sb)
{
struct shmem_inode_info *info;
info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
if (!info)
return NULL;
return &info->vfs_inode;
}
static void shmem_free_in_core_inode(struct inode *inode)
{
if (S_ISLNK(inode->i_mode))
kfree(inode->i_link);
kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
}
static void shmem_destroy_inode(struct inode *inode)
{
if (S_ISREG(inode->i_mode))
mpol_free_shared_policy(&SHMEM_I(inode)->policy);
if (S_ISDIR(inode->i_mode))
simple_offset_destroy(shmem_get_offset_ctx(inode));
}
static void shmem_init_inode(void *foo)
{
struct shmem_inode_info *info = foo;
inode_init_once(&info->vfs_inode);
}
static void __init shmem_init_inodecache(void)
{
shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
sizeof(struct shmem_inode_info),
0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
}
static void __init shmem_destroy_inodecache(void)
{
kmem_cache_destroy(shmem_inode_cachep);
}
/* Keep the page in page cache instead of truncating it */
static int shmem_error_remove_folio(struct address_space *mapping,
struct folio *folio)
{
return 0;
}
const struct address_space_operations shmem_aops = {
.writepage = shmem_writepage,
.dirty_folio = noop_dirty_folio,
#ifdef CONFIG_TMPFS
.write_begin = shmem_write_begin,
.write_end = shmem_write_end,
#endif
#ifdef CONFIG_MIGRATION
.migrate_folio = migrate_folio,
#endif
.error_remove_folio = shmem_error_remove_folio,
};
EXPORT_SYMBOL(shmem_aops);
static const struct file_operations shmem_file_operations = {
.mmap = shmem_mmap,
.open = shmem_file_open,
.get_unmapped_area = shmem_get_unmapped_area,
#ifdef CONFIG_TMPFS
.llseek = shmem_file_llseek,
.read_iter = shmem_file_read_iter,
.write_iter = shmem_file_write_iter,
.fsync = noop_fsync,
.splice_read = shmem_file_splice_read,
.splice_write = iter_file_splice_write,
.fallocate = shmem_fallocate,
#endif
};
static const struct inode_operations shmem_inode_operations = {
.getattr = shmem_getattr,
.setattr = shmem_setattr,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
.set_acl = simple_set_acl,
.fileattr_get = shmem_fileattr_get,
.fileattr_set = shmem_fileattr_set,
#endif
};
static const struct inode_operations shmem_dir_inode_operations = {
#ifdef CONFIG_TMPFS
.getattr = shmem_getattr,
.create = shmem_create,
.lookup = simple_lookup,
.link = shmem_link,
.unlink = shmem_unlink,
.symlink = shmem_symlink,
.mkdir = shmem_mkdir,
.rmdir = shmem_rmdir,
.mknod = shmem_mknod,
.rename = shmem_rename2,
.tmpfile = shmem_tmpfile,
.get_offset_ctx = shmem_get_offset_ctx,
#endif
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
.fileattr_get = shmem_fileattr_get,
.fileattr_set = shmem_fileattr_set,
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
.setattr = shmem_setattr,
.set_acl = simple_set_acl,
#endif
};
static const struct inode_operations shmem_special_inode_operations = {
.getattr = shmem_getattr,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
.setattr = shmem_setattr,
.set_acl = simple_set_acl,
#endif
};
static const struct super_operations shmem_ops = {
.alloc_inode = shmem_alloc_inode,
.free_inode = shmem_free_in_core_inode,
.destroy_inode = shmem_destroy_inode,
#ifdef CONFIG_TMPFS
.statfs = shmem_statfs,
.show_options = shmem_show_options,
#endif
#ifdef CONFIG_TMPFS_QUOTA
.get_dquots = shmem_get_dquots,
#endif
.evict_inode = shmem_evict_inode,
.drop_inode = generic_delete_inode,
.put_super = shmem_put_super,
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
.nr_cached_objects = shmem_unused_huge_count,
.free_cached_objects = shmem_unused_huge_scan,
#endif
};
static const struct vm_operations_struct shmem_vm_ops = {
.fault = shmem_fault,
.map_pages = filemap_map_pages,
#ifdef CONFIG_NUMA
.set_policy = shmem_set_policy,
.get_policy = shmem_get_policy,
#endif
};
static const struct vm_operations_struct shmem_anon_vm_ops = {
.fault = shmem_fault,
.map_pages = filemap_map_pages,
#ifdef CONFIG_NUMA
.set_policy = shmem_set_policy,
.get_policy = shmem_get_policy,
#endif
};
int shmem_init_fs_context(struct fs_context *fc)
{
struct shmem_options *ctx;
ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->mode = 0777 | S_ISVTX;
ctx->uid = current_fsuid();
ctx->gid = current_fsgid();
fc->fs_private = ctx;
fc->ops = &shmem_fs_context_ops;
return 0;
}
static struct file_system_type shmem_fs_type = {
.owner = THIS_MODULE,
.name = "tmpfs",
.init_fs_context = shmem_init_fs_context,
#ifdef CONFIG_TMPFS
.parameters = shmem_fs_parameters,
#endif
.kill_sb = kill_litter_super,
.fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
};
void __init shmem_init(void)
{
int error;
shmem_init_inodecache();
#ifdef CONFIG_TMPFS_QUOTA
error = register_quota_format(&shmem_quota_format);
if (error < 0) {
pr_err("Could not register quota format\n");
goto out3;
}
#endif
error = register_filesystem(&shmem_fs_type);
if (error) {
pr_err("Could not register tmpfs\n");
goto out2;
}
shm_mnt = kern_mount(&shmem_fs_type);
if (IS_ERR(shm_mnt)) {
error = PTR_ERR(shm_mnt);
pr_err("Could not kern_mount tmpfs\n");
goto out1;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
else
shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
#endif
return;
out1:
unregister_filesystem(&shmem_fs_type);
out2:
#ifdef CONFIG_TMPFS_QUOTA
unregister_quota_format(&shmem_quota_format);
out3:
#endif
shmem_destroy_inodecache();
shm_mnt = ERR_PTR(error);
}
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
static ssize_t shmem_enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
static const int values[] = {
SHMEM_HUGE_ALWAYS,
SHMEM_HUGE_WITHIN_SIZE,
SHMEM_HUGE_ADVISE,
SHMEM_HUGE_NEVER,
SHMEM_HUGE_DENY,
SHMEM_HUGE_FORCE,
};
int len = 0;
int i;
for (i = 0; i < ARRAY_SIZE(values); i++) {
len += sysfs_emit_at(buf, len,
shmem_huge == values[i] ? "%s[%s]" : "%s%s",
i ? " " : "", shmem_format_huge(values[i]));
}
len += sysfs_emit_at(buf, len, "\n");
return len;
}
static ssize_t shmem_enabled_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
char tmp[16];
int huge;
if (count + 1 > sizeof(tmp))
return -EINVAL;
memcpy(tmp, buf, count);
tmp[count] = '\0';
if (count && tmp[count - 1] == '\n')
tmp[count - 1] = '\0';
huge = shmem_parse_huge(tmp);
if (huge == -EINVAL)
return -EINVAL;
if (!has_transparent_hugepage() &&
huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
return -EINVAL;
shmem_huge = huge;
if (shmem_huge > SHMEM_HUGE_DENY)
SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
return count;
}
struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
#else /* !CONFIG_SHMEM */
/*
* tiny-shmem: simple shmemfs and tmpfs using ramfs code
*
* This is intended for small system where the benefits of the full
* shmem code (swap-backed and resource-limited) are outweighed by
* their complexity. On systems without swap this code should be
* effectively equivalent, but much lighter weight.
*/
static struct file_system_type shmem_fs_type = {
.name = "tmpfs",
.init_fs_context = ramfs_init_fs_context,
.parameters = ramfs_fs_parameters,
.kill_sb = ramfs_kill_sb,
.fs_flags = FS_USERNS_MOUNT,
};
void __init shmem_init(void)
{
BUG_ON(register_filesystem(&shmem_fs_type) != 0);
shm_mnt = kern_mount(&shmem_fs_type);
BUG_ON(IS_ERR(shm_mnt));
}
int shmem_unuse(unsigned int type)
{
return 0;
}
int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
{
return 0;
}
void shmem_unlock_mapping(struct address_space *mapping)
{
}
#ifdef CONFIG_MMU
unsigned long shmem_get_unmapped_area(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
}
#endif
void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
{
truncate_inode_pages_range(inode->i_mapping, lstart, lend);
}
EXPORT_SYMBOL_GPL(shmem_truncate_range);
#define shmem_vm_ops generic_file_vm_ops
#define shmem_anon_vm_ops generic_file_vm_ops
#define shmem_file_operations ramfs_file_operations
#define shmem_acct_size(flags, size) 0
#define shmem_unacct_size(flags, size) do {} while (0)
static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
struct super_block *sb, struct inode *dir,
umode_t mode, dev_t dev, unsigned long flags)
{
struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
return inode ? inode : ERR_PTR(-ENOSPC);
}
#endif /* CONFIG_SHMEM */
/* common code */
static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
loff_t size, unsigned long flags, unsigned int i_flags)
{
struct inode *inode;
struct file *res;
if (IS_ERR(mnt))
return ERR_CAST(mnt);
if (size < 0 || size > MAX_LFS_FILESIZE)
return ERR_PTR(-EINVAL);
if (shmem_acct_size(flags, size))
return ERR_PTR(-ENOMEM);
if (is_idmapped_mnt(mnt))
return ERR_PTR(-EINVAL);
inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
S_IFREG | S_IRWXUGO, 0, flags);
if (IS_ERR(inode)) {
shmem_unacct_size(flags, size);
return ERR_CAST(inode);
}
inode->i_flags |= i_flags;
inode->i_size = size;
clear_nlink(inode); /* It is unlinked */
res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
if (!IS_ERR(res))
res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
&shmem_file_operations);
if (IS_ERR(res))
iput(inode);
return res;
}
/**
* shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
* kernel internal. There will be NO LSM permission checks against the
* underlying inode. So users of this interface must do LSM checks at a
* higher layer. The users are the big_key and shm implementations. LSM
* checks are provided at the key or shm level rather than the inode.
* @name: name for dentry (to be seen in /proc/<pid>/maps
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
{
return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
}
/**
* shmem_file_setup - get an unlinked file living in tmpfs
* @name: name for dentry (to be seen in /proc/<pid>/maps
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
{
return __shmem_file_setup(shm_mnt, name, size, flags, 0);
}
EXPORT_SYMBOL_GPL(shmem_file_setup);
/**
* shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
* @mnt: the tmpfs mount where the file will be created
* @name: name for dentry (to be seen in /proc/<pid>/maps
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
loff_t size, unsigned long flags)
{
return __shmem_file_setup(mnt, name, size, flags, 0);
}
EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
/**
* shmem_zero_setup - setup a shared anonymous mapping
* @vma: the vma to be mmapped is prepared by do_mmap
*/
int shmem_zero_setup(struct vm_area_struct *vma)
{
struct file *file;
loff_t size = vma->vm_end - vma->vm_start;
/*
* Cloning a new file under mmap_lock leads to a lock ordering conflict
* between XFS directory reading and selinux: since this file is only
* accessible to the user through its mapping, use S_PRIVATE flag to
* bypass file security, in the same way as shmem_kernel_file_setup().
*/
file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
if (IS_ERR(file))
return PTR_ERR(file);
if (vma->vm_file)
fput(vma->vm_file);
vma->vm_file = file;
vma->vm_ops = &shmem_anon_vm_ops;
return 0;
}
/**
* shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
* @mapping: the folio's address_space
* @index: the folio index
* @gfp: the page allocator flags to use if allocating
*
* This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
* with any new page allocations done using the specified allocation flags.
* But read_cache_page_gfp() uses the ->read_folio() method: which does not
* suit tmpfs, since it may have pages in swapcache, and needs to find those
* for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
*
* i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
* with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
*/
struct folio *shmem_read_folio_gfp(struct address_space *mapping,
pgoff_t index, gfp_t gfp)
{
#ifdef CONFIG_SHMEM
struct inode *inode = mapping->host;
struct folio *folio;
int error;
BUG_ON(!shmem_mapping(mapping));
error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
gfp, NULL, NULL);
if (error)
return ERR_PTR(error);
folio_unlock(folio);
return folio;
#else
/*
* The tiny !SHMEM case uses ramfs without swap
*/
return mapping_read_folio_gfp(mapping, index, gfp);
#endif
}
EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
pgoff_t index, gfp_t gfp)
{
struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
struct page *page;
if (IS_ERR(folio))
return &folio->page;
page = folio_file_page(folio, index);
if (PageHWPoison(page)) {
folio_put(folio);
return ERR_PTR(-EIO);
}
return page;
}
EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);