linux/drivers/infiniband/core/cma.c
Linus Torvalds 048ccca8c1 Initial roundup of 4.5 merge window patches
- Remove usage of ib_query_device and instead store attributes in
   ib_device struct
 - Move iopoll out of block and into lib, rename to irqpoll, and use
   in several places in the rdma stack as our new completion queue
   polling library mechanism.  Update the other block drivers that
   already used iopoll to use the new mechanism too.
 - Replace the per-entry GID table locks with a single GID table lock
 - IPoIB multicast cleanup
 - Cleanups to the IB MR facility
 - Add support for 64bit extended IB counters
 - Fix for netlink oops while parsing RDMA nl messages
 - RoCEv2 support for the core IB code
 - mlx4 RoCEv2 support
 - mlx5 RoCEv2 support
 - Cross Channel support for mlx5
 - Timestamp support for mlx5
 - Atomic support for mlx5
 - Raw QP support for mlx5
 - MAINTAINERS update for mlx4/mlx5
 - Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates
 - Add support for remote invalidate to the iSER driver (pushed through the
   RDMA tree due to dependencies, acknowledged by nab)
 - Update to NFSoRDMA (pushed through the RDMA tree due to dependencies,
   acknowledged by Bruce)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWoSygAAoJELgmozMOVy/dDjsP/2vbTda2MvQfkfkGEZBQdJSg
 095RN0gQgCJdg78lAl8yuaK8r4VN/7uefpDtFdudH1I/Pei7X0wxN9R1UzFNG4KR
 AD53lz92IVPs15328SbPR2kvNWISR9aBFQo3rlElq3Grqlp0EMn2Ou1vtu87rekF
 aMllxr8Nl0uZhP+eWusOsYpJUUtwirLgRnrAyfqo2UxZh/TMIroT0TCx1KXjVcAg
 dhDARiZAdu3OgSc6OsWqmH+DELEq6dFVA5F+DDBGAb8bFZqlJc7cuMHWInwNsNXT
 so4bnEQ835alTbsdYtqs5DUNS8heJTAJP4Uz0ehkTh/uNCcvnKeUTw1c2P/lXI1k
 7s33gMM+0FXj0swMBw0kKwAF2d9Hhus9UAN7NwjBuOyHcjGRd5q7SAnfWkvKx000
 s9jVW19slb2I38gB58nhjOh8s+vXUArgxnV1+kTia1+bJSR5swvVoWRicRXdF0vh
 TvLX/BjbSIU73g1TnnLNYoBTV3ybFKQ6bVdQW7fzSTDs54dsI1vvdHXi3bYZCpnL
 HVwQTZRfEzkvb0AdKbcvf8p/TlaAHem3ODqtO1eHvO4if1QJBSn+SptTEeJVYYdK
 n4B3l/dMoBH4JXJUmEHB9jwAvYOpv/YLAFIvdL7NFwbqGNsC3nfXFcmkVORB1W3B
 KEMcM2we4bz+uyKMjEAD
 =5oO7
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma

Pull rdma updates from Doug Ledford:
 "Initial roundup of 4.5 merge window patches

   - Remove usage of ib_query_device and instead store attributes in
     ib_device struct

   - Move iopoll out of block and into lib, rename to irqpoll, and use
     in several places in the rdma stack as our new completion queue
     polling library mechanism.  Update the other block drivers that
     already used iopoll to use the new mechanism too.

   - Replace the per-entry GID table locks with a single GID table lock

   - IPoIB multicast cleanup

   - Cleanups to the IB MR facility

   - Add support for 64bit extended IB counters

   - Fix for netlink oops while parsing RDMA nl messages

   - RoCEv2 support for the core IB code

   - mlx4 RoCEv2 support

   - mlx5 RoCEv2 support

   - Cross Channel support for mlx5

   - Timestamp support for mlx5

   - Atomic support for mlx5

   - Raw QP support for mlx5

   - MAINTAINERS update for mlx4/mlx5

   - Misc ocrdma, qib, nes, usNIC, cxgb3, cxgb4, mlx4, mlx5 updates

   - Add support for remote invalidate to the iSER driver (pushed
     through the RDMA tree due to dependencies, acknowledged by nab)

   - Update to NFSoRDMA (pushed through the RDMA tree due to
     dependencies, acknowledged by Bruce)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (169 commits)
  IB/mlx5: Unify CQ create flags check
  IB/mlx5: Expose Raw Packet QP to user space consumers
  {IB, net}/mlx5: Move the modify QP operation table to mlx5_ib
  IB/mlx5: Support setting Ethernet priority for Raw Packet QPs
  IB/mlx5: Add Raw Packet QP query functionality
  IB/mlx5: Add create and destroy functionality for Raw Packet QP
  IB/mlx5: Refactor mlx5_ib_qp to accommodate other QP types
  IB/mlx5: Allocate a Transport Domain for each ucontext
  net/mlx5_core: Warn on unsupported events of QP/RQ/SQ
  net/mlx5_core: Add RQ and SQ event handling
  net/mlx5_core: Export transport objects
  IB/mlx5: Expose CQE version to user-space
  IB/mlx5: Add CQE version 1 support to user QPs and SRQs
  IB/mlx5: Fix data validation in mlx5_ib_alloc_ucontext
  IB/sa: Fix netlink local service GFP crash
  IB/srpt: Remove redundant wc array
  IB/qib: Improve ipoib UD performance
  IB/mlx4: Advertise RoCE v2 support
  IB/mlx4: Create and use another QP1 for RoCEv2
  IB/mlx4: Enable send of RoCE QP1 packets with IP/UDP headers
  ...
2016-01-23 18:45:06 -08:00

4318 lines
109 KiB
C

/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005-2006 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/completion.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/mutex.h>
#include <linux/random.h>
#include <linux/igmp.h>
#include <linux/idr.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <net/route.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <net/tcp.h>
#include <net/ipv6.h>
#include <net/ip_fib.h>
#include <net/ip6_route.h>
#include <rdma/rdma_cm.h>
#include <rdma/rdma_cm_ib.h>
#include <rdma/rdma_netlink.h>
#include <rdma/ib.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_cm.h>
#include <rdma/ib_sa.h>
#include <rdma/iw_cm.h>
#include "core_priv.h"
MODULE_AUTHOR("Sean Hefty");
MODULE_DESCRIPTION("Generic RDMA CM Agent");
MODULE_LICENSE("Dual BSD/GPL");
#define CMA_CM_RESPONSE_TIMEOUT 20
#define CMA_MAX_CM_RETRIES 15
#define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
#define CMA_IBOE_PACKET_LIFETIME 18
static const char * const cma_events[] = {
[RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved",
[RDMA_CM_EVENT_ADDR_ERROR] = "address error",
[RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ",
[RDMA_CM_EVENT_ROUTE_ERROR] = "route error",
[RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request",
[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
[RDMA_CM_EVENT_CONNECT_ERROR] = "connect error",
[RDMA_CM_EVENT_UNREACHABLE] = "unreachable",
[RDMA_CM_EVENT_REJECTED] = "rejected",
[RDMA_CM_EVENT_ESTABLISHED] = "established",
[RDMA_CM_EVENT_DISCONNECTED] = "disconnected",
[RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal",
[RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join",
[RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error",
[RDMA_CM_EVENT_ADDR_CHANGE] = "address change",
[RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit",
};
const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
{
size_t index = event;
return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
cma_events[index] : "unrecognized event";
}
EXPORT_SYMBOL(rdma_event_msg);
static void cma_add_one(struct ib_device *device);
static void cma_remove_one(struct ib_device *device, void *client_data);
static struct ib_client cma_client = {
.name = "cma",
.add = cma_add_one,
.remove = cma_remove_one
};
static struct ib_sa_client sa_client;
static struct rdma_addr_client addr_client;
static LIST_HEAD(dev_list);
static LIST_HEAD(listen_any_list);
static DEFINE_MUTEX(lock);
static struct workqueue_struct *cma_wq;
static int cma_pernet_id;
struct cma_pernet {
struct idr tcp_ps;
struct idr udp_ps;
struct idr ipoib_ps;
struct idr ib_ps;
};
static struct cma_pernet *cma_pernet(struct net *net)
{
return net_generic(net, cma_pernet_id);
}
static struct idr *cma_pernet_idr(struct net *net, enum rdma_port_space ps)
{
struct cma_pernet *pernet = cma_pernet(net);
switch (ps) {
case RDMA_PS_TCP:
return &pernet->tcp_ps;
case RDMA_PS_UDP:
return &pernet->udp_ps;
case RDMA_PS_IPOIB:
return &pernet->ipoib_ps;
case RDMA_PS_IB:
return &pernet->ib_ps;
default:
return NULL;
}
}
struct cma_device {
struct list_head list;
struct ib_device *device;
struct completion comp;
atomic_t refcount;
struct list_head id_list;
enum ib_gid_type *default_gid_type;
};
struct rdma_bind_list {
enum rdma_port_space ps;
struct hlist_head owners;
unsigned short port;
};
static int cma_ps_alloc(struct net *net, enum rdma_port_space ps,
struct rdma_bind_list *bind_list, int snum)
{
struct idr *idr = cma_pernet_idr(net, ps);
return idr_alloc(idr, bind_list, snum, snum + 1, GFP_KERNEL);
}
static struct rdma_bind_list *cma_ps_find(struct net *net,
enum rdma_port_space ps, int snum)
{
struct idr *idr = cma_pernet_idr(net, ps);
return idr_find(idr, snum);
}
static void cma_ps_remove(struct net *net, enum rdma_port_space ps, int snum)
{
struct idr *idr = cma_pernet_idr(net, ps);
idr_remove(idr, snum);
}
enum {
CMA_OPTION_AFONLY,
};
void cma_ref_dev(struct cma_device *cma_dev)
{
atomic_inc(&cma_dev->refcount);
}
struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter,
void *cookie)
{
struct cma_device *cma_dev;
struct cma_device *found_cma_dev = NULL;
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list)
if (filter(cma_dev->device, cookie)) {
found_cma_dev = cma_dev;
break;
}
if (found_cma_dev)
cma_ref_dev(found_cma_dev);
mutex_unlock(&lock);
return found_cma_dev;
}
int cma_get_default_gid_type(struct cma_device *cma_dev,
unsigned int port)
{
if (port < rdma_start_port(cma_dev->device) ||
port > rdma_end_port(cma_dev->device))
return -EINVAL;
return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
}
int cma_set_default_gid_type(struct cma_device *cma_dev,
unsigned int port,
enum ib_gid_type default_gid_type)
{
unsigned long supported_gids;
if (port < rdma_start_port(cma_dev->device) ||
port > rdma_end_port(cma_dev->device))
return -EINVAL;
supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
if (!(supported_gids & 1 << default_gid_type))
return -EINVAL;
cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
default_gid_type;
return 0;
}
struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
{
return cma_dev->device;
}
/*
* Device removal can occur at anytime, so we need extra handling to
* serialize notifying the user of device removal with other callbacks.
* We do this by disabling removal notification while a callback is in process,
* and reporting it after the callback completes.
*/
struct rdma_id_private {
struct rdma_cm_id id;
struct rdma_bind_list *bind_list;
struct hlist_node node;
struct list_head list; /* listen_any_list or cma_device.list */
struct list_head listen_list; /* per device listens */
struct cma_device *cma_dev;
struct list_head mc_list;
int internal_id;
enum rdma_cm_state state;
spinlock_t lock;
struct mutex qp_mutex;
struct completion comp;
atomic_t refcount;
struct mutex handler_mutex;
int backlog;
int timeout_ms;
struct ib_sa_query *query;
int query_id;
union {
struct ib_cm_id *ib;
struct iw_cm_id *iw;
} cm_id;
u32 seq_num;
u32 qkey;
u32 qp_num;
pid_t owner;
u32 options;
u8 srq;
u8 tos;
u8 reuseaddr;
u8 afonly;
enum ib_gid_type gid_type;
};
struct cma_multicast {
struct rdma_id_private *id_priv;
union {
struct ib_sa_multicast *ib;
} multicast;
struct list_head list;
void *context;
struct sockaddr_storage addr;
struct kref mcref;
bool igmp_joined;
};
struct cma_work {
struct work_struct work;
struct rdma_id_private *id;
enum rdma_cm_state old_state;
enum rdma_cm_state new_state;
struct rdma_cm_event event;
};
struct cma_ndev_work {
struct work_struct work;
struct rdma_id_private *id;
struct rdma_cm_event event;
};
struct iboe_mcast_work {
struct work_struct work;
struct rdma_id_private *id;
struct cma_multicast *mc;
};
union cma_ip_addr {
struct in6_addr ip6;
struct {
__be32 pad[3];
__be32 addr;
} ip4;
};
struct cma_hdr {
u8 cma_version;
u8 ip_version; /* IP version: 7:4 */
__be16 port;
union cma_ip_addr src_addr;
union cma_ip_addr dst_addr;
};
#define CMA_VERSION 0x00
struct cma_req_info {
struct ib_device *device;
int port;
union ib_gid local_gid;
__be64 service_id;
u16 pkey;
bool has_gid:1;
};
static int cma_comp(struct rdma_id_private *id_priv, enum rdma_cm_state comp)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&id_priv->lock, flags);
ret = (id_priv->state == comp);
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
static int cma_comp_exch(struct rdma_id_private *id_priv,
enum rdma_cm_state comp, enum rdma_cm_state exch)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&id_priv->lock, flags);
if ((ret = (id_priv->state == comp)))
id_priv->state = exch;
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
static enum rdma_cm_state cma_exch(struct rdma_id_private *id_priv,
enum rdma_cm_state exch)
{
unsigned long flags;
enum rdma_cm_state old;
spin_lock_irqsave(&id_priv->lock, flags);
old = id_priv->state;
id_priv->state = exch;
spin_unlock_irqrestore(&id_priv->lock, flags);
return old;
}
static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
{
return hdr->ip_version >> 4;
}
static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
{
hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
}
static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
{
struct in_device *in_dev = NULL;
if (ndev) {
rtnl_lock();
in_dev = __in_dev_get_rtnl(ndev);
if (in_dev) {
if (join)
ip_mc_inc_group(in_dev,
*(__be32 *)(mgid->raw + 12));
else
ip_mc_dec_group(in_dev,
*(__be32 *)(mgid->raw + 12));
}
rtnl_unlock();
}
return (in_dev) ? 0 : -ENODEV;
}
static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
cma_ref_dev(cma_dev);
id_priv->cma_dev = cma_dev;
id_priv->gid_type = 0;
id_priv->id.device = cma_dev->device;
id_priv->id.route.addr.dev_addr.transport =
rdma_node_get_transport(cma_dev->device->node_type);
list_add_tail(&id_priv->list, &cma_dev->id_list);
}
static void cma_attach_to_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
_cma_attach_to_dev(id_priv, cma_dev);
id_priv->gid_type =
cma_dev->default_gid_type[id_priv->id.port_num -
rdma_start_port(cma_dev->device)];
}
void cma_deref_dev(struct cma_device *cma_dev)
{
if (atomic_dec_and_test(&cma_dev->refcount))
complete(&cma_dev->comp);
}
static inline void release_mc(struct kref *kref)
{
struct cma_multicast *mc = container_of(kref, struct cma_multicast, mcref);
kfree(mc->multicast.ib);
kfree(mc);
}
static void cma_release_dev(struct rdma_id_private *id_priv)
{
mutex_lock(&lock);
list_del(&id_priv->list);
cma_deref_dev(id_priv->cma_dev);
id_priv->cma_dev = NULL;
mutex_unlock(&lock);
}
static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
{
return (struct sockaddr *) &id_priv->id.route.addr.src_addr;
}
static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
{
return (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
}
static inline unsigned short cma_family(struct rdma_id_private *id_priv)
{
return id_priv->id.route.addr.src_addr.ss_family;
}
static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
{
struct ib_sa_mcmember_rec rec;
int ret = 0;
if (id_priv->qkey) {
if (qkey && id_priv->qkey != qkey)
return -EINVAL;
return 0;
}
if (qkey) {
id_priv->qkey = qkey;
return 0;
}
switch (id_priv->id.ps) {
case RDMA_PS_UDP:
case RDMA_PS_IB:
id_priv->qkey = RDMA_UDP_QKEY;
break;
case RDMA_PS_IPOIB:
ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device,
id_priv->id.port_num, &rec.mgid,
&rec);
if (!ret)
id_priv->qkey = be32_to_cpu(rec.qkey);
break;
default:
break;
}
return ret;
}
static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
{
dev_addr->dev_type = ARPHRD_INFINIBAND;
rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
}
static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
{
int ret;
if (addr->sa_family != AF_IB) {
ret = rdma_translate_ip(addr, dev_addr, NULL);
} else {
cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
ret = 0;
}
return ret;
}
static inline int cma_validate_port(struct ib_device *device, u8 port,
enum ib_gid_type gid_type,
union ib_gid *gid, int dev_type,
int bound_if_index)
{
int ret = -ENODEV;
struct net_device *ndev = NULL;
if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
return ret;
if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
return ret;
if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
ndev = dev_get_by_index(&init_net, bound_if_index);
if (ndev && ndev->flags & IFF_LOOPBACK) {
pr_info("detected loopback device\n");
dev_put(ndev);
if (!device->get_netdev)
return -EOPNOTSUPP;
ndev = device->get_netdev(device, port);
if (!ndev)
return -ENODEV;
}
} else {
gid_type = IB_GID_TYPE_IB;
}
ret = ib_find_cached_gid_by_port(device, gid, gid_type, port,
ndev, NULL);
if (ndev)
dev_put(ndev);
return ret;
}
static int cma_acquire_dev(struct rdma_id_private *id_priv,
struct rdma_id_private *listen_id_priv)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct cma_device *cma_dev;
union ib_gid gid, iboe_gid, *gidp;
int ret = -ENODEV;
u8 port;
if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
id_priv->id.ps == RDMA_PS_IPOIB)
return -EINVAL;
mutex_lock(&lock);
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&iboe_gid);
memcpy(&gid, dev_addr->src_dev_addr +
rdma_addr_gid_offset(dev_addr), sizeof gid);
if (listen_id_priv) {
cma_dev = listen_id_priv->cma_dev;
port = listen_id_priv->id.port_num;
gidp = rdma_protocol_roce(cma_dev->device, port) ?
&iboe_gid : &gid;
ret = cma_validate_port(cma_dev->device, port,
rdma_protocol_ib(cma_dev->device, port) ?
IB_GID_TYPE_IB :
listen_id_priv->gid_type, gidp,
dev_addr->dev_type,
dev_addr->bound_dev_if);
if (!ret) {
id_priv->id.port_num = port;
goto out;
}
}
list_for_each_entry(cma_dev, &dev_list, list) {
for (port = 1; port <= cma_dev->device->phys_port_cnt; ++port) {
if (listen_id_priv &&
listen_id_priv->cma_dev == cma_dev &&
listen_id_priv->id.port_num == port)
continue;
gidp = rdma_protocol_roce(cma_dev->device, port) ?
&iboe_gid : &gid;
ret = cma_validate_port(cma_dev->device, port,
rdma_protocol_ib(cma_dev->device, port) ?
IB_GID_TYPE_IB :
cma_dev->default_gid_type[port - 1],
gidp, dev_addr->dev_type,
dev_addr->bound_dev_if);
if (!ret) {
id_priv->id.port_num = port;
goto out;
}
}
}
out:
if (!ret)
cma_attach_to_dev(id_priv, cma_dev);
mutex_unlock(&lock);
return ret;
}
/*
* Select the source IB device and address to reach the destination IB address.
*/
static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev, *cur_dev;
struct sockaddr_ib *addr;
union ib_gid gid, sgid, *dgid;
u16 pkey, index;
u8 p;
int i;
cma_dev = NULL;
addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
dgid = (union ib_gid *) &addr->sib_addr;
pkey = ntohs(addr->sib_pkey);
list_for_each_entry(cur_dev, &dev_list, list) {
for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) {
if (!rdma_cap_af_ib(cur_dev->device, p))
continue;
if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
continue;
for (i = 0; !ib_get_cached_gid(cur_dev->device, p, i,
&gid, NULL);
i++) {
if (!memcmp(&gid, dgid, sizeof(gid))) {
cma_dev = cur_dev;
sgid = gid;
id_priv->id.port_num = p;
goto found;
}
if (!cma_dev && (gid.global.subnet_prefix ==
dgid->global.subnet_prefix)) {
cma_dev = cur_dev;
sgid = gid;
id_priv->id.port_num = p;
}
}
}
}
if (!cma_dev)
return -ENODEV;
found:
cma_attach_to_dev(id_priv, cma_dev);
addr = (struct sockaddr_ib *) cma_src_addr(id_priv);
memcpy(&addr->sib_addr, &sgid, sizeof sgid);
cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
return 0;
}
static void cma_deref_id(struct rdma_id_private *id_priv)
{
if (atomic_dec_and_test(&id_priv->refcount))
complete(&id_priv->comp);
}
static int cma_disable_callback(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
mutex_lock(&id_priv->handler_mutex);
if (id_priv->state != state) {
mutex_unlock(&id_priv->handler_mutex);
return -EINVAL;
}
return 0;
}
struct rdma_cm_id *rdma_create_id(struct net *net,
rdma_cm_event_handler event_handler,
void *context, enum rdma_port_space ps,
enum ib_qp_type qp_type)
{
struct rdma_id_private *id_priv;
id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
if (!id_priv)
return ERR_PTR(-ENOMEM);
id_priv->owner = task_pid_nr(current);
id_priv->state = RDMA_CM_IDLE;
id_priv->id.context = context;
id_priv->id.event_handler = event_handler;
id_priv->id.ps = ps;
id_priv->id.qp_type = qp_type;
spin_lock_init(&id_priv->lock);
mutex_init(&id_priv->qp_mutex);
init_completion(&id_priv->comp);
atomic_set(&id_priv->refcount, 1);
mutex_init(&id_priv->handler_mutex);
INIT_LIST_HEAD(&id_priv->listen_list);
INIT_LIST_HEAD(&id_priv->mc_list);
get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
id_priv->id.route.addr.dev_addr.net = get_net(net);
return &id_priv->id;
}
EXPORT_SYMBOL(rdma_create_id);
static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTR;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTS;
qp_attr.sq_psn = 0;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
return ret;
}
static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
}
int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr)
{
struct rdma_id_private *id_priv;
struct ib_qp *qp;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id->device != pd->device)
return -EINVAL;
qp = ib_create_qp(pd, qp_init_attr);
if (IS_ERR(qp))
return PTR_ERR(qp);
if (id->qp_type == IB_QPT_UD)
ret = cma_init_ud_qp(id_priv, qp);
else
ret = cma_init_conn_qp(id_priv, qp);
if (ret)
goto err;
id->qp = qp;
id_priv->qp_num = qp->qp_num;
id_priv->srq = (qp->srq != NULL);
return 0;
err:
ib_destroy_qp(qp);
return ret;
}
EXPORT_SYMBOL(rdma_create_qp);
void rdma_destroy_qp(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->qp_mutex);
ib_destroy_qp(id_priv->id.qp);
id_priv->id.qp = NULL;
mutex_unlock(&id_priv->qp_mutex);
}
EXPORT_SYMBOL(rdma_destroy_qp);
static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
union ib_gid sgid;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
/* Need to update QP attributes from default values. */
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
if (ret)
goto out;
qp_attr.qp_state = IB_QPS_RTR;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
ret = ib_query_gid(id_priv->id.device, id_priv->id.port_num,
qp_attr.ah_attr.grh.sgid_index, &sgid, NULL);
if (ret)
goto out;
BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
if (conn_param)
qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_RTS;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
if (conn_param)
qp_attr.max_rd_atomic = conn_param->initiator_depth;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_err(struct rdma_id_private *id_priv)
{
struct ib_qp_attr qp_attr;
int ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_ERR;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
struct ib_qp_attr *qp_attr, int *qp_attr_mask)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int ret;
u16 pkey;
if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
pkey = 0xffff;
else
pkey = ib_addr_get_pkey(dev_addr);
ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
pkey, &qp_attr->pkey_index);
if (ret)
return ret;
qp_attr->port_num = id_priv->id.port_num;
*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
if (id_priv->id.qp_type == IB_QPT_UD) {
ret = cma_set_qkey(id_priv, 0);
if (ret)
return ret;
qp_attr->qkey = id_priv->qkey;
*qp_attr_mask |= IB_QP_QKEY;
} else {
qp_attr->qp_access_flags = 0;
*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
}
return 0;
}
int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
int *qp_attr_mask)
{
struct rdma_id_private *id_priv;
int ret = 0;
id_priv = container_of(id, struct rdma_id_private, id);
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
else
ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
qp_attr_mask);
if (qp_attr->qp_state == IB_QPS_RTR)
qp_attr->rq_psn = id_priv->seq_num;
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
if (!id_priv->cm_id.iw) {
qp_attr->qp_access_flags = 0;
*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
} else
ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
qp_attr_mask);
} else
ret = -ENOSYS;
return ret;
}
EXPORT_SYMBOL(rdma_init_qp_attr);
static inline int cma_zero_addr(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
case AF_INET6:
return ipv6_addr_any(&((struct sockaddr_in6 *) addr)->sin6_addr);
case AF_IB:
return ib_addr_any(&((struct sockaddr_ib *) addr)->sib_addr);
default:
return 0;
}
}
static inline int cma_loopback_addr(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return ipv4_is_loopback(((struct sockaddr_in *) addr)->sin_addr.s_addr);
case AF_INET6:
return ipv6_addr_loopback(&((struct sockaddr_in6 *) addr)->sin6_addr);
case AF_IB:
return ib_addr_loopback(&((struct sockaddr_ib *) addr)->sib_addr);
default:
return 0;
}
}
static inline int cma_any_addr(struct sockaddr *addr)
{
return cma_zero_addr(addr) || cma_loopback_addr(addr);
}
static int cma_addr_cmp(struct sockaddr *src, struct sockaddr *dst)
{
if (src->sa_family != dst->sa_family)
return -1;
switch (src->sa_family) {
case AF_INET:
return ((struct sockaddr_in *) src)->sin_addr.s_addr !=
((struct sockaddr_in *) dst)->sin_addr.s_addr;
case AF_INET6:
return ipv6_addr_cmp(&((struct sockaddr_in6 *) src)->sin6_addr,
&((struct sockaddr_in6 *) dst)->sin6_addr);
default:
return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
&((struct sockaddr_ib *) dst)->sib_addr);
}
}
static __be16 cma_port(struct sockaddr *addr)
{
struct sockaddr_ib *sib;
switch (addr->sa_family) {
case AF_INET:
return ((struct sockaddr_in *) addr)->sin_port;
case AF_INET6:
return ((struct sockaddr_in6 *) addr)->sin6_port;
case AF_IB:
sib = (struct sockaddr_ib *) addr;
return htons((u16) (be64_to_cpu(sib->sib_sid) &
be64_to_cpu(sib->sib_sid_mask)));
default:
return 0;
}
}
static inline int cma_any_port(struct sockaddr *addr)
{
return !cma_port(addr);
}
static void cma_save_ib_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
struct rdma_cm_id *listen_id,
struct ib_sa_path_rec *path)
{
struct sockaddr_ib *listen_ib, *ib;
listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
if (src_addr) {
ib = (struct sockaddr_ib *)src_addr;
ib->sib_family = AF_IB;
if (path) {
ib->sib_pkey = path->pkey;
ib->sib_flowinfo = path->flow_label;
memcpy(&ib->sib_addr, &path->sgid, 16);
ib->sib_sid = path->service_id;
ib->sib_scope_id = 0;
} else {
ib->sib_pkey = listen_ib->sib_pkey;
ib->sib_flowinfo = listen_ib->sib_flowinfo;
ib->sib_addr = listen_ib->sib_addr;
ib->sib_sid = listen_ib->sib_sid;
ib->sib_scope_id = listen_ib->sib_scope_id;
}
ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
}
if (dst_addr) {
ib = (struct sockaddr_ib *)dst_addr;
ib->sib_family = AF_IB;
if (path) {
ib->sib_pkey = path->pkey;
ib->sib_flowinfo = path->flow_label;
memcpy(&ib->sib_addr, &path->dgid, 16);
}
}
}
static void cma_save_ip4_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
struct cma_hdr *hdr,
__be16 local_port)
{
struct sockaddr_in *ip4;
if (src_addr) {
ip4 = (struct sockaddr_in *)src_addr;
ip4->sin_family = AF_INET;
ip4->sin_addr.s_addr = hdr->dst_addr.ip4.addr;
ip4->sin_port = local_port;
}
if (dst_addr) {
ip4 = (struct sockaddr_in *)dst_addr;
ip4->sin_family = AF_INET;
ip4->sin_addr.s_addr = hdr->src_addr.ip4.addr;
ip4->sin_port = hdr->port;
}
}
static void cma_save_ip6_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
struct cma_hdr *hdr,
__be16 local_port)
{
struct sockaddr_in6 *ip6;
if (src_addr) {
ip6 = (struct sockaddr_in6 *)src_addr;
ip6->sin6_family = AF_INET6;
ip6->sin6_addr = hdr->dst_addr.ip6;
ip6->sin6_port = local_port;
}
if (dst_addr) {
ip6 = (struct sockaddr_in6 *)dst_addr;
ip6->sin6_family = AF_INET6;
ip6->sin6_addr = hdr->src_addr.ip6;
ip6->sin6_port = hdr->port;
}
}
static u16 cma_port_from_service_id(__be64 service_id)
{
return (u16)be64_to_cpu(service_id);
}
static int cma_save_ip_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
struct ib_cm_event *ib_event,
__be64 service_id)
{
struct cma_hdr *hdr;
__be16 port;
hdr = ib_event->private_data;
if (hdr->cma_version != CMA_VERSION)
return -EINVAL;
port = htons(cma_port_from_service_id(service_id));
switch (cma_get_ip_ver(hdr)) {
case 4:
cma_save_ip4_info(src_addr, dst_addr, hdr, port);
break;
case 6:
cma_save_ip6_info(src_addr, dst_addr, hdr, port);
break;
default:
return -EAFNOSUPPORT;
}
return 0;
}
static int cma_save_net_info(struct sockaddr *src_addr,
struct sockaddr *dst_addr,
struct rdma_cm_id *listen_id,
struct ib_cm_event *ib_event,
sa_family_t sa_family, __be64 service_id)
{
if (sa_family == AF_IB) {
if (ib_event->event == IB_CM_REQ_RECEIVED)
cma_save_ib_info(src_addr, dst_addr, listen_id,
ib_event->param.req_rcvd.primary_path);
else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
return 0;
}
return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
}
static int cma_save_req_info(const struct ib_cm_event *ib_event,
struct cma_req_info *req)
{
const struct ib_cm_req_event_param *req_param =
&ib_event->param.req_rcvd;
const struct ib_cm_sidr_req_event_param *sidr_param =
&ib_event->param.sidr_req_rcvd;
switch (ib_event->event) {
case IB_CM_REQ_RECEIVED:
req->device = req_param->listen_id->device;
req->port = req_param->port;
memcpy(&req->local_gid, &req_param->primary_path->sgid,
sizeof(req->local_gid));
req->has_gid = true;
req->service_id = req_param->primary_path->service_id;
req->pkey = be16_to_cpu(req_param->primary_path->pkey);
break;
case IB_CM_SIDR_REQ_RECEIVED:
req->device = sidr_param->listen_id->device;
req->port = sidr_param->port;
req->has_gid = false;
req->service_id = sidr_param->service_id;
req->pkey = sidr_param->pkey;
break;
default:
return -EINVAL;
}
return 0;
}
static bool validate_ipv4_net_dev(struct net_device *net_dev,
const struct sockaddr_in *dst_addr,
const struct sockaddr_in *src_addr)
{
__be32 daddr = dst_addr->sin_addr.s_addr,
saddr = src_addr->sin_addr.s_addr;
struct fib_result res;
struct flowi4 fl4;
int err;
bool ret;
if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
ipv4_is_loopback(saddr))
return false;
memset(&fl4, 0, sizeof(fl4));
fl4.flowi4_iif = net_dev->ifindex;
fl4.daddr = daddr;
fl4.saddr = saddr;
rcu_read_lock();
err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
ret = err == 0 && FIB_RES_DEV(res) == net_dev;
rcu_read_unlock();
return ret;
}
static bool validate_ipv6_net_dev(struct net_device *net_dev,
const struct sockaddr_in6 *dst_addr,
const struct sockaddr_in6 *src_addr)
{
#if IS_ENABLED(CONFIG_IPV6)
const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
IPV6_ADDR_LINKLOCAL;
struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
&src_addr->sin6_addr, net_dev->ifindex,
strict);
bool ret;
if (!rt)
return false;
ret = rt->rt6i_idev->dev == net_dev;
ip6_rt_put(rt);
return ret;
#else
return false;
#endif
}
static bool validate_net_dev(struct net_device *net_dev,
const struct sockaddr *daddr,
const struct sockaddr *saddr)
{
const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
switch (daddr->sa_family) {
case AF_INET:
return saddr->sa_family == AF_INET &&
validate_ipv4_net_dev(net_dev, daddr4, saddr4);
case AF_INET6:
return saddr->sa_family == AF_INET6 &&
validate_ipv6_net_dev(net_dev, daddr6, saddr6);
default:
return false;
}
}
static struct net_device *cma_get_net_dev(struct ib_cm_event *ib_event,
const struct cma_req_info *req)
{
struct sockaddr_storage listen_addr_storage, src_addr_storage;
struct sockaddr *listen_addr = (struct sockaddr *)&listen_addr_storage,
*src_addr = (struct sockaddr *)&src_addr_storage;
struct net_device *net_dev;
const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
int err;
err = cma_save_ip_info(listen_addr, src_addr, ib_event,
req->service_id);
if (err)
return ERR_PTR(err);
net_dev = ib_get_net_dev_by_params(req->device, req->port, req->pkey,
gid, listen_addr);
if (!net_dev)
return ERR_PTR(-ENODEV);
if (!validate_net_dev(net_dev, listen_addr, src_addr)) {
dev_put(net_dev);
return ERR_PTR(-EHOSTUNREACH);
}
return net_dev;
}
static enum rdma_port_space rdma_ps_from_service_id(__be64 service_id)
{
return (be64_to_cpu(service_id) >> 16) & 0xffff;
}
static bool cma_match_private_data(struct rdma_id_private *id_priv,
const struct cma_hdr *hdr)
{
struct sockaddr *addr = cma_src_addr(id_priv);
__be32 ip4_addr;
struct in6_addr ip6_addr;
if (cma_any_addr(addr) && !id_priv->afonly)
return true;
switch (addr->sa_family) {
case AF_INET:
ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
if (cma_get_ip_ver(hdr) != 4)
return false;
if (!cma_any_addr(addr) &&
hdr->dst_addr.ip4.addr != ip4_addr)
return false;
break;
case AF_INET6:
ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
if (cma_get_ip_ver(hdr) != 6)
return false;
if (!cma_any_addr(addr) &&
memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
return false;
break;
case AF_IB:
return true;
default:
return false;
}
return true;
}
static bool cma_protocol_roce_dev_port(struct ib_device *device, int port_num)
{
enum rdma_link_layer ll = rdma_port_get_link_layer(device, port_num);
enum rdma_transport_type transport =
rdma_node_get_transport(device->node_type);
return ll == IB_LINK_LAYER_ETHERNET && transport == RDMA_TRANSPORT_IB;
}
static bool cma_protocol_roce(const struct rdma_cm_id *id)
{
struct ib_device *device = id->device;
const int port_num = id->port_num ?: rdma_start_port(device);
return cma_protocol_roce_dev_port(device, port_num);
}
static bool cma_match_net_dev(const struct rdma_cm_id *id,
const struct net_device *net_dev,
u8 port_num)
{
const struct rdma_addr *addr = &id->route.addr;
if (!net_dev)
/* This request is an AF_IB request or a RoCE request */
return (!id->port_num || id->port_num == port_num) &&
(addr->src_addr.ss_family == AF_IB ||
cma_protocol_roce_dev_port(id->device, port_num));
return !addr->dev_addr.bound_dev_if ||
(net_eq(dev_net(net_dev), addr->dev_addr.net) &&
addr->dev_addr.bound_dev_if == net_dev->ifindex);
}
static struct rdma_id_private *cma_find_listener(
const struct rdma_bind_list *bind_list,
const struct ib_cm_id *cm_id,
const struct ib_cm_event *ib_event,
const struct cma_req_info *req,
const struct net_device *net_dev)
{
struct rdma_id_private *id_priv, *id_priv_dev;
if (!bind_list)
return ERR_PTR(-EINVAL);
hlist_for_each_entry(id_priv, &bind_list->owners, node) {
if (cma_match_private_data(id_priv, ib_event->private_data)) {
if (id_priv->id.device == cm_id->device &&
cma_match_net_dev(&id_priv->id, net_dev, req->port))
return id_priv;
list_for_each_entry(id_priv_dev,
&id_priv->listen_list,
listen_list) {
if (id_priv_dev->id.device == cm_id->device &&
cma_match_net_dev(&id_priv_dev->id, net_dev, req->port))
return id_priv_dev;
}
}
}
return ERR_PTR(-EINVAL);
}
static struct rdma_id_private *cma_id_from_event(struct ib_cm_id *cm_id,
struct ib_cm_event *ib_event,
struct net_device **net_dev)
{
struct cma_req_info req;
struct rdma_bind_list *bind_list;
struct rdma_id_private *id_priv;
int err;
err = cma_save_req_info(ib_event, &req);
if (err)
return ERR_PTR(err);
*net_dev = cma_get_net_dev(ib_event, &req);
if (IS_ERR(*net_dev)) {
if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
/* Assuming the protocol is AF_IB */
*net_dev = NULL;
} else if (cma_protocol_roce_dev_port(req.device, req.port)) {
/* TODO find the net dev matching the request parameters
* through the RoCE GID table */
*net_dev = NULL;
} else {
return ERR_CAST(*net_dev);
}
}
bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
rdma_ps_from_service_id(req.service_id),
cma_port_from_service_id(req.service_id));
id_priv = cma_find_listener(bind_list, cm_id, ib_event, &req, *net_dev);
if (IS_ERR(id_priv) && *net_dev) {
dev_put(*net_dev);
*net_dev = NULL;
}
return id_priv;
}
static inline int cma_user_data_offset(struct rdma_id_private *id_priv)
{
return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
}
static void cma_cancel_route(struct rdma_id_private *id_priv)
{
if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
if (id_priv->query)
ib_sa_cancel_query(id_priv->query_id, id_priv->query);
}
}
static void cma_cancel_listens(struct rdma_id_private *id_priv)
{
struct rdma_id_private *dev_id_priv;
/*
* Remove from listen_any_list to prevent added devices from spawning
* additional listen requests.
*/
mutex_lock(&lock);
list_del(&id_priv->list);
while (!list_empty(&id_priv->listen_list)) {
dev_id_priv = list_entry(id_priv->listen_list.next,
struct rdma_id_private, listen_list);
/* sync with device removal to avoid duplicate destruction */
list_del_init(&dev_id_priv->list);
list_del(&dev_id_priv->listen_list);
mutex_unlock(&lock);
rdma_destroy_id(&dev_id_priv->id);
mutex_lock(&lock);
}
mutex_unlock(&lock);
}
static void cma_cancel_operation(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
switch (state) {
case RDMA_CM_ADDR_QUERY:
rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
break;
case RDMA_CM_ROUTE_QUERY:
cma_cancel_route(id_priv);
break;
case RDMA_CM_LISTEN:
if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
cma_cancel_listens(id_priv);
break;
default:
break;
}
}
static void cma_release_port(struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list = id_priv->bind_list;
struct net *net = id_priv->id.route.addr.dev_addr.net;
if (!bind_list)
return;
mutex_lock(&lock);
hlist_del(&id_priv->node);
if (hlist_empty(&bind_list->owners)) {
cma_ps_remove(net, bind_list->ps, bind_list->port);
kfree(bind_list);
}
mutex_unlock(&lock);
}
static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
{
struct cma_multicast *mc;
while (!list_empty(&id_priv->mc_list)) {
mc = container_of(id_priv->mc_list.next,
struct cma_multicast, list);
list_del(&mc->list);
if (rdma_cap_ib_mcast(id_priv->cma_dev->device,
id_priv->id.port_num)) {
ib_sa_free_multicast(mc->multicast.ib);
kfree(mc);
} else {
if (mc->igmp_joined) {
struct rdma_dev_addr *dev_addr =
&id_priv->id.route.addr.dev_addr;
struct net_device *ndev = NULL;
if (dev_addr->bound_dev_if)
ndev = dev_get_by_index(&init_net,
dev_addr->bound_dev_if);
if (ndev) {
cma_igmp_send(ndev,
&mc->multicast.ib->rec.mgid,
false);
dev_put(ndev);
}
}
kref_put(&mc->mcref, release_mc);
}
}
}
void rdma_destroy_id(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
enum rdma_cm_state state;
id_priv = container_of(id, struct rdma_id_private, id);
state = cma_exch(id_priv, RDMA_CM_DESTROYING);
cma_cancel_operation(id_priv, state);
/*
* Wait for any active callback to finish. New callbacks will find
* the id_priv state set to destroying and abort.
*/
mutex_lock(&id_priv->handler_mutex);
mutex_unlock(&id_priv->handler_mutex);
if (id_priv->cma_dev) {
if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
if (id_priv->cm_id.ib)
ib_destroy_cm_id(id_priv->cm_id.ib);
} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
if (id_priv->cm_id.iw)
iw_destroy_cm_id(id_priv->cm_id.iw);
}
cma_leave_mc_groups(id_priv);
cma_release_dev(id_priv);
}
cma_release_port(id_priv);
cma_deref_id(id_priv);
wait_for_completion(&id_priv->comp);
if (id_priv->internal_id)
cma_deref_id(id_priv->id.context);
kfree(id_priv->id.route.path_rec);
put_net(id_priv->id.route.addr.dev_addr.net);
kfree(id_priv);
}
EXPORT_SYMBOL(rdma_destroy_id);
static int cma_rep_recv(struct rdma_id_private *id_priv)
{
int ret;
ret = cma_modify_qp_rtr(id_priv, NULL);
if (ret)
goto reject;
ret = cma_modify_qp_rts(id_priv, NULL);
if (ret)
goto reject;
ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
if (ret)
goto reject;
return 0;
reject:
cma_modify_qp_err(id_priv);
ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
NULL, 0, NULL, 0);
return ret;
}
static void cma_set_rep_event_data(struct rdma_cm_event *event,
struct ib_cm_rep_event_param *rep_data,
void *private_data)
{
event->param.conn.private_data = private_data;
event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
event->param.conn.responder_resources = rep_data->responder_resources;
event->param.conn.initiator_depth = rep_data->initiator_depth;
event->param.conn.flow_control = rep_data->flow_control;
event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
event->param.conn.srq = rep_data->srq;
event->param.conn.qp_num = rep_data->remote_qpn;
}
static int cma_ib_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event;
int ret = 0;
if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
cma_disable_callback(id_priv, RDMA_CM_CONNECT)) ||
(ib_event->event == IB_CM_TIMEWAIT_EXIT &&
cma_disable_callback(id_priv, RDMA_CM_DISCONNECT)))
return 0;
memset(&event, 0, sizeof event);
switch (ib_event->event) {
case IB_CM_REQ_ERROR:
case IB_CM_REP_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_REP_RECEIVED:
if (id_priv->id.qp) {
event.status = cma_rep_recv(id_priv);
event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
RDMA_CM_EVENT_ESTABLISHED;
} else {
event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
}
cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
ib_event->private_data);
break;
case IB_CM_RTU_RECEIVED:
case IB_CM_USER_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
break;
case IB_CM_DREQ_ERROR:
event.status = -ETIMEDOUT; /* fall through */
case IB_CM_DREQ_RECEIVED:
case IB_CM_DREP_RECEIVED:
if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
RDMA_CM_DISCONNECT))
goto out;
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IB_CM_TIMEWAIT_EXIT:
event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
break;
case IB_CM_MRA_RECEIVED:
/* ignore event */
goto out;
case IB_CM_REJ_RECEIVED:
cma_modify_qp_err(id_priv);
event.status = ib_event->param.rej_rcvd.reason;
event.event = RDMA_CM_EVENT_REJECTED;
event.param.conn.private_data = ib_event->private_data;
event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
break;
default:
printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static struct rdma_id_private *cma_new_conn_id(struct rdma_cm_id *listen_id,
struct ib_cm_event *ib_event,
struct net_device *net_dev)
{
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
struct rdma_route *rt;
const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
const __be64 service_id =
ib_event->param.req_rcvd.primary_path->service_id;
int ret;
id = rdma_create_id(listen_id->route.addr.dev_addr.net,
listen_id->event_handler, listen_id->context,
listen_id->ps, ib_event->param.req_rcvd.qp_type);
if (IS_ERR(id))
return NULL;
id_priv = container_of(id, struct rdma_id_private, id);
if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
(struct sockaddr *)&id->route.addr.dst_addr,
listen_id, ib_event, ss_family, service_id))
goto err;
rt = &id->route;
rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
rt->path_rec = kmalloc(sizeof *rt->path_rec * rt->num_paths,
GFP_KERNEL);
if (!rt->path_rec)
goto err;
rt->path_rec[0] = *ib_event->param.req_rcvd.primary_path;
if (rt->num_paths == 2)
rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
if (net_dev) {
ret = rdma_copy_addr(&rt->addr.dev_addr, net_dev, NULL);
if (ret)
goto err;
} else {
if (!cma_protocol_roce(listen_id) &&
cma_any_addr(cma_src_addr(id_priv))) {
rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
} else if (!cma_any_addr(cma_src_addr(id_priv))) {
ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
if (ret)
goto err;
}
}
rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static struct rdma_id_private *cma_new_udp_id(struct rdma_cm_id *listen_id,
struct ib_cm_event *ib_event,
struct net_device *net_dev)
{
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
struct net *net = listen_id->route.addr.dev_addr.net;
int ret;
id = rdma_create_id(net, listen_id->event_handler, listen_id->context,
listen_id->ps, IB_QPT_UD);
if (IS_ERR(id))
return NULL;
id_priv = container_of(id, struct rdma_id_private, id);
if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
(struct sockaddr *)&id->route.addr.dst_addr,
listen_id, ib_event, ss_family,
ib_event->param.sidr_req_rcvd.service_id))
goto err;
if (net_dev) {
ret = rdma_copy_addr(&id->route.addr.dev_addr, net_dev, NULL);
if (ret)
goto err;
} else {
if (!cma_any_addr(cma_src_addr(id_priv))) {
ret = cma_translate_addr(cma_src_addr(id_priv),
&id->route.addr.dev_addr);
if (ret)
goto err;
}
}
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static void cma_set_req_event_data(struct rdma_cm_event *event,
struct ib_cm_req_event_param *req_data,
void *private_data, int offset)
{
event->param.conn.private_data = private_data + offset;
event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
event->param.conn.responder_resources = req_data->responder_resources;
event->param.conn.initiator_depth = req_data->initiator_depth;
event->param.conn.flow_control = req_data->flow_control;
event->param.conn.retry_count = req_data->retry_count;
event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
event->param.conn.srq = req_data->srq;
event->param.conn.qp_num = req_data->remote_qpn;
}
static int cma_check_req_qp_type(struct rdma_cm_id *id, struct ib_cm_event *ib_event)
{
return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
(ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
(id->qp_type == IB_QPT_UD)) ||
(!id->qp_type));
}
static int cma_req_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event)
{
struct rdma_id_private *listen_id, *conn_id;
struct rdma_cm_event event;
struct net_device *net_dev;
int offset, ret;
listen_id = cma_id_from_event(cm_id, ib_event, &net_dev);
if (IS_ERR(listen_id))
return PTR_ERR(listen_id);
if (!cma_check_req_qp_type(&listen_id->id, ib_event)) {
ret = -EINVAL;
goto net_dev_put;
}
if (cma_disable_callback(listen_id, RDMA_CM_LISTEN)) {
ret = -ECONNABORTED;
goto net_dev_put;
}
memset(&event, 0, sizeof event);
offset = cma_user_data_offset(listen_id);
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
conn_id = cma_new_udp_id(&listen_id->id, ib_event, net_dev);
event.param.ud.private_data = ib_event->private_data + offset;
event.param.ud.private_data_len =
IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
} else {
conn_id = cma_new_conn_id(&listen_id->id, ib_event, net_dev);
cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
ib_event->private_data, offset);
}
if (!conn_id) {
ret = -ENOMEM;
goto err1;
}
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
ret = cma_acquire_dev(conn_id, listen_id);
if (ret)
goto err2;
conn_id->cm_id.ib = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_ib_handler;
/*
* Protect against the user destroying conn_id from another thread
* until we're done accessing it.
*/
atomic_inc(&conn_id->refcount);
ret = conn_id->id.event_handler(&conn_id->id, &event);
if (ret)
goto err3;
/*
* Acquire mutex to prevent user executing rdma_destroy_id()
* while we're accessing the cm_id.
*/
mutex_lock(&lock);
if (cma_comp(conn_id, RDMA_CM_CONNECT) &&
(conn_id->id.qp_type != IB_QPT_UD))
ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
mutex_unlock(&lock);
mutex_unlock(&conn_id->handler_mutex);
mutex_unlock(&listen_id->handler_mutex);
cma_deref_id(conn_id);
if (net_dev)
dev_put(net_dev);
return 0;
err3:
cma_deref_id(conn_id);
/* Destroy the CM ID by returning a non-zero value. */
conn_id->cm_id.ib = NULL;
err2:
cma_exch(conn_id, RDMA_CM_DESTROYING);
mutex_unlock(&conn_id->handler_mutex);
err1:
mutex_unlock(&listen_id->handler_mutex);
if (conn_id)
rdma_destroy_id(&conn_id->id);
net_dev_put:
if (net_dev)
dev_put(net_dev);
return ret;
}
__be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
{
if (addr->sa_family == AF_IB)
return ((struct sockaddr_ib *) addr)->sib_sid;
return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
}
EXPORT_SYMBOL(rdma_get_service_id);
static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
{
struct rdma_id_private *id_priv = iw_id->context;
struct rdma_cm_event event;
int ret = 0;
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
if (cma_disable_callback(id_priv, RDMA_CM_CONNECT))
return 0;
memset(&event, 0, sizeof event);
switch (iw_event->event) {
case IW_CM_EVENT_CLOSE:
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IW_CM_EVENT_CONNECT_REPLY:
memcpy(cma_src_addr(id_priv), laddr,
rdma_addr_size(laddr));
memcpy(cma_dst_addr(id_priv), raddr,
rdma_addr_size(raddr));
switch (iw_event->status) {
case 0:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
case -ECONNRESET:
case -ECONNREFUSED:
event.event = RDMA_CM_EVENT_REJECTED;
break;
case -ETIMEDOUT:
event.event = RDMA_CM_EVENT_UNREACHABLE;
break;
default:
event.event = RDMA_CM_EVENT_CONNECT_ERROR;
break;
}
break;
case IW_CM_EVENT_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
default:
BUG_ON(1);
}
event.status = iw_event->status;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.iw = NULL;
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return ret;
}
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static int iw_conn_req_handler(struct iw_cm_id *cm_id,
struct iw_cm_event *iw_event)
{
struct rdma_cm_id *new_cm_id;
struct rdma_id_private *listen_id, *conn_id;
struct rdma_cm_event event;
int ret;
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
listen_id = cm_id->context;
if (cma_disable_callback(listen_id, RDMA_CM_LISTEN))
return -ECONNABORTED;
/* Create a new RDMA id for the new IW CM ID */
new_cm_id = rdma_create_id(listen_id->id.route.addr.dev_addr.net,
listen_id->id.event_handler,
listen_id->id.context,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(new_cm_id)) {
ret = -ENOMEM;
goto out;
}
conn_id = container_of(new_cm_id, struct rdma_id_private, id);
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
conn_id->state = RDMA_CM_CONNECT;
ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr, NULL);
if (ret) {
mutex_unlock(&conn_id->handler_mutex);
rdma_destroy_id(new_cm_id);
goto out;
}
ret = cma_acquire_dev(conn_id, listen_id);
if (ret) {
mutex_unlock(&conn_id->handler_mutex);
rdma_destroy_id(new_cm_id);
goto out;
}
conn_id->cm_id.iw = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_iw_handler;
memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
memset(&event, 0, sizeof event);
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
/*
* Protect against the user destroying conn_id from another thread
* until we're done accessing it.
*/
atomic_inc(&conn_id->refcount);
ret = conn_id->id.event_handler(&conn_id->id, &event);
if (ret) {
/* User wants to destroy the CM ID */
conn_id->cm_id.iw = NULL;
cma_exch(conn_id, RDMA_CM_DESTROYING);
mutex_unlock(&conn_id->handler_mutex);
cma_deref_id(conn_id);
rdma_destroy_id(&conn_id->id);
goto out;
}
mutex_unlock(&conn_id->handler_mutex);
cma_deref_id(conn_id);
out:
mutex_unlock(&listen_id->handler_mutex);
return ret;
}
static int cma_ib_listen(struct rdma_id_private *id_priv)
{
struct sockaddr *addr;
struct ib_cm_id *id;
__be64 svc_id;
addr = cma_src_addr(id_priv);
svc_id = rdma_get_service_id(&id_priv->id, addr);
id = ib_cm_insert_listen(id_priv->id.device, cma_req_handler, svc_id);
if (IS_ERR(id))
return PTR_ERR(id);
id_priv->cm_id.ib = id;
return 0;
}
static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
{
int ret;
struct iw_cm_id *id;
id = iw_create_cm_id(id_priv->id.device,
iw_conn_req_handler,
id_priv);
if (IS_ERR(id))
return PTR_ERR(id);
id->tos = id_priv->tos;
id_priv->cm_id.iw = id;
memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
if (ret) {
iw_destroy_cm_id(id_priv->cm_id.iw);
id_priv->cm_id.iw = NULL;
}
return ret;
}
static int cma_listen_handler(struct rdma_cm_id *id,
struct rdma_cm_event *event)
{
struct rdma_id_private *id_priv = id->context;
id->context = id_priv->id.context;
id->event_handler = id_priv->id.event_handler;
return id_priv->id.event_handler(id, event);
}
static void cma_listen_on_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
struct rdma_id_private *dev_id_priv;
struct rdma_cm_id *id;
struct net *net = id_priv->id.route.addr.dev_addr.net;
int ret;
if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
return;
id = rdma_create_id(net, cma_listen_handler, id_priv, id_priv->id.ps,
id_priv->id.qp_type);
if (IS_ERR(id))
return;
dev_id_priv = container_of(id, struct rdma_id_private, id);
dev_id_priv->state = RDMA_CM_ADDR_BOUND;
memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
_cma_attach_to_dev(dev_id_priv, cma_dev);
list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list);
atomic_inc(&id_priv->refcount);
dev_id_priv->internal_id = 1;
dev_id_priv->afonly = id_priv->afonly;
ret = rdma_listen(id, id_priv->backlog);
if (ret)
printk(KERN_WARNING "RDMA CMA: cma_listen_on_dev, error %d, "
"listening on device %s\n", ret, cma_dev->device->name);
}
static void cma_listen_on_all(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev;
mutex_lock(&lock);
list_add_tail(&id_priv->list, &listen_any_list);
list_for_each_entry(cma_dev, &dev_list, list)
cma_listen_on_dev(id_priv, cma_dev);
mutex_unlock(&lock);
}
void rdma_set_service_type(struct rdma_cm_id *id, int tos)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
id_priv->tos = (u8) tos;
}
EXPORT_SYMBOL(rdma_set_service_type);
static void cma_query_handler(int status, struct ib_sa_path_rec *path_rec,
void *context)
{
struct cma_work *work = context;
struct rdma_route *route;
route = &work->id->id.route;
if (!status) {
route->num_paths = 1;
*route->path_rec = *path_rec;
} else {
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
work->event.status = status;
}
queue_work(cma_wq, &work->work);
}
static int cma_query_ib_route(struct rdma_id_private *id_priv, int timeout_ms,
struct cma_work *work)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct ib_sa_path_rec path_rec;
ib_sa_comp_mask comp_mask;
struct sockaddr_in6 *sin6;
struct sockaddr_ib *sib;
memset(&path_rec, 0, sizeof path_rec);
rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
path_rec.numb_path = 1;
path_rec.reversible = 1;
path_rec.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
switch (cma_family(id_priv)) {
case AF_INET:
path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
break;
case AF_IB:
sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
break;
}
id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
id_priv->id.port_num, &path_rec,
comp_mask, timeout_ms,
GFP_KERNEL, cma_query_handler,
work, &id_priv->query);
return (id_priv->query_id < 0) ? id_priv->query_id : 0;
}
static void cma_work_handler(struct work_struct *_work)
{
struct cma_work *work = container_of(_work, struct cma_work, work);
struct rdma_id_private *id_priv = work->id;
int destroy = 0;
mutex_lock(&id_priv->handler_mutex);
if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
goto out;
if (id_priv->id.event_handler(&id_priv->id, &work->event)) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
destroy = 1;
}
out:
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
if (destroy)
rdma_destroy_id(&id_priv->id);
kfree(work);
}
static void cma_ndev_work_handler(struct work_struct *_work)
{
struct cma_ndev_work *work = container_of(_work, struct cma_ndev_work, work);
struct rdma_id_private *id_priv = work->id;
int destroy = 0;
mutex_lock(&id_priv->handler_mutex);
if (id_priv->state == RDMA_CM_DESTROYING ||
id_priv->state == RDMA_CM_DEVICE_REMOVAL)
goto out;
if (id_priv->id.event_handler(&id_priv->id, &work->event)) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
destroy = 1;
}
out:
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
if (destroy)
rdma_destroy_id(&id_priv->id);
kfree(work);
}
static int cma_resolve_ib_route(struct rdma_id_private *id_priv, int timeout_ms)
{
struct rdma_route *route = &id_priv->id.route;
struct cma_work *work;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
ret = cma_query_ib_route(id_priv, timeout_ms, work);
if (ret)
goto err2;
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
err1:
kfree(work);
return ret;
}
int rdma_set_ib_paths(struct rdma_cm_id *id,
struct ib_sa_path_rec *path_rec, int num_paths)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ROUTE_RESOLVED))
return -EINVAL;
id->route.path_rec = kmemdup(path_rec, sizeof *path_rec * num_paths,
GFP_KERNEL);
if (!id->route.path_rec) {
ret = -ENOMEM;
goto err;
}
id->route.num_paths = num_paths;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_set_ib_paths);
static int cma_resolve_iw_route(struct rdma_id_private *id_priv, int timeout_ms)
{
struct cma_work *work;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
queue_work(cma_wq, &work->work);
return 0;
}
static int iboe_tos_to_sl(struct net_device *ndev, int tos)
{
int prio;
struct net_device *dev;
prio = rt_tos2priority(tos);
dev = ndev->priv_flags & IFF_802_1Q_VLAN ?
vlan_dev_real_dev(ndev) : ndev;
if (dev->num_tc)
return netdev_get_prio_tc_map(dev, prio);
#if IS_ENABLED(CONFIG_VLAN_8021Q)
if (ndev->priv_flags & IFF_802_1Q_VLAN)
return (vlan_dev_get_egress_qos_mask(ndev, prio) &
VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
#endif
return 0;
}
static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
{
struct rdma_route *route = &id_priv->id.route;
struct rdma_addr *addr = &route->addr;
struct cma_work *work;
int ret;
struct net_device *ndev = NULL;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
route->num_paths = 1;
if (addr->dev_addr.bound_dev_if) {
ndev = dev_get_by_index(&init_net, addr->dev_addr.bound_dev_if);
if (!ndev)
return -ENODEV;
if (ndev->flags & IFF_LOOPBACK) {
dev_put(ndev);
if (!id_priv->id.device->get_netdev)
return -EOPNOTSUPP;
ndev = id_priv->id.device->get_netdev(id_priv->id.device,
id_priv->id.port_num);
if (!ndev)
return -ENODEV;
}
route->path_rec->net = &init_net;
route->path_rec->ifindex = ndev->ifindex;
route->path_rec->gid_type = id_priv->gid_type;
}
if (!ndev) {
ret = -ENODEV;
goto err2;
}
memcpy(route->path_rec->dmac, addr->dev_addr.dst_dev_addr, ETH_ALEN);
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&route->path_rec->sgid);
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
&route->path_rec->dgid);
/* Use the hint from IP Stack to select GID Type */
if (route->path_rec->gid_type < ib_network_to_gid_type(addr->dev_addr.network))
route->path_rec->gid_type = ib_network_to_gid_type(addr->dev_addr.network);
if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
/* TODO: get the hoplimit from the inet/inet6 device */
route->path_rec->hop_limit = addr->dev_addr.hoplimit;
else
route->path_rec->hop_limit = 1;
route->path_rec->reversible = 1;
route->path_rec->pkey = cpu_to_be16(0xffff);
route->path_rec->mtu_selector = IB_SA_EQ;
route->path_rec->sl = iboe_tos_to_sl(ndev, id_priv->tos);
route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
route->path_rec->rate_selector = IB_SA_EQ;
route->path_rec->rate = iboe_get_rate(ndev);
dev_put(ndev);
route->path_rec->packet_life_time_selector = IB_SA_EQ;
route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
if (!route->path_rec->mtu) {
ret = -EINVAL;
goto err2;
}
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
work->event.status = 0;
queue_work(cma_wq, &work->work);
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
err1:
kfree(work);
return ret;
}
int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
return -EINVAL;
atomic_inc(&id_priv->refcount);
if (rdma_cap_ib_sa(id->device, id->port_num))
ret = cma_resolve_ib_route(id_priv, timeout_ms);
else if (rdma_protocol_roce(id->device, id->port_num))
ret = cma_resolve_iboe_route(id_priv);
else if (rdma_protocol_iwarp(id->device, id->port_num))
ret = cma_resolve_iw_route(id_priv, timeout_ms);
else
ret = -ENOSYS;
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
cma_deref_id(id_priv);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_route);
static void cma_set_loopback(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
break;
case AF_INET6:
ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
0, 0, 0, htonl(1));
break;
default:
ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
0, 0, 0, htonl(1));
break;
}
}
static int cma_bind_loopback(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev, *cur_dev;
struct ib_port_attr port_attr;
union ib_gid gid;
u16 pkey;
int ret;
u8 p;
cma_dev = NULL;
mutex_lock(&lock);
list_for_each_entry(cur_dev, &dev_list, list) {
if (cma_family(id_priv) == AF_IB &&
!rdma_cap_ib_cm(cur_dev->device, 1))
continue;
if (!cma_dev)
cma_dev = cur_dev;
for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) {
if (!ib_query_port(cur_dev->device, p, &port_attr) &&
port_attr.state == IB_PORT_ACTIVE) {
cma_dev = cur_dev;
goto port_found;
}
}
}
if (!cma_dev) {
ret = -ENODEV;
goto out;
}
p = 1;
port_found:
ret = ib_get_cached_gid(cma_dev->device, p, 0, &gid, NULL);
if (ret)
goto out;
ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
if (ret)
goto out;
id_priv->id.route.addr.dev_addr.dev_type =
(rdma_protocol_ib(cma_dev->device, p)) ?
ARPHRD_INFINIBAND : ARPHRD_ETHER;
rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
id_priv->id.port_num = p;
cma_attach_to_dev(id_priv, cma_dev);
cma_set_loopback(cma_src_addr(id_priv));
out:
mutex_unlock(&lock);
return ret;
}
static void addr_handler(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *dev_addr, void *context)
{
struct rdma_id_private *id_priv = context;
struct rdma_cm_event event;
memset(&event, 0, sizeof event);
mutex_lock(&id_priv->handler_mutex);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
RDMA_CM_ADDR_RESOLVED))
goto out;
memcpy(cma_src_addr(id_priv), src_addr, rdma_addr_size(src_addr));
if (!status && !id_priv->cma_dev)
status = cma_acquire_dev(id_priv, NULL);
if (status) {
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ADDR_BOUND))
goto out;
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = status;
} else
event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
if (id_priv->id.event_handler(&id_priv->id, &event)) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
rdma_destroy_id(&id_priv->id);
return;
}
out:
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
}
static int cma_resolve_loopback(struct rdma_id_private *id_priv)
{
struct cma_work *work;
union ib_gid gid;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!id_priv->cma_dev) {
ret = cma_bind_loopback(id_priv);
if (ret)
goto err;
}
rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ADDR_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
queue_work(cma_wq, &work->work);
return 0;
err:
kfree(work);
return ret;
}
static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
{
struct cma_work *work;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!id_priv->cma_dev) {
ret = cma_resolve_ib_dev(id_priv);
if (ret)
goto err;
}
rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ADDR_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
queue_work(cma_wq, &work->work);
return 0;
err:
kfree(work);
return ret;
}
static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
struct sockaddr *dst_addr)
{
if (!src_addr || !src_addr->sa_family) {
src_addr = (struct sockaddr *) &id->route.addr.src_addr;
src_addr->sa_family = dst_addr->sa_family;
if (dst_addr->sa_family == AF_INET6) {
struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr;
struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr;
src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id;
} else if (dst_addr->sa_family == AF_IB) {
((struct sockaddr_ib *) src_addr)->sib_pkey =
((struct sockaddr_ib *) dst_addr)->sib_pkey;
}
}
return rdma_bind_addr(id, src_addr);
}
int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
struct sockaddr *dst_addr, int timeout_ms)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id_priv->state == RDMA_CM_IDLE) {
ret = cma_bind_addr(id, src_addr, dst_addr);
if (ret)
return ret;
}
if (cma_family(id_priv) != dst_addr->sa_family)
return -EINVAL;
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY))
return -EINVAL;
atomic_inc(&id_priv->refcount);
memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
if (cma_any_addr(dst_addr)) {
ret = cma_resolve_loopback(id_priv);
} else {
if (dst_addr->sa_family == AF_IB) {
ret = cma_resolve_ib_addr(id_priv);
} else {
ret = rdma_resolve_ip(&addr_client, cma_src_addr(id_priv),
dst_addr, &id->route.addr.dev_addr,
timeout_ms, addr_handler, id_priv);
}
}
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
cma_deref_id(id_priv);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_addr);
int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if (reuse || id_priv->state == RDMA_CM_IDLE) {
id_priv->reuseaddr = reuse;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_reuseaddr);
int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
id_priv->options |= (1 << CMA_OPTION_AFONLY);
id_priv->afonly = afonly;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_afonly);
static void cma_bind_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv)
{
struct sockaddr *addr;
struct sockaddr_ib *sib;
u64 sid, mask;
__be16 port;
addr = cma_src_addr(id_priv);
port = htons(bind_list->port);
switch (addr->sa_family) {
case AF_INET:
((struct sockaddr_in *) addr)->sin_port = port;
break;
case AF_INET6:
((struct sockaddr_in6 *) addr)->sin6_port = port;
break;
case AF_IB:
sib = (struct sockaddr_ib *) addr;
sid = be64_to_cpu(sib->sib_sid);
mask = be64_to_cpu(sib->sib_sid_mask);
sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
sib->sib_sid_mask = cpu_to_be64(~0ULL);
break;
}
id_priv->bind_list = bind_list;
hlist_add_head(&id_priv->node, &bind_list->owners);
}
static int cma_alloc_port(enum rdma_port_space ps,
struct rdma_id_private *id_priv, unsigned short snum)
{
struct rdma_bind_list *bind_list;
int ret;
bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
if (!bind_list)
return -ENOMEM;
ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
snum);
if (ret < 0)
goto err;
bind_list->ps = ps;
bind_list->port = (unsigned short)ret;
cma_bind_port(bind_list, id_priv);
return 0;
err:
kfree(bind_list);
return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
}
static int cma_alloc_any_port(enum rdma_port_space ps,
struct rdma_id_private *id_priv)
{
static unsigned int last_used_port;
int low, high, remaining;
unsigned int rover;
struct net *net = id_priv->id.route.addr.dev_addr.net;
inet_get_local_port_range(net, &low, &high);
remaining = (high - low) + 1;
rover = prandom_u32() % remaining + low;
retry:
if (last_used_port != rover &&
!cma_ps_find(net, ps, (unsigned short)rover)) {
int ret = cma_alloc_port(ps, id_priv, rover);
/*
* Remember previously used port number in order to avoid
* re-using same port immediately after it is closed.
*/
if (!ret)
last_used_port = rover;
if (ret != -EADDRNOTAVAIL)
return ret;
}
if (--remaining) {
rover++;
if ((rover < low) || (rover > high))
rover = low;
goto retry;
}
return -EADDRNOTAVAIL;
}
/*
* Check that the requested port is available. This is called when trying to
* bind to a specific port, or when trying to listen on a bound port. In
* the latter case, the provided id_priv may already be on the bind_list, but
* we still need to check that it's okay to start listening.
*/
static int cma_check_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv, uint8_t reuseaddr)
{
struct rdma_id_private *cur_id;
struct sockaddr *addr, *cur_addr;
addr = cma_src_addr(id_priv);
hlist_for_each_entry(cur_id, &bind_list->owners, node) {
if (id_priv == cur_id)
continue;
if ((cur_id->state != RDMA_CM_LISTEN) && reuseaddr &&
cur_id->reuseaddr)
continue;
cur_addr = cma_src_addr(cur_id);
if (id_priv->afonly && cur_id->afonly &&
(addr->sa_family != cur_addr->sa_family))
continue;
if (cma_any_addr(addr) || cma_any_addr(cur_addr))
return -EADDRNOTAVAIL;
if (!cma_addr_cmp(addr, cur_addr))
return -EADDRINUSE;
}
return 0;
}
static int cma_use_port(enum rdma_port_space ps,
struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list;
unsigned short snum;
int ret;
snum = ntohs(cma_port(cma_src_addr(id_priv)));
if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
if (!bind_list) {
ret = cma_alloc_port(ps, id_priv, snum);
} else {
ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
if (!ret)
cma_bind_port(bind_list, id_priv);
}
return ret;
}
static int cma_bind_listen(struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list = id_priv->bind_list;
int ret = 0;
mutex_lock(&lock);
if (bind_list->owners.first->next)
ret = cma_check_port(bind_list, id_priv, 0);
mutex_unlock(&lock);
return ret;
}
static enum rdma_port_space cma_select_inet_ps(
struct rdma_id_private *id_priv)
{
switch (id_priv->id.ps) {
case RDMA_PS_TCP:
case RDMA_PS_UDP:
case RDMA_PS_IPOIB:
case RDMA_PS_IB:
return id_priv->id.ps;
default:
return 0;
}
}
static enum rdma_port_space cma_select_ib_ps(struct rdma_id_private *id_priv)
{
enum rdma_port_space ps = 0;
struct sockaddr_ib *sib;
u64 sid_ps, mask, sid;
sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
sid = be64_to_cpu(sib->sib_sid) & mask;
if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
sid_ps = RDMA_IB_IP_PS_IB;
ps = RDMA_PS_IB;
} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
(sid == (RDMA_IB_IP_PS_TCP & mask))) {
sid_ps = RDMA_IB_IP_PS_TCP;
ps = RDMA_PS_TCP;
} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
(sid == (RDMA_IB_IP_PS_UDP & mask))) {
sid_ps = RDMA_IB_IP_PS_UDP;
ps = RDMA_PS_UDP;
}
if (ps) {
sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
be64_to_cpu(sib->sib_sid_mask));
}
return ps;
}
static int cma_get_port(struct rdma_id_private *id_priv)
{
enum rdma_port_space ps;
int ret;
if (cma_family(id_priv) != AF_IB)
ps = cma_select_inet_ps(id_priv);
else
ps = cma_select_ib_ps(id_priv);
if (!ps)
return -EPROTONOSUPPORT;
mutex_lock(&lock);
if (cma_any_port(cma_src_addr(id_priv)))
ret = cma_alloc_any_port(ps, id_priv);
else
ret = cma_use_port(ps, id_priv);
mutex_unlock(&lock);
return ret;
}
static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
struct sockaddr *addr)
{
#if IS_ENABLED(CONFIG_IPV6)
struct sockaddr_in6 *sin6;
if (addr->sa_family != AF_INET6)
return 0;
sin6 = (struct sockaddr_in6 *) addr;
if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
return 0;
if (!sin6->sin6_scope_id)
return -EINVAL;
dev_addr->bound_dev_if = sin6->sin6_scope_id;
#endif
return 0;
}
int rdma_listen(struct rdma_cm_id *id, int backlog)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id_priv->state == RDMA_CM_IDLE) {
id->route.addr.src_addr.ss_family = AF_INET;
ret = rdma_bind_addr(id, cma_src_addr(id_priv));
if (ret)
return ret;
}
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN))
return -EINVAL;
if (id_priv->reuseaddr) {
ret = cma_bind_listen(id_priv);
if (ret)
goto err;
}
id_priv->backlog = backlog;
if (id->device) {
if (rdma_cap_ib_cm(id->device, 1)) {
ret = cma_ib_listen(id_priv);
if (ret)
goto err;
} else if (rdma_cap_iw_cm(id->device, 1)) {
ret = cma_iw_listen(id_priv, backlog);
if (ret)
goto err;
} else {
ret = -ENOSYS;
goto err;
}
} else
cma_listen_on_all(id_priv);
return 0;
err:
id_priv->backlog = 0;
cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
return ret;
}
EXPORT_SYMBOL(rdma_listen);
int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv;
int ret;
if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
addr->sa_family != AF_IB)
return -EAFNOSUPPORT;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
return -EINVAL;
ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
if (ret)
goto err1;
memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
if (!cma_any_addr(addr)) {
ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
if (ret)
goto err1;
ret = cma_acquire_dev(id_priv, NULL);
if (ret)
goto err1;
}
if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
if (addr->sa_family == AF_INET)
id_priv->afonly = 1;
#if IS_ENABLED(CONFIG_IPV6)
else if (addr->sa_family == AF_INET6) {
struct net *net = id_priv->id.route.addr.dev_addr.net;
id_priv->afonly = net->ipv6.sysctl.bindv6only;
}
#endif
}
ret = cma_get_port(id_priv);
if (ret)
goto err2;
return 0;
err2:
if (id_priv->cma_dev)
cma_release_dev(id_priv);
err1:
cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
return ret;
}
EXPORT_SYMBOL(rdma_bind_addr);
static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
{
struct cma_hdr *cma_hdr;
cma_hdr = hdr;
cma_hdr->cma_version = CMA_VERSION;
if (cma_family(id_priv) == AF_INET) {
struct sockaddr_in *src4, *dst4;
src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
cma_set_ip_ver(cma_hdr, 4);
cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
cma_hdr->port = src4->sin_port;
} else if (cma_family(id_priv) == AF_INET6) {
struct sockaddr_in6 *src6, *dst6;
src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
cma_set_ip_ver(cma_hdr, 6);
cma_hdr->src_addr.ip6 = src6->sin6_addr;
cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
cma_hdr->port = src6->sin6_port;
}
return 0;
}
static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event;
struct ib_cm_sidr_rep_event_param *rep = &ib_event->param.sidr_rep_rcvd;
int ret = 0;
if (cma_disable_callback(id_priv, RDMA_CM_CONNECT))
return 0;
memset(&event, 0, sizeof event);
switch (ib_event->event) {
case IB_CM_SIDR_REQ_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_SIDR_REP_RECEIVED:
event.param.ud.private_data = ib_event->private_data;
event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
if (rep->status != IB_SIDR_SUCCESS) {
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = ib_event->param.sidr_rep_rcvd.status;
break;
}
ret = cma_set_qkey(id_priv, rep->qkey);
if (ret) {
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = ret;
break;
}
ib_init_ah_from_path(id_priv->id.device, id_priv->id.port_num,
id_priv->id.route.path_rec,
&event.param.ud.ah_attr);
event.param.ud.qp_num = rep->qpn;
event.param.ud.qkey = rep->qkey;
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.status = 0;
break;
default:
printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_sidr_req_param req;
struct ib_cm_id *id;
void *private_data;
int offset, ret;
memset(&req, 0, sizeof req);
offset = cma_user_data_offset(id_priv);
req.private_data_len = offset + conn_param->private_data_len;
if (req.private_data_len < conn_param->private_data_len)
return -EINVAL;
if (req.private_data_len) {
private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!private_data)
return -ENOMEM;
} else {
private_data = NULL;
}
if (conn_param->private_data && conn_param->private_data_len)
memcpy(private_data + offset, conn_param->private_data,
conn_param->private_data_len);
if (private_data) {
ret = cma_format_hdr(private_data, id_priv);
if (ret)
goto out;
req.private_data = private_data;
}
id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
req.path = id_priv->id.route.path_rec;
req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
req.max_cm_retries = CMA_MAX_CM_RETRIES;
ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
if (ret) {
ib_destroy_cm_id(id_priv->cm_id.ib);
id_priv->cm_id.ib = NULL;
}
out:
kfree(private_data);
return ret;
}
static int cma_connect_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_req_param req;
struct rdma_route *route;
void *private_data;
struct ib_cm_id *id;
int offset, ret;
memset(&req, 0, sizeof req);
offset = cma_user_data_offset(id_priv);
req.private_data_len = offset + conn_param->private_data_len;
if (req.private_data_len < conn_param->private_data_len)
return -EINVAL;
if (req.private_data_len) {
private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!private_data)
return -ENOMEM;
} else {
private_data = NULL;
}
if (conn_param->private_data && conn_param->private_data_len)
memcpy(private_data + offset, conn_param->private_data,
conn_param->private_data_len);
id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
route = &id_priv->id.route;
if (private_data) {
ret = cma_format_hdr(private_data, id_priv);
if (ret)
goto out;
req.private_data = private_data;
}
req.primary_path = &route->path_rec[0];
if (route->num_paths == 2)
req.alternate_path = &route->path_rec[1];
req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
req.qp_num = id_priv->qp_num;
req.qp_type = id_priv->id.qp_type;
req.starting_psn = id_priv->seq_num;
req.responder_resources = conn_param->responder_resources;
req.initiator_depth = conn_param->initiator_depth;
req.flow_control = conn_param->flow_control;
req.retry_count = min_t(u8, 7, conn_param->retry_count);
req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.max_cm_retries = CMA_MAX_CM_RETRIES;
req.srq = id_priv->srq ? 1 : 0;
ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
out:
if (ret && !IS_ERR(id)) {
ib_destroy_cm_id(id);
id_priv->cm_id.ib = NULL;
}
kfree(private_data);
return ret;
}
static int cma_connect_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_id *cm_id;
int ret;
struct iw_cm_conn_param iw_param;
cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
if (IS_ERR(cm_id))
return PTR_ERR(cm_id);
cm_id->tos = id_priv->tos;
id_priv->cm_id.iw = cm_id;
memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
rdma_addr_size(cma_dst_addr(id_priv)));
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
if (conn_param) {
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
} else {
memset(&iw_param, 0, sizeof iw_param);
iw_param.qpn = id_priv->qp_num;
}
ret = iw_cm_connect(cm_id, &iw_param);
out:
if (ret) {
iw_destroy_cm_id(cm_id);
id_priv->cm_id.iw = NULL;
}
return ret;
}
int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
return -EINVAL;
if (!id->qp) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (id->qp_type == IB_QPT_UD)
ret = cma_resolve_ib_udp(id_priv, conn_param);
else
ret = cma_connect_ib(id_priv, conn_param);
} else if (rdma_cap_iw_cm(id->device, id->port_num))
ret = cma_connect_iw(id_priv, conn_param);
else
ret = -ENOSYS;
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_connect);
static int cma_accept_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_rep_param rep;
int ret;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
ret = cma_modify_qp_rts(id_priv, conn_param);
if (ret)
goto out;
memset(&rep, 0, sizeof rep);
rep.qp_num = id_priv->qp_num;
rep.starting_psn = id_priv->seq_num;
rep.private_data = conn_param->private_data;
rep.private_data_len = conn_param->private_data_len;
rep.responder_resources = conn_param->responder_resources;
rep.initiator_depth = conn_param->initiator_depth;
rep.failover_accepted = 0;
rep.flow_control = conn_param->flow_control;
rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
rep.srq = id_priv->srq ? 1 : 0;
ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
out:
return ret;
}
static int cma_accept_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_conn_param iw_param;
int ret;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
return ret;
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
if (id_priv->id.qp) {
iw_param.qpn = id_priv->qp_num;
} else
iw_param.qpn = conn_param->qp_num;
return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
}
static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
enum ib_cm_sidr_status status, u32 qkey,
const void *private_data, int private_data_len)
{
struct ib_cm_sidr_rep_param rep;
int ret;
memset(&rep, 0, sizeof rep);
rep.status = status;
if (status == IB_SIDR_SUCCESS) {
ret = cma_set_qkey(id_priv, qkey);
if (ret)
return ret;
rep.qp_num = id_priv->qp_num;
rep.qkey = id_priv->qkey;
}
rep.private_data = private_data;
rep.private_data_len = private_data_len;
return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
}
int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
id_priv->owner = task_pid_nr(current);
if (!cma_comp(id_priv, RDMA_CM_CONNECT))
return -EINVAL;
if (!id->qp && conn_param) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (id->qp_type == IB_QPT_UD) {
if (conn_param)
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
conn_param->qkey,
conn_param->private_data,
conn_param->private_data_len);
else
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
0, NULL, 0);
} else {
if (conn_param)
ret = cma_accept_ib(id_priv, conn_param);
else
ret = cma_rep_recv(id_priv);
}
} else if (rdma_cap_iw_cm(id->device, id->port_num))
ret = cma_accept_iw(id_priv, conn_param);
else
ret = -ENOSYS;
if (ret)
goto reject;
return 0;
reject:
cma_modify_qp_err(id_priv);
rdma_reject(id, NULL, 0);
return ret;
}
EXPORT_SYMBOL(rdma_accept);
int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
switch (id->device->node_type) {
case RDMA_NODE_IB_CA:
ret = ib_cm_notify(id_priv->cm_id.ib, event);
break;
default:
ret = 0;
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_notify);
int rdma_reject(struct rdma_cm_id *id, const void *private_data,
u8 private_data_len)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
if (rdma_cap_ib_cm(id->device, id->port_num)) {
if (id->qp_type == IB_QPT_UD)
ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
private_data, private_data_len);
else
ret = ib_send_cm_rej(id_priv->cm_id.ib,
IB_CM_REJ_CONSUMER_DEFINED, NULL,
0, private_data, private_data_len);
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = iw_cm_reject(id_priv->cm_id.iw,
private_data, private_data_len);
} else
ret = -ENOSYS;
return ret;
}
EXPORT_SYMBOL(rdma_reject);
int rdma_disconnect(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
if (rdma_cap_ib_cm(id->device, id->port_num)) {
ret = cma_modify_qp_err(id_priv);
if (ret)
goto out;
/* Initiate or respond to a disconnect. */
if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0))
ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0);
} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
} else
ret = -EINVAL;
out:
return ret;
}
EXPORT_SYMBOL(rdma_disconnect);
static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc = multicast->context;
struct rdma_cm_event event;
int ret;
id_priv = mc->id_priv;
if (cma_disable_callback(id_priv, RDMA_CM_ADDR_BOUND) &&
cma_disable_callback(id_priv, RDMA_CM_ADDR_RESOLVED))
return 0;
if (!status)
status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
mutex_lock(&id_priv->qp_mutex);
if (!status && id_priv->id.qp)
status = ib_attach_mcast(id_priv->id.qp, &multicast->rec.mgid,
be16_to_cpu(multicast->rec.mlid));
mutex_unlock(&id_priv->qp_mutex);
memset(&event, 0, sizeof event);
event.status = status;
event.param.ud.private_data = mc->context;
if (!status) {
struct rdma_dev_addr *dev_addr =
&id_priv->id.route.addr.dev_addr;
struct net_device *ndev =
dev_get_by_index(&init_net, dev_addr->bound_dev_if);
enum ib_gid_type gid_type =
id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
rdma_start_port(id_priv->cma_dev->device)];
event.event = RDMA_CM_EVENT_MULTICAST_JOIN;
ib_init_ah_from_mcmember(id_priv->id.device,
id_priv->id.port_num, &multicast->rec,
ndev, gid_type,
&event.param.ud.ah_attr);
event.param.ud.qp_num = 0xFFFFFF;
event.param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
if (ndev)
dev_put(ndev);
} else
event.event = RDMA_CM_EVENT_MULTICAST_ERROR;
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return 0;
}
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
static void cma_set_mgid(struct rdma_id_private *id_priv,
struct sockaddr *addr, union ib_gid *mgid)
{
unsigned char mc_map[MAX_ADDR_LEN];
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct sockaddr_in *sin = (struct sockaddr_in *) addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if ((addr->sa_family == AF_INET6) &&
((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
0xFF10A01B)) {
/* IPv6 address is an SA assigned MGID. */
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else if (addr->sa_family == AF_IB) {
memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
} else if ((addr->sa_family == AF_INET6)) {
ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
} else {
ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
}
}
static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct ib_sa_mcmember_rec rec;
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
ib_sa_comp_mask comp_mask;
int ret;
ib_addr_get_mgid(dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
&rec.mgid, &rec);
if (ret)
return ret;
ret = cma_set_qkey(id_priv, 0);
if (ret)
return ret;
cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
rec.qkey = cpu_to_be32(id_priv->qkey);
rdma_addr_get_sgid(dev_addr, &rec.port_gid);
rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
rec.join_state = 1;
comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
IB_SA_MCMEMBER_REC_FLOW_LABEL |
IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
if (id_priv->id.ps == RDMA_PS_IPOIB)
comp_mask |= IB_SA_MCMEMBER_REC_RATE |
IB_SA_MCMEMBER_REC_RATE_SELECTOR |
IB_SA_MCMEMBER_REC_MTU_SELECTOR |
IB_SA_MCMEMBER_REC_MTU |
IB_SA_MCMEMBER_REC_HOP_LIMIT;
mc->multicast.ib = ib_sa_join_multicast(&sa_client, id_priv->id.device,
id_priv->id.port_num, &rec,
comp_mask, GFP_KERNEL,
cma_ib_mc_handler, mc);
return PTR_ERR_OR_ZERO(mc->multicast.ib);
}
static void iboe_mcast_work_handler(struct work_struct *work)
{
struct iboe_mcast_work *mw = container_of(work, struct iboe_mcast_work, work);
struct cma_multicast *mc = mw->mc;
struct ib_sa_multicast *m = mc->multicast.ib;
mc->multicast.ib->context = mc;
cma_ib_mc_handler(0, m);
kref_put(&mc->mcref, release_mc);
kfree(mw);
}
static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid)
{
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if (addr->sa_family == AF_INET6) {
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else {
mgid->raw[0] = 0xff;
mgid->raw[1] = 0x0e;
mgid->raw[2] = 0;
mgid->raw[3] = 0;
mgid->raw[4] = 0;
mgid->raw[5] = 0;
mgid->raw[6] = 0;
mgid->raw[7] = 0;
mgid->raw[8] = 0;
mgid->raw[9] = 0;
mgid->raw[10] = 0xff;
mgid->raw[11] = 0xff;
*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
}
}
static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct iboe_mcast_work *work;
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int err = 0;
struct sockaddr *addr = (struct sockaddr *)&mc->addr;
struct net_device *ndev = NULL;
enum ib_gid_type gid_type;
if (cma_zero_addr((struct sockaddr *)&mc->addr))
return -EINVAL;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
mc->multicast.ib = kzalloc(sizeof(struct ib_sa_multicast), GFP_KERNEL);
if (!mc->multicast.ib) {
err = -ENOMEM;
goto out1;
}
cma_iboe_set_mgid(addr, &mc->multicast.ib->rec.mgid);
mc->multicast.ib->rec.pkey = cpu_to_be16(0xffff);
if (id_priv->id.ps == RDMA_PS_UDP)
mc->multicast.ib->rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
if (dev_addr->bound_dev_if)
ndev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
if (!ndev) {
err = -ENODEV;
goto out2;
}
mc->multicast.ib->rec.rate = iboe_get_rate(ndev);
mc->multicast.ib->rec.hop_limit = 1;
mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->mtu);
gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
rdma_start_port(id_priv->cma_dev->device)];
if (addr->sa_family == AF_INET) {
if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
err = cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid,
true);
if (!err) {
mc->igmp_joined = true;
mc->multicast.ib->rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
}
} else {
if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
err = -ENOTSUPP;
}
dev_put(ndev);
if (err || !mc->multicast.ib->rec.mtu) {
if (!err)
err = -EINVAL;
goto out2;
}
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&mc->multicast.ib->rec.port_gid);
work->id = id_priv;
work->mc = mc;
INIT_WORK(&work->work, iboe_mcast_work_handler);
kref_get(&mc->mcref);
queue_work(cma_wq, &work->work);
return 0;
out2:
kfree(mc->multicast.ib);
out1:
kfree(work);
return err;
}
int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
void *context)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp(id_priv, RDMA_CM_ADDR_BOUND) &&
!cma_comp(id_priv, RDMA_CM_ADDR_RESOLVED))
return -EINVAL;
mc = kmalloc(sizeof *mc, GFP_KERNEL);
if (!mc)
return -ENOMEM;
memcpy(&mc->addr, addr, rdma_addr_size(addr));
mc->context = context;
mc->id_priv = id_priv;
mc->igmp_joined = false;
spin_lock(&id_priv->lock);
list_add(&mc->list, &id_priv->mc_list);
spin_unlock(&id_priv->lock);
if (rdma_protocol_roce(id->device, id->port_num)) {
kref_init(&mc->mcref);
ret = cma_iboe_join_multicast(id_priv, mc);
} else if (rdma_cap_ib_mcast(id->device, id->port_num))
ret = cma_join_ib_multicast(id_priv, mc);
else
ret = -ENOSYS;
if (ret) {
spin_lock_irq(&id_priv->lock);
list_del(&mc->list);
spin_unlock_irq(&id_priv->lock);
kfree(mc);
}
return ret;
}
EXPORT_SYMBOL(rdma_join_multicast);
void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irq(&id_priv->lock);
list_for_each_entry(mc, &id_priv->mc_list, list) {
if (!memcmp(&mc->addr, addr, rdma_addr_size(addr))) {
list_del(&mc->list);
spin_unlock_irq(&id_priv->lock);
if (id->qp)
ib_detach_mcast(id->qp,
&mc->multicast.ib->rec.mgid,
be16_to_cpu(mc->multicast.ib->rec.mlid));
BUG_ON(id_priv->cma_dev->device != id->device);
if (rdma_cap_ib_mcast(id->device, id->port_num)) {
ib_sa_free_multicast(mc->multicast.ib);
kfree(mc);
} else if (rdma_protocol_roce(id->device, id->port_num)) {
if (mc->igmp_joined) {
struct rdma_dev_addr *dev_addr =
&id->route.addr.dev_addr;
struct net_device *ndev = NULL;
if (dev_addr->bound_dev_if)
ndev = dev_get_by_index(&init_net,
dev_addr->bound_dev_if);
if (ndev) {
cma_igmp_send(ndev,
&mc->multicast.ib->rec.mgid,
false);
dev_put(ndev);
}
mc->igmp_joined = false;
}
kref_put(&mc->mcref, release_mc);
}
return;
}
}
spin_unlock_irq(&id_priv->lock);
}
EXPORT_SYMBOL(rdma_leave_multicast);
static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr;
struct cma_ndev_work *work;
dev_addr = &id_priv->id.route.addr.dev_addr;
if ((dev_addr->bound_dev_if == ndev->ifindex) &&
(net_eq(dev_net(ndev), dev_addr->net)) &&
memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
printk(KERN_INFO "RDMA CM addr change for ndev %s used by id %p\n",
ndev->name, &id_priv->id);
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
INIT_WORK(&work->work, cma_ndev_work_handler);
work->id = id_priv;
work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
atomic_inc(&id_priv->refcount);
queue_work(cma_wq, &work->work);
}
return 0;
}
static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
int ret = NOTIFY_DONE;
if (event != NETDEV_BONDING_FAILOVER)
return NOTIFY_DONE;
if (!(ndev->flags & IFF_MASTER) || !(ndev->priv_flags & IFF_BONDING))
return NOTIFY_DONE;
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list)
list_for_each_entry(id_priv, &cma_dev->id_list, list) {
ret = cma_netdev_change(ndev, id_priv);
if (ret)
goto out;
}
out:
mutex_unlock(&lock);
return ret;
}
static struct notifier_block cma_nb = {
.notifier_call = cma_netdev_callback
};
static void cma_add_one(struct ib_device *device)
{
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
unsigned int i;
unsigned long supported_gids = 0;
cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL);
if (!cma_dev)
return;
cma_dev->device = device;
cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
sizeof(*cma_dev->default_gid_type),
GFP_KERNEL);
if (!cma_dev->default_gid_type) {
kfree(cma_dev);
return;
}
for (i = rdma_start_port(device); i <= rdma_end_port(device); i++) {
supported_gids = roce_gid_type_mask_support(device, i);
WARN_ON(!supported_gids);
cma_dev->default_gid_type[i - rdma_start_port(device)] =
find_first_bit(&supported_gids, BITS_PER_LONG);
}
init_completion(&cma_dev->comp);
atomic_set(&cma_dev->refcount, 1);
INIT_LIST_HEAD(&cma_dev->id_list);
ib_set_client_data(device, &cma_client, cma_dev);
mutex_lock(&lock);
list_add_tail(&cma_dev->list, &dev_list);
list_for_each_entry(id_priv, &listen_any_list, list)
cma_listen_on_dev(id_priv, cma_dev);
mutex_unlock(&lock);
}
static int cma_remove_id_dev(struct rdma_id_private *id_priv)
{
struct rdma_cm_event event;
enum rdma_cm_state state;
int ret = 0;
/* Record that we want to remove the device */
state = cma_exch(id_priv, RDMA_CM_DEVICE_REMOVAL);
if (state == RDMA_CM_DESTROYING)
return 0;
cma_cancel_operation(id_priv, state);
mutex_lock(&id_priv->handler_mutex);
/* Check for destruction from another callback. */
if (!cma_comp(id_priv, RDMA_CM_DEVICE_REMOVAL))
goto out;
memset(&event, 0, sizeof event);
event.event = RDMA_CM_EVENT_DEVICE_REMOVAL;
ret = id_priv->id.event_handler(&id_priv->id, &event);
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static void cma_process_remove(struct cma_device *cma_dev)
{
struct rdma_id_private *id_priv;
int ret;
mutex_lock(&lock);
while (!list_empty(&cma_dev->id_list)) {
id_priv = list_entry(cma_dev->id_list.next,
struct rdma_id_private, list);
list_del(&id_priv->listen_list);
list_del_init(&id_priv->list);
atomic_inc(&id_priv->refcount);
mutex_unlock(&lock);
ret = id_priv->internal_id ? 1 : cma_remove_id_dev(id_priv);
cma_deref_id(id_priv);
if (ret)
rdma_destroy_id(&id_priv->id);
mutex_lock(&lock);
}
mutex_unlock(&lock);
cma_deref_dev(cma_dev);
wait_for_completion(&cma_dev->comp);
}
static void cma_remove_one(struct ib_device *device, void *client_data)
{
struct cma_device *cma_dev = client_data;
if (!cma_dev)
return;
mutex_lock(&lock);
list_del(&cma_dev->list);
mutex_unlock(&lock);
cma_process_remove(cma_dev);
kfree(cma_dev->default_gid_type);
kfree(cma_dev);
}
static int cma_get_id_stats(struct sk_buff *skb, struct netlink_callback *cb)
{
struct nlmsghdr *nlh;
struct rdma_cm_id_stats *id_stats;
struct rdma_id_private *id_priv;
struct rdma_cm_id *id = NULL;
struct cma_device *cma_dev;
int i_dev = 0, i_id = 0;
/*
* We export all of the IDs as a sequence of messages. Each
* ID gets its own netlink message.
*/
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list) {
if (i_dev < cb->args[0]) {
i_dev++;
continue;
}
i_id = 0;
list_for_each_entry(id_priv, &cma_dev->id_list, list) {
if (i_id < cb->args[1]) {
i_id++;
continue;
}
id_stats = ibnl_put_msg(skb, &nlh, cb->nlh->nlmsg_seq,
sizeof *id_stats, RDMA_NL_RDMA_CM,
RDMA_NL_RDMA_CM_ID_STATS,
NLM_F_MULTI);
if (!id_stats)
goto out;
memset(id_stats, 0, sizeof *id_stats);
id = &id_priv->id;
id_stats->node_type = id->route.addr.dev_addr.dev_type;
id_stats->port_num = id->port_num;
id_stats->bound_dev_if =
id->route.addr.dev_addr.bound_dev_if;
if (ibnl_put_attr(skb, nlh,
rdma_addr_size(cma_src_addr(id_priv)),
cma_src_addr(id_priv),
RDMA_NL_RDMA_CM_ATTR_SRC_ADDR))
goto out;
if (ibnl_put_attr(skb, nlh,
rdma_addr_size(cma_src_addr(id_priv)),
cma_dst_addr(id_priv),
RDMA_NL_RDMA_CM_ATTR_DST_ADDR))
goto out;
id_stats->pid = id_priv->owner;
id_stats->port_space = id->ps;
id_stats->cm_state = id_priv->state;
id_stats->qp_num = id_priv->qp_num;
id_stats->qp_type = id->qp_type;
i_id++;
}
cb->args[1] = 0;
i_dev++;
}
out:
mutex_unlock(&lock);
cb->args[0] = i_dev;
cb->args[1] = i_id;
return skb->len;
}
static const struct ibnl_client_cbs cma_cb_table[] = {
[RDMA_NL_RDMA_CM_ID_STATS] = { .dump = cma_get_id_stats,
.module = THIS_MODULE },
};
static int cma_init_net(struct net *net)
{
struct cma_pernet *pernet = cma_pernet(net);
idr_init(&pernet->tcp_ps);
idr_init(&pernet->udp_ps);
idr_init(&pernet->ipoib_ps);
idr_init(&pernet->ib_ps);
return 0;
}
static void cma_exit_net(struct net *net)
{
struct cma_pernet *pernet = cma_pernet(net);
idr_destroy(&pernet->tcp_ps);
idr_destroy(&pernet->udp_ps);
idr_destroy(&pernet->ipoib_ps);
idr_destroy(&pernet->ib_ps);
}
static struct pernet_operations cma_pernet_operations = {
.init = cma_init_net,
.exit = cma_exit_net,
.id = &cma_pernet_id,
.size = sizeof(struct cma_pernet),
};
static int __init cma_init(void)
{
int ret;
cma_wq = create_singlethread_workqueue("rdma_cm");
if (!cma_wq)
return -ENOMEM;
ret = register_pernet_subsys(&cma_pernet_operations);
if (ret)
goto err_wq;
ib_sa_register_client(&sa_client);
rdma_addr_register_client(&addr_client);
register_netdevice_notifier(&cma_nb);
ret = ib_register_client(&cma_client);
if (ret)
goto err;
if (ibnl_add_client(RDMA_NL_RDMA_CM, RDMA_NL_RDMA_CM_NUM_OPS, cma_cb_table))
printk(KERN_WARNING "RDMA CMA: failed to add netlink callback\n");
cma_configfs_init();
return 0;
err:
unregister_netdevice_notifier(&cma_nb);
rdma_addr_unregister_client(&addr_client);
ib_sa_unregister_client(&sa_client);
err_wq:
destroy_workqueue(cma_wq);
return ret;
}
static void __exit cma_cleanup(void)
{
cma_configfs_exit();
ibnl_remove_client(RDMA_NL_RDMA_CM);
ib_unregister_client(&cma_client);
unregister_netdevice_notifier(&cma_nb);
rdma_addr_unregister_client(&addr_client);
ib_sa_unregister_client(&sa_client);
unregister_pernet_subsys(&cma_pernet_operations);
destroy_workqueue(cma_wq);
}
module_init(cma_init);
module_exit(cma_cleanup);