linux/arch/powerpc/kvm/e500.c
Scott Wood b59049720d KVM: PPC: Paravirtualize SPRG4-7, ESR, PIR, MASn
This allows additional registers to be accessed by the guest
in PR-mode KVM without trapping.

SPRG4-7 are readable from userspace.  On booke, KVM will sync
these registers when it enters the guest, so that accesses from
guest userspace will work.  The guest kernel, OTOH, must consistently
use either the real registers or the shared area between exits.  This
also applies to the already-paravirted SPRG3.

On non-booke, it's not clear to what extent SPRG4-7 are supported
(they're not architected for book3s, but exist on at least some classic
chips).  They are copied in the get/set regs ioctls, but I do not see any
non-booke emulation.  I also do not see any syncing with real registers
(in PR-mode) including the user-readable SPRG3.  This patch should not
make that situation any worse.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:26 +02:00

261 lines
6.2 KiB
C

/*
* Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, <yu.liu@freescale.com>
*
* Description:
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/export.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/tlbflush.h>
#include <asm/kvm_e500.h>
#include <asm/kvm_ppc.h>
#include "booke.h"
#include "e500_tlb.h"
void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
kvmppc_e500_tlb_load(vcpu, cpu);
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
kvmppc_e500_tlb_put(vcpu);
#ifdef CONFIG_SPE
if (vcpu->arch.shadow_msr & MSR_SPE)
kvmppc_vcpu_disable_spe(vcpu);
#endif
}
int kvmppc_core_check_processor_compat(void)
{
int r;
if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
r = 0;
else
r = -ENOTSUPP;
return r;
}
int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
kvmppc_e500_tlb_setup(vcpu_e500);
/* Registers init */
vcpu->arch.pvr = mfspr(SPRN_PVR);
vcpu_e500->svr = mfspr(SPRN_SVR);
vcpu->arch.cpu_type = KVM_CPU_E500V2;
return 0;
}
/* 'linear_address' is actually an encoding of AS|PID|EADDR . */
int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
int index;
gva_t eaddr;
u8 pid;
u8 as;
eaddr = tr->linear_address;
pid = (tr->linear_address >> 32) & 0xff;
as = (tr->linear_address >> 40) & 0x1;
index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
if (index < 0) {
tr->valid = 0;
return 0;
}
tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
/* XXX what does "writeable" and "usermode" even mean? */
tr->valid = 1;
return 0;
}
void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
KVM_SREGS_E_PM;
sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
sregs->u.e.impl.fsl.features = 0;
sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
sregs->u.e.mas0 = vcpu->arch.shared->mas0;
sregs->u.e.mas1 = vcpu->arch.shared->mas1;
sregs->u.e.mas2 = vcpu->arch.shared->mas2;
sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
sregs->u.e.mas4 = vcpu->arch.shared->mas4;
sregs->u.e.mas6 = vcpu->arch.shared->mas6;
sregs->u.e.mmucfg = mfspr(SPRN_MMUCFG);
sregs->u.e.tlbcfg[0] = vcpu_e500->tlb0cfg;
sregs->u.e.tlbcfg[1] = vcpu_e500->tlb1cfg;
sregs->u.e.tlbcfg[2] = 0;
sregs->u.e.tlbcfg[3] = 0;
sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
sregs->u.e.ivor_high[3] =
vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
kvmppc_get_sregs_ivor(vcpu, sregs);
}
int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
}
if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
vcpu->arch.shared->mas0 = sregs->u.e.mas0;
vcpu->arch.shared->mas1 = sregs->u.e.mas1;
vcpu->arch.shared->mas2 = sregs->u.e.mas2;
vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
vcpu->arch.shared->mas4 = sregs->u.e.mas4;
vcpu->arch.shared->mas6 = sregs->u.e.mas6;
}
if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
return 0;
if (sregs->u.e.features & KVM_SREGS_E_SPE) {
vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
sregs->u.e.ivor_high[0];
vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
sregs->u.e.ivor_high[1];
vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
sregs->u.e.ivor_high[2];
}
if (sregs->u.e.features & KVM_SREGS_E_PM) {
vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
sregs->u.e.ivor_high[3];
}
return kvmppc_set_sregs_ivor(vcpu, sregs);
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvmppc_vcpu_e500 *vcpu_e500;
struct kvm_vcpu *vcpu;
int err;
vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu_e500) {
err = -ENOMEM;
goto out;
}
vcpu = &vcpu_e500->vcpu;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_vcpu;
err = kvmppc_e500_tlb_init(vcpu_e500);
if (err)
goto uninit_vcpu;
vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
if (!vcpu->arch.shared)
goto uninit_tlb;
return vcpu;
uninit_tlb:
kvmppc_e500_tlb_uninit(vcpu_e500);
uninit_vcpu:
kvm_vcpu_uninit(vcpu);
free_vcpu:
kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
out:
return ERR_PTR(err);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
free_page((unsigned long)vcpu->arch.shared);
kvm_vcpu_uninit(vcpu);
kvmppc_e500_tlb_uninit(vcpu_e500);
kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
}
static int __init kvmppc_e500_init(void)
{
int r, i;
unsigned long ivor[3];
unsigned long max_ivor = 0;
r = kvmppc_booke_init();
if (r)
return r;
/* copy extra E500 exception handlers */
ivor[0] = mfspr(SPRN_IVOR32);
ivor[1] = mfspr(SPRN_IVOR33);
ivor[2] = mfspr(SPRN_IVOR34);
for (i = 0; i < 3; i++) {
if (ivor[i] > max_ivor)
max_ivor = ivor[i];
memcpy((void *)kvmppc_booke_handlers + ivor[i],
kvmppc_handlers_start + (i + 16) * kvmppc_handler_len,
kvmppc_handler_len);
}
flush_icache_range(kvmppc_booke_handlers,
kvmppc_booke_handlers + max_ivor + kvmppc_handler_len);
return kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
}
static void __exit kvmppc_e500_exit(void)
{
kvmppc_booke_exit();
}
module_init(kvmppc_e500_init);
module_exit(kvmppc_e500_exit);