linux/net/rds/ib.c
Jason Gunthorpe e945c653c8 RDMA: Split kernel-only global device caps from uverbs device caps
Split out flags from ib_device::device_cap_flags that are only used
internally to the kernel into kernel_cap_flags that is not part of the
uapi. This limits the device_cap_flags to being the same bitmap that will
be copied to userspace.

This cleanly splits out the uverbs flags from the kernel flags to avoid
confusion in the flags bitmap.

Add some short comments describing which each of the kernel flags is
connected to. Remove unused kernel flags.

Link: https://lore.kernel.org/r/0-v2-22c19e565eef+139a-kern_caps_jgg@nvidia.com
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2022-04-06 15:02:13 -03:00

608 lines
17 KiB
C

/*
* Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/in.h>
#include <linux/if.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/if_arp.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <net/addrconf.h>
#include "rds_single_path.h"
#include "rds.h"
#include "ib.h"
#include "ib_mr.h"
static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
static atomic_t rds_ib_unloading;
module_param(rds_ib_mr_1m_pool_size, int, 0444);
MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
module_param(rds_ib_mr_8k_pool_size, int, 0444);
MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
module_param(rds_ib_retry_count, int, 0444);
MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
/*
* we have a clumsy combination of RCU and a rwsem protecting this list
* because it is used both in the get_mr fast path and while blocking in
* the FMR flushing path.
*/
DECLARE_RWSEM(rds_ib_devices_lock);
struct list_head rds_ib_devices;
/* NOTE: if also grabbing ibdev lock, grab this first */
DEFINE_SPINLOCK(ib_nodev_conns_lock);
LIST_HEAD(ib_nodev_conns);
static void rds_ib_nodev_connect(void)
{
struct rds_ib_connection *ic;
spin_lock(&ib_nodev_conns_lock);
list_for_each_entry(ic, &ib_nodev_conns, ib_node)
rds_conn_connect_if_down(ic->conn);
spin_unlock(&ib_nodev_conns_lock);
}
static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
{
struct rds_ib_connection *ic;
unsigned long flags;
spin_lock_irqsave(&rds_ibdev->spinlock, flags);
list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
rds_conn_path_drop(&ic->conn->c_path[0], true);
spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
}
/*
* rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
* from interrupt context so we push freing off into a work struct in krdsd.
*/
static void rds_ib_dev_free(struct work_struct *work)
{
struct rds_ib_ipaddr *i_ipaddr, *i_next;
struct rds_ib_device *rds_ibdev = container_of(work,
struct rds_ib_device, free_work);
if (rds_ibdev->mr_8k_pool)
rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
if (rds_ibdev->mr_1m_pool)
rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
if (rds_ibdev->pd)
ib_dealloc_pd(rds_ibdev->pd);
list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
list_del(&i_ipaddr->list);
kfree(i_ipaddr);
}
kfree(rds_ibdev->vector_load);
kfree(rds_ibdev);
}
void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
{
BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
if (refcount_dec_and_test(&rds_ibdev->refcount))
queue_work(rds_wq, &rds_ibdev->free_work);
}
static int rds_ib_add_one(struct ib_device *device)
{
struct rds_ib_device *rds_ibdev;
int ret;
/* Only handle IB (no iWARP) devices */
if (device->node_type != RDMA_NODE_IB_CA)
return -EOPNOTSUPP;
/* Device must support FRWR */
if (!(device->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
return -EOPNOTSUPP;
rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
ibdev_to_node(device));
if (!rds_ibdev)
return -ENOMEM;
spin_lock_init(&rds_ibdev->spinlock);
refcount_set(&rds_ibdev->refcount, 1);
INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
INIT_LIST_HEAD(&rds_ibdev->conn_list);
rds_ibdev->max_wrs = device->attrs.max_qp_wr;
rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
rds_ibdev->odp_capable =
!!(device->attrs.kernel_cap_flags &
IBK_ON_DEMAND_PAGING) &&
!!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
IB_ODP_SUPPORT_WRITE) &&
!!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
IB_ODP_SUPPORT_READ);
rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
min_t(unsigned int, (device->attrs.max_mr / 2),
rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
sizeof(int),
GFP_KERNEL);
if (!rds_ibdev->vector_load) {
pr_err("RDS/IB: %s failed to allocate vector memory\n",
__func__);
ret = -ENOMEM;
goto put_dev;
}
rds_ibdev->dev = device;
rds_ibdev->pd = ib_alloc_pd(device, 0);
if (IS_ERR(rds_ibdev->pd)) {
ret = PTR_ERR(rds_ibdev->pd);
rds_ibdev->pd = NULL;
goto put_dev;
}
rds_ibdev->mr_1m_pool =
rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
if (IS_ERR(rds_ibdev->mr_1m_pool)) {
ret = PTR_ERR(rds_ibdev->mr_1m_pool);
rds_ibdev->mr_1m_pool = NULL;
goto put_dev;
}
rds_ibdev->mr_8k_pool =
rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
if (IS_ERR(rds_ibdev->mr_8k_pool)) {
ret = PTR_ERR(rds_ibdev->mr_8k_pool);
rds_ibdev->mr_8k_pool = NULL;
goto put_dev;
}
rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
device->attrs.max_mr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
rds_ibdev->max_1m_mrs, rds_ibdev->max_8k_mrs);
pr_info("RDS/IB: %s: added\n", device->name);
down_write(&rds_ib_devices_lock);
list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
up_write(&rds_ib_devices_lock);
refcount_inc(&rds_ibdev->refcount);
ib_set_client_data(device, &rds_ib_client, rds_ibdev);
rds_ib_nodev_connect();
return 0;
put_dev:
rds_ib_dev_put(rds_ibdev);
return ret;
}
/*
* New connections use this to find the device to associate with the
* connection. It's not in the fast path so we're not concerned about the
* performance of the IB call. (As of this writing, it uses an interrupt
* blocking spinlock to serialize walking a per-device list of all registered
* clients.)
*
* RCU is used to handle incoming connections racing with device teardown.
* Rather than use a lock to serialize removal from the client_data and
* getting a new reference, we use an RCU grace period. The destruction
* path removes the device from client_data and then waits for all RCU
* readers to finish.
*
* A new connection can get NULL from this if its arriving on a
* device that is in the process of being removed.
*/
struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
{
struct rds_ib_device *rds_ibdev;
rcu_read_lock();
rds_ibdev = ib_get_client_data(device, &rds_ib_client);
if (rds_ibdev)
refcount_inc(&rds_ibdev->refcount);
rcu_read_unlock();
return rds_ibdev;
}
/*
* The IB stack is letting us know that a device is going away. This can
* happen if the underlying HCA driver is removed or if PCI hotplug is removing
* the pci function, for example.
*
* This can be called at any time and can be racing with any other RDS path.
*/
static void rds_ib_remove_one(struct ib_device *device, void *client_data)
{
struct rds_ib_device *rds_ibdev = client_data;
rds_ib_dev_shutdown(rds_ibdev);
/* stop connection attempts from getting a reference to this device. */
ib_set_client_data(device, &rds_ib_client, NULL);
down_write(&rds_ib_devices_lock);
list_del_rcu(&rds_ibdev->list);
up_write(&rds_ib_devices_lock);
/*
* This synchronize rcu is waiting for readers of both the ib
* client data and the devices list to finish before we drop
* both of those references.
*/
synchronize_rcu();
rds_ib_dev_put(rds_ibdev);
rds_ib_dev_put(rds_ibdev);
}
struct ib_client rds_ib_client = {
.name = "rds_ib",
.add = rds_ib_add_one,
.remove = rds_ib_remove_one
};
static int rds_ib_conn_info_visitor(struct rds_connection *conn,
void *buffer)
{
struct rds_info_rdma_connection *iinfo = buffer;
struct rds_ib_connection *ic = conn->c_transport_data;
/* We will only ever look at IB transports */
if (conn->c_trans != &rds_ib_transport)
return 0;
if (conn->c_isv6)
return 0;
iinfo->src_addr = conn->c_laddr.s6_addr32[3];
iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
if (ic) {
iinfo->tos = conn->c_tos;
iinfo->sl = ic->i_sl;
}
memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
if (rds_conn_state(conn) == RDS_CONN_UP) {
struct rds_ib_device *rds_ibdev;
rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
(union ib_gid *)&iinfo->dst_gid);
rds_ibdev = ic->rds_ibdev;
iinfo->max_send_wr = ic->i_send_ring.w_nr;
iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
iinfo->max_send_sge = rds_ibdev->max_sge;
rds_ib_get_mr_info(rds_ibdev, iinfo);
iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs);
}
return 1;
}
#if IS_ENABLED(CONFIG_IPV6)
/* IPv6 version of rds_ib_conn_info_visitor(). */
static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
void *buffer)
{
struct rds6_info_rdma_connection *iinfo6 = buffer;
struct rds_ib_connection *ic = conn->c_transport_data;
/* We will only ever look at IB transports */
if (conn->c_trans != &rds_ib_transport)
return 0;
iinfo6->src_addr = conn->c_laddr;
iinfo6->dst_addr = conn->c_faddr;
if (ic) {
iinfo6->tos = conn->c_tos;
iinfo6->sl = ic->i_sl;
}
memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
if (rds_conn_state(conn) == RDS_CONN_UP) {
struct rds_ib_device *rds_ibdev;
rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
(union ib_gid *)&iinfo6->dst_gid);
rds_ibdev = ic->rds_ibdev;
iinfo6->max_send_wr = ic->i_send_ring.w_nr;
iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
iinfo6->max_send_sge = rds_ibdev->max_sge;
rds6_ib_get_mr_info(rds_ibdev, iinfo6);
iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs);
}
return 1;
}
#endif
static void rds_ib_ic_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
rds_for_each_conn_info(sock, len, iter, lens,
rds_ib_conn_info_visitor,
buffer,
sizeof(struct rds_info_rdma_connection));
}
#if IS_ENABLED(CONFIG_IPV6)
/* IPv6 version of rds_ib_ic_info(). */
static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
struct rds_info_iterator *iter,
struct rds_info_lengths *lens)
{
u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
rds_for_each_conn_info(sock, len, iter, lens,
rds6_ib_conn_info_visitor,
buffer,
sizeof(struct rds6_info_rdma_connection));
}
#endif
/*
* Early RDS/IB was built to only bind to an address if there is an IPoIB
* device with that address set.
*
* If it were me, I'd advocate for something more flexible. Sending and
* receiving should be device-agnostic. Transports would try and maintain
* connections between peers who have messages queued. Userspace would be
* allowed to influence which paths have priority. We could call userspace
* asserting this policy "routing".
*/
static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
__u32 scope_id)
{
int ret;
struct rdma_cm_id *cm_id;
#if IS_ENABLED(CONFIG_IPV6)
struct sockaddr_in6 sin6;
#endif
struct sockaddr_in sin;
struct sockaddr *sa;
bool isv4;
isv4 = ipv6_addr_v4mapped(addr);
/* Create a CMA ID and try to bind it. This catches both
* IB and iWARP capable NICs.
*/
cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
NULL, RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(cm_id))
return PTR_ERR(cm_id);
if (isv4) {
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = addr->s6_addr32[3];
sa = (struct sockaddr *)&sin;
} else {
#if IS_ENABLED(CONFIG_IPV6)
memset(&sin6, 0, sizeof(sin6));
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = *addr;
sin6.sin6_scope_id = scope_id;
sa = (struct sockaddr *)&sin6;
/* XXX Do a special IPv6 link local address check here. The
* reason is that rdma_bind_addr() always succeeds with IPv6
* link local address regardless it is indeed configured in a
* system.
*/
if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
struct net_device *dev;
if (scope_id == 0) {
ret = -EADDRNOTAVAIL;
goto out;
}
/* Use init_net for now as RDS is not network
* name space aware.
*/
dev = dev_get_by_index(&init_net, scope_id);
if (!dev) {
ret = -EADDRNOTAVAIL;
goto out;
}
if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
dev_put(dev);
ret = -EADDRNOTAVAIL;
goto out;
}
dev_put(dev);
}
#else
ret = -EADDRNOTAVAIL;
goto out;
#endif
}
/* rdma_bind_addr will only succeed for IB & iWARP devices */
ret = rdma_bind_addr(cm_id, sa);
/* due to this, we will claim to support iWARP devices unless we
check node_type. */
if (ret || !cm_id->device ||
cm_id->device->node_type != RDMA_NODE_IB_CA)
ret = -EADDRNOTAVAIL;
rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
addr, scope_id, ret,
cm_id->device ? cm_id->device->node_type : -1);
out:
rdma_destroy_id(cm_id);
return ret;
}
static void rds_ib_unregister_client(void)
{
ib_unregister_client(&rds_ib_client);
/* wait for rds_ib_dev_free() to complete */
flush_workqueue(rds_wq);
}
static void rds_ib_set_unloading(void)
{
atomic_set(&rds_ib_unloading, 1);
}
static bool rds_ib_is_unloading(struct rds_connection *conn)
{
struct rds_conn_path *cp = &conn->c_path[0];
return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
atomic_read(&rds_ib_unloading) != 0);
}
void rds_ib_exit(void)
{
rds_ib_set_unloading();
synchronize_rcu();
rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
#if IS_ENABLED(CONFIG_IPV6)
rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
#endif
rds_ib_unregister_client();
rds_ib_destroy_nodev_conns();
rds_ib_sysctl_exit();
rds_ib_recv_exit();
rds_trans_unregister(&rds_ib_transport);
rds_ib_mr_exit();
}
static u8 rds_ib_get_tos_map(u8 tos)
{
/* 1:1 user to transport map for RDMA transport.
* In future, if custom map is desired, hook can export
* user configurable map.
*/
return tos;
}
struct rds_transport rds_ib_transport = {
.laddr_check = rds_ib_laddr_check,
.xmit_path_complete = rds_ib_xmit_path_complete,
.xmit = rds_ib_xmit,
.xmit_rdma = rds_ib_xmit_rdma,
.xmit_atomic = rds_ib_xmit_atomic,
.recv_path = rds_ib_recv_path,
.conn_alloc = rds_ib_conn_alloc,
.conn_free = rds_ib_conn_free,
.conn_path_connect = rds_ib_conn_path_connect,
.conn_path_shutdown = rds_ib_conn_path_shutdown,
.inc_copy_to_user = rds_ib_inc_copy_to_user,
.inc_free = rds_ib_inc_free,
.cm_initiate_connect = rds_ib_cm_initiate_connect,
.cm_handle_connect = rds_ib_cm_handle_connect,
.cm_connect_complete = rds_ib_cm_connect_complete,
.stats_info_copy = rds_ib_stats_info_copy,
.exit = rds_ib_exit,
.get_mr = rds_ib_get_mr,
.sync_mr = rds_ib_sync_mr,
.free_mr = rds_ib_free_mr,
.flush_mrs = rds_ib_flush_mrs,
.get_tos_map = rds_ib_get_tos_map,
.t_owner = THIS_MODULE,
.t_name = "infiniband",
.t_unloading = rds_ib_is_unloading,
.t_type = RDS_TRANS_IB
};
int rds_ib_init(void)
{
int ret;
INIT_LIST_HEAD(&rds_ib_devices);
ret = rds_ib_mr_init();
if (ret)
goto out;
ret = ib_register_client(&rds_ib_client);
if (ret)
goto out_mr_exit;
ret = rds_ib_sysctl_init();
if (ret)
goto out_ibreg;
ret = rds_ib_recv_init();
if (ret)
goto out_sysctl;
rds_trans_register(&rds_ib_transport);
rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
#if IS_ENABLED(CONFIG_IPV6)
rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
#endif
goto out;
out_sysctl:
rds_ib_sysctl_exit();
out_ibreg:
rds_ib_unregister_client();
out_mr_exit:
rds_ib_mr_exit();
out:
return ret;
}
MODULE_LICENSE("GPL");