linux/mm/hugetlb.c
Ryan Roberts 935d4f0c6d mm: hugetlb: add huge page size param to set_huge_pte_at()
Patch series "Fix set_huge_pte_at() panic on arm64", v2.

This series fixes a bug in arm64's implementation of set_huge_pte_at(),
which can result in an unprivileged user causing a kernel panic.  The
problem was triggered when running the new uffd poison mm selftest for
HUGETLB memory.  This test (and the uffd poison feature) was merged for
v6.5-rc7.

Ideally, I'd like to get this fix in for v6.6 and I've cc'ed stable
(correctly this time) to get it backported to v6.5, where the issue first
showed up.


Description of Bug
==================

arm64's huge pte implementation supports multiple huge page sizes, some of
which are implemented in the page table with multiple contiguous entries. 
So set_huge_pte_at() needs to work out how big the logical pte is, so that
it can also work out how many physical ptes (or pmds) need to be written. 
It previously did this by grabbing the folio out of the pte and querying
its size.

However, there are cases when the pte being set is actually a swap entry. 
But this also used to work fine, because for huge ptes, we only ever saw
migration entries and hwpoison entries.  And both of these types of swap
entries have a PFN embedded, so the code would grab that and everything
still worked out.

But over time, more calls to set_huge_pte_at() have been added that set
swap entry types that do not embed a PFN.  And this causes the code to go
bang.  The triggering case is for the uffd poison test, commit
99aa77215a ("selftests/mm: add uffd unit test for UFFDIO_POISON"), which
causes a PTE_MARKER_POISONED swap entry to be set, coutesey of commit
8a13897fb0 ("mm: userfaultfd: support UFFDIO_POISON for hugetlbfs") -
added in v6.5-rc7.  Although review shows that there are other call sites
that set PTE_MARKER_UFFD_WP (which also has no PFN), these don't trigger
on arm64 because arm64 doesn't support UFFD WP.

If CONFIG_DEBUG_VM is enabled, we do at least get a BUG(), but otherwise,
it will dereference a bad pointer in page_folio():

    static inline struct folio *hugetlb_swap_entry_to_folio(swp_entry_t entry)
    {
        VM_BUG_ON(!is_migration_entry(entry) && !is_hwpoison_entry(entry));

        return page_folio(pfn_to_page(swp_offset_pfn(entry)));
    }


Fix
===

The simplest fix would have been to revert the dodgy cleanup commit
18f3962953 ("mm: hugetlb: kill set_huge_swap_pte_at()"), but since
things have moved on, this would have required an audit of all the new
set_huge_pte_at() call sites to see if they should be converted to
set_huge_swap_pte_at().  As per the original intent of the change, it
would also leave us open to future bugs when people invariably get it
wrong and call the wrong helper.

So instead, I've added a huge page size parameter to set_huge_pte_at(). 
This means that the arm64 code has the size in all cases.  It's a bigger
change, due to needing to touch the arches that implement the function,
but it is entirely mechanical, so in my view, low risk.

I've compile-tested all touched arches; arm64, parisc, powerpc, riscv,
s390, sparc (and additionally x86_64).  I've additionally booted and run
mm selftests against arm64, where I observe the uffd poison test is fixed,
and there are no other regressions.


This patch (of 2):

In order to fix a bug, arm64 needs to be told the size of the huge page
for which the pte is being set in set_huge_pte_at().  Provide for this by
adding an `unsigned long sz` parameter to the function.  This follows the
same pattern as huge_pte_clear().

This commit makes the required interface modifications to the core mm as
well as all arches that implement this function (arm64, parisc, powerpc,
riscv, s390, sparc).  The actual arm64 bug will be fixed in a separate
commit.

No behavioral changes intended.

Link: https://lkml.kernel.org/r/20230922115804.2043771-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20230922115804.2043771-2-ryan.roberts@arm.com
Fixes: 8a13897fb0 ("mm: userfaultfd: support UFFDIO_POISON for hugetlbfs")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>	[powerpc 8xx]
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>	[vmalloc change]
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org>	[6.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-29 17:20:47 -07:00

7461 lines
205 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Generic hugetlb support.
* (C) Nadia Yvette Chambers, April 2004
*/
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/mmu_notifier.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/compiler.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
#include <linux/memblock.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <linux/sched/mm.h>
#include <linux/mmdebug.h>
#include <linux/sched/signal.h>
#include <linux/rmap.h>
#include <linux/string_helpers.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/jhash.h>
#include <linux/numa.h>
#include <linux/llist.h>
#include <linux/cma.h>
#include <linux/migrate.h>
#include <linux/nospec.h>
#include <linux/delayacct.h>
#include <linux/memory.h>
#include <linux/mm_inline.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <linux/io.h>
#include <linux/hugetlb.h>
#include <linux/hugetlb_cgroup.h>
#include <linux/node.h>
#include <linux/page_owner.h>
#include "internal.h"
#include "hugetlb_vmemmap.h"
int hugetlb_max_hstate __read_mostly;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
#ifdef CONFIG_CMA
static struct cma *hugetlb_cma[MAX_NUMNODES];
static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
{
return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
1 << order);
}
#else
static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
{
return false;
}
#endif
static unsigned long hugetlb_cma_size __initdata;
__initdata LIST_HEAD(huge_boot_pages);
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
static bool __initdata parsed_valid_hugepagesz = true;
static bool __initdata parsed_default_hugepagesz;
static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
/*
* Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
* free_huge_pages, and surplus_huge_pages.
*/
DEFINE_SPINLOCK(hugetlb_lock);
/*
* Serializes faults on the same logical page. This is used to
* prevent spurious OOMs when the hugepage pool is fully utilized.
*/
static int num_fault_mutexes;
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);
static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
static inline bool subpool_is_free(struct hugepage_subpool *spool)
{
if (spool->count)
return false;
if (spool->max_hpages != -1)
return spool->used_hpages == 0;
if (spool->min_hpages != -1)
return spool->rsv_hpages == spool->min_hpages;
return true;
}
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
unsigned long irq_flags)
{
spin_unlock_irqrestore(&spool->lock, irq_flags);
/* If no pages are used, and no other handles to the subpool
* remain, give up any reservations based on minimum size and
* free the subpool */
if (subpool_is_free(spool)) {
if (spool->min_hpages != -1)
hugetlb_acct_memory(spool->hstate,
-spool->min_hpages);
kfree(spool);
}
}
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
long min_hpages)
{
struct hugepage_subpool *spool;
spool = kzalloc(sizeof(*spool), GFP_KERNEL);
if (!spool)
return NULL;
spin_lock_init(&spool->lock);
spool->count = 1;
spool->max_hpages = max_hpages;
spool->hstate = h;
spool->min_hpages = min_hpages;
if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
kfree(spool);
return NULL;
}
spool->rsv_hpages = min_hpages;
return spool;
}
void hugepage_put_subpool(struct hugepage_subpool *spool)
{
unsigned long flags;
spin_lock_irqsave(&spool->lock, flags);
BUG_ON(!spool->count);
spool->count--;
unlock_or_release_subpool(spool, flags);
}
/*
* Subpool accounting for allocating and reserving pages.
* Return -ENOMEM if there are not enough resources to satisfy the
* request. Otherwise, return the number of pages by which the
* global pools must be adjusted (upward). The returned value may
* only be different than the passed value (delta) in the case where
* a subpool minimum size must be maintained.
*/
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
long delta)
{
long ret = delta;
if (!spool)
return ret;
spin_lock_irq(&spool->lock);
if (spool->max_hpages != -1) { /* maximum size accounting */
if ((spool->used_hpages + delta) <= spool->max_hpages)
spool->used_hpages += delta;
else {
ret = -ENOMEM;
goto unlock_ret;
}
}
/* minimum size accounting */
if (spool->min_hpages != -1 && spool->rsv_hpages) {
if (delta > spool->rsv_hpages) {
/*
* Asking for more reserves than those already taken on
* behalf of subpool. Return difference.
*/
ret = delta - spool->rsv_hpages;
spool->rsv_hpages = 0;
} else {
ret = 0; /* reserves already accounted for */
spool->rsv_hpages -= delta;
}
}
unlock_ret:
spin_unlock_irq(&spool->lock);
return ret;
}
/*
* Subpool accounting for freeing and unreserving pages.
* Return the number of global page reservations that must be dropped.
* The return value may only be different than the passed value (delta)
* in the case where a subpool minimum size must be maintained.
*/
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
long delta)
{
long ret = delta;
unsigned long flags;
if (!spool)
return delta;
spin_lock_irqsave(&spool->lock, flags);
if (spool->max_hpages != -1) /* maximum size accounting */
spool->used_hpages -= delta;
/* minimum size accounting */
if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
if (spool->rsv_hpages + delta <= spool->min_hpages)
ret = 0;
else
ret = spool->rsv_hpages + delta - spool->min_hpages;
spool->rsv_hpages += delta;
if (spool->rsv_hpages > spool->min_hpages)
spool->rsv_hpages = spool->min_hpages;
}
/*
* If hugetlbfs_put_super couldn't free spool due to an outstanding
* quota reference, free it now.
*/
unlock_or_release_subpool(spool, flags);
return ret;
}
static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
return HUGETLBFS_SB(inode->i_sb)->spool;
}
static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
return subpool_inode(file_inode(vma->vm_file));
}
/*
* hugetlb vma_lock helper routines
*/
void hugetlb_vma_lock_read(struct vm_area_struct *vma)
{
if (__vma_shareable_lock(vma)) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
down_read(&vma_lock->rw_sema);
}
}
void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
{
if (__vma_shareable_lock(vma)) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
up_read(&vma_lock->rw_sema);
}
}
void hugetlb_vma_lock_write(struct vm_area_struct *vma)
{
if (__vma_shareable_lock(vma)) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
down_write(&vma_lock->rw_sema);
}
}
void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
{
if (__vma_shareable_lock(vma)) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
up_write(&vma_lock->rw_sema);
}
}
int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
{
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
if (!__vma_shareable_lock(vma))
return 1;
return down_write_trylock(&vma_lock->rw_sema);
}
void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
{
if (__vma_shareable_lock(vma)) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
lockdep_assert_held(&vma_lock->rw_sema);
}
}
void hugetlb_vma_lock_release(struct kref *kref)
{
struct hugetlb_vma_lock *vma_lock = container_of(kref,
struct hugetlb_vma_lock, refs);
kfree(vma_lock);
}
static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
{
struct vm_area_struct *vma = vma_lock->vma;
/*
* vma_lock structure may or not be released as a result of put,
* it certainly will no longer be attached to vma so clear pointer.
* Semaphore synchronizes access to vma_lock->vma field.
*/
vma_lock->vma = NULL;
vma->vm_private_data = NULL;
up_write(&vma_lock->rw_sema);
kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
}
static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
{
if (__vma_shareable_lock(vma)) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
__hugetlb_vma_unlock_write_put(vma_lock);
}
}
static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
{
/*
* Only present in sharable vmas.
*/
if (!vma || !__vma_shareable_lock(vma))
return;
if (vma->vm_private_data) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
down_write(&vma_lock->rw_sema);
__hugetlb_vma_unlock_write_put(vma_lock);
}
}
static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
{
struct hugetlb_vma_lock *vma_lock;
/* Only establish in (flags) sharable vmas */
if (!vma || !(vma->vm_flags & VM_MAYSHARE))
return;
/* Should never get here with non-NULL vm_private_data */
if (vma->vm_private_data)
return;
vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
if (!vma_lock) {
/*
* If we can not allocate structure, then vma can not
* participate in pmd sharing. This is only a possible
* performance enhancement and memory saving issue.
* However, the lock is also used to synchronize page
* faults with truncation. If the lock is not present,
* unlikely races could leave pages in a file past i_size
* until the file is removed. Warn in the unlikely case of
* allocation failure.
*/
pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
return;
}
kref_init(&vma_lock->refs);
init_rwsem(&vma_lock->rw_sema);
vma_lock->vma = vma;
vma->vm_private_data = vma_lock;
}
/* Helper that removes a struct file_region from the resv_map cache and returns
* it for use.
*/
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
struct file_region *nrg;
VM_BUG_ON(resv->region_cache_count <= 0);
resv->region_cache_count--;
nrg = list_first_entry(&resv->region_cache, struct file_region, link);
list_del(&nrg->link);
nrg->from = from;
nrg->to = to;
return nrg;
}
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
nrg->reservation_counter = rg->reservation_counter;
nrg->css = rg->css;
if (rg->css)
css_get(rg->css);
#endif
}
/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
struct hstate *h,
struct resv_map *resv,
struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
if (h_cg) {
nrg->reservation_counter =
&h_cg->rsvd_hugepage[hstate_index(h)];
nrg->css = &h_cg->css;
/*
* The caller will hold exactly one h_cg->css reference for the
* whole contiguous reservation region. But this area might be
* scattered when there are already some file_regions reside in
* it. As a result, many file_regions may share only one css
* reference. In order to ensure that one file_region must hold
* exactly one h_cg->css reference, we should do css_get for
* each file_region and leave the reference held by caller
* untouched.
*/
css_get(&h_cg->css);
if (!resv->pages_per_hpage)
resv->pages_per_hpage = pages_per_huge_page(h);
/* pages_per_hpage should be the same for all entries in
* a resv_map.
*/
VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
} else {
nrg->reservation_counter = NULL;
nrg->css = NULL;
}
#endif
}
static void put_uncharge_info(struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
if (rg->css)
css_put(rg->css);
#endif
}
static bool has_same_uncharge_info(struct file_region *rg,
struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
return rg->reservation_counter == org->reservation_counter &&
rg->css == org->css;
#else
return true;
#endif
}
static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
struct file_region *nrg, *prg;
prg = list_prev_entry(rg, link);
if (&prg->link != &resv->regions && prg->to == rg->from &&
has_same_uncharge_info(prg, rg)) {
prg->to = rg->to;
list_del(&rg->link);
put_uncharge_info(rg);
kfree(rg);
rg = prg;
}
nrg = list_next_entry(rg, link);
if (&nrg->link != &resv->regions && nrg->from == rg->to &&
has_same_uncharge_info(nrg, rg)) {
nrg->from = rg->from;
list_del(&rg->link);
put_uncharge_info(rg);
kfree(rg);
}
}
static inline long
hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
long to, struct hstate *h, struct hugetlb_cgroup *cg,
long *regions_needed)
{
struct file_region *nrg;
if (!regions_needed) {
nrg = get_file_region_entry_from_cache(map, from, to);
record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
list_add(&nrg->link, rg);
coalesce_file_region(map, nrg);
} else
*regions_needed += 1;
return to - from;
}
/*
* Must be called with resv->lock held.
*
* Calling this with regions_needed != NULL will count the number of pages
* to be added but will not modify the linked list. And regions_needed will
* indicate the number of file_regions needed in the cache to carry out to add
* the regions for this range.
*/
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
struct hugetlb_cgroup *h_cg,
struct hstate *h, long *regions_needed)
{
long add = 0;
struct list_head *head = &resv->regions;
long last_accounted_offset = f;
struct file_region *iter, *trg = NULL;
struct list_head *rg = NULL;
if (regions_needed)
*regions_needed = 0;
/* In this loop, we essentially handle an entry for the range
* [last_accounted_offset, iter->from), at every iteration, with some
* bounds checking.
*/
list_for_each_entry_safe(iter, trg, head, link) {
/* Skip irrelevant regions that start before our range. */
if (iter->from < f) {
/* If this region ends after the last accounted offset,
* then we need to update last_accounted_offset.
*/
if (iter->to > last_accounted_offset)
last_accounted_offset = iter->to;
continue;
}
/* When we find a region that starts beyond our range, we've
* finished.
*/
if (iter->from >= t) {
rg = iter->link.prev;
break;
}
/* Add an entry for last_accounted_offset -> iter->from, and
* update last_accounted_offset.
*/
if (iter->from > last_accounted_offset)
add += hugetlb_resv_map_add(resv, iter->link.prev,
last_accounted_offset,
iter->from, h, h_cg,
regions_needed);
last_accounted_offset = iter->to;
}
/* Handle the case where our range extends beyond
* last_accounted_offset.
*/
if (!rg)
rg = head->prev;
if (last_accounted_offset < t)
add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
t, h, h_cg, regions_needed);
return add;
}
/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
*/
static int allocate_file_region_entries(struct resv_map *resv,
int regions_needed)
__must_hold(&resv->lock)
{
LIST_HEAD(allocated_regions);
int to_allocate = 0, i = 0;
struct file_region *trg = NULL, *rg = NULL;
VM_BUG_ON(regions_needed < 0);
/*
* Check for sufficient descriptors in the cache to accommodate
* the number of in progress add operations plus regions_needed.
*
* This is a while loop because when we drop the lock, some other call
* to region_add or region_del may have consumed some region_entries,
* so we keep looping here until we finally have enough entries for
* (adds_in_progress + regions_needed).
*/
while (resv->region_cache_count <
(resv->adds_in_progress + regions_needed)) {
to_allocate = resv->adds_in_progress + regions_needed -
resv->region_cache_count;
/* At this point, we should have enough entries in the cache
* for all the existing adds_in_progress. We should only be
* needing to allocate for regions_needed.
*/
VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
spin_unlock(&resv->lock);
for (i = 0; i < to_allocate; i++) {
trg = kmalloc(sizeof(*trg), GFP_KERNEL);
if (!trg)
goto out_of_memory;
list_add(&trg->link, &allocated_regions);
}
spin_lock(&resv->lock);
list_splice(&allocated_regions, &resv->region_cache);
resv->region_cache_count += to_allocate;
}
return 0;
out_of_memory:
list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
list_del(&rg->link);
kfree(rg);
}
return -ENOMEM;
}
/*
* Add the huge page range represented by [f, t) to the reserve
* map. Regions will be taken from the cache to fill in this range.
* Sufficient regions should exist in the cache due to the previous
* call to region_chg with the same range, but in some cases the cache will not
* have sufficient entries due to races with other code doing region_add or
* region_del. The extra needed entries will be allocated.
*
* regions_needed is the out value provided by a previous call to region_chg.
*
* Return the number of new huge pages added to the map. This number is greater
* than or equal to zero. If file_region entries needed to be allocated for
* this operation and we were not able to allocate, it returns -ENOMEM.
* region_add of regions of length 1 never allocate file_regions and cannot
* fail; region_chg will always allocate at least 1 entry and a region_add for
* 1 page will only require at most 1 entry.
*/
static long region_add(struct resv_map *resv, long f, long t,
long in_regions_needed, struct hstate *h,
struct hugetlb_cgroup *h_cg)
{
long add = 0, actual_regions_needed = 0;
spin_lock(&resv->lock);
retry:
/* Count how many regions are actually needed to execute this add. */
add_reservation_in_range(resv, f, t, NULL, NULL,
&actual_regions_needed);
/*
* Check for sufficient descriptors in the cache to accommodate
* this add operation. Note that actual_regions_needed may be greater
* than in_regions_needed, as the resv_map may have been modified since
* the region_chg call. In this case, we need to make sure that we
* allocate extra entries, such that we have enough for all the
* existing adds_in_progress, plus the excess needed for this
* operation.
*/
if (actual_regions_needed > in_regions_needed &&
resv->region_cache_count <
resv->adds_in_progress +
(actual_regions_needed - in_regions_needed)) {
/* region_add operation of range 1 should never need to
* allocate file_region entries.
*/
VM_BUG_ON(t - f <= 1);
if (allocate_file_region_entries(
resv, actual_regions_needed - in_regions_needed)) {
return -ENOMEM;
}
goto retry;
}
add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
resv->adds_in_progress -= in_regions_needed;
spin_unlock(&resv->lock);
return add;
}
/*
* Examine the existing reserve map and determine how many
* huge pages in the specified range [f, t) are NOT currently
* represented. This routine is called before a subsequent
* call to region_add that will actually modify the reserve
* map to add the specified range [f, t). region_chg does
* not change the number of huge pages represented by the
* map. A number of new file_region structures is added to the cache as a
* placeholder, for the subsequent region_add call to use. At least 1
* file_region structure is added.
*
* out_regions_needed is the number of regions added to the
* resv->adds_in_progress. This value needs to be provided to a follow up call
* to region_add or region_abort for proper accounting.
*
* Returns the number of huge pages that need to be added to the existing
* reservation map for the range [f, t). This number is greater or equal to
* zero. -ENOMEM is returned if a new file_region structure or cache entry
* is needed and can not be allocated.
*/
static long region_chg(struct resv_map *resv, long f, long t,
long *out_regions_needed)
{
long chg = 0;
spin_lock(&resv->lock);
/* Count how many hugepages in this range are NOT represented. */
chg = add_reservation_in_range(resv, f, t, NULL, NULL,
out_regions_needed);
if (*out_regions_needed == 0)
*out_regions_needed = 1;
if (allocate_file_region_entries(resv, *out_regions_needed))
return -ENOMEM;
resv->adds_in_progress += *out_regions_needed;
spin_unlock(&resv->lock);
return chg;
}
/*
* Abort the in progress add operation. The adds_in_progress field
* of the resv_map keeps track of the operations in progress between
* calls to region_chg and region_add. Operations are sometimes
* aborted after the call to region_chg. In such cases, region_abort
* is called to decrement the adds_in_progress counter. regions_needed
* is the value returned by the region_chg call, it is used to decrement
* the adds_in_progress counter.
*
* NOTE: The range arguments [f, t) are not needed or used in this
* routine. They are kept to make reading the calling code easier as
* arguments will match the associated region_chg call.
*/
static void region_abort(struct resv_map *resv, long f, long t,
long regions_needed)
{
spin_lock(&resv->lock);
VM_BUG_ON(!resv->region_cache_count);
resv->adds_in_progress -= regions_needed;
spin_unlock(&resv->lock);
}
/*
* Delete the specified range [f, t) from the reserve map. If the
* t parameter is LONG_MAX, this indicates that ALL regions after f
* should be deleted. Locate the regions which intersect [f, t)
* and either trim, delete or split the existing regions.
*
* Returns the number of huge pages deleted from the reserve map.
* In the normal case, the return value is zero or more. In the
* case where a region must be split, a new region descriptor must
* be allocated. If the allocation fails, -ENOMEM will be returned.
* NOTE: If the parameter t == LONG_MAX, then we will never split
* a region and possibly return -ENOMEM. Callers specifying
* t == LONG_MAX do not need to check for -ENOMEM error.
*/
static long region_del(struct resv_map *resv, long f, long t)
{
struct list_head *head = &resv->regions;
struct file_region *rg, *trg;
struct file_region *nrg = NULL;
long del = 0;
retry:
spin_lock(&resv->lock);
list_for_each_entry_safe(rg, trg, head, link) {
/*
* Skip regions before the range to be deleted. file_region
* ranges are normally of the form [from, to). However, there
* may be a "placeholder" entry in the map which is of the form
* (from, to) with from == to. Check for placeholder entries
* at the beginning of the range to be deleted.
*/
if (rg->to <= f && (rg->to != rg->from || rg->to != f))
continue;
if (rg->from >= t)
break;
if (f > rg->from && t < rg->to) { /* Must split region */
/*
* Check for an entry in the cache before dropping
* lock and attempting allocation.
*/
if (!nrg &&
resv->region_cache_count > resv->adds_in_progress) {
nrg = list_first_entry(&resv->region_cache,
struct file_region,
link);
list_del(&nrg->link);
resv->region_cache_count--;
}
if (!nrg) {
spin_unlock(&resv->lock);
nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
if (!nrg)
return -ENOMEM;
goto retry;
}
del += t - f;
hugetlb_cgroup_uncharge_file_region(
resv, rg, t - f, false);
/* New entry for end of split region */
nrg->from = t;
nrg->to = rg->to;
copy_hugetlb_cgroup_uncharge_info(nrg, rg);
INIT_LIST_HEAD(&nrg->link);
/* Original entry is trimmed */
rg->to = f;
list_add(&nrg->link, &rg->link);
nrg = NULL;
break;
}
if (f <= rg->from && t >= rg->to) { /* Remove entire region */
del += rg->to - rg->from;
hugetlb_cgroup_uncharge_file_region(resv, rg,
rg->to - rg->from, true);
list_del(&rg->link);
kfree(rg);
continue;
}
if (f <= rg->from) { /* Trim beginning of region */
hugetlb_cgroup_uncharge_file_region(resv, rg,
t - rg->from, false);
del += t - rg->from;
rg->from = t;
} else { /* Trim end of region */
hugetlb_cgroup_uncharge_file_region(resv, rg,
rg->to - f, false);
del += rg->to - f;
rg->to = f;
}
}
spin_unlock(&resv->lock);
kfree(nrg);
return del;
}
/*
* A rare out of memory error was encountered which prevented removal of
* the reserve map region for a page. The huge page itself was free'ed
* and removed from the page cache. This routine will adjust the subpool
* usage count, and the global reserve count if needed. By incrementing
* these counts, the reserve map entry which could not be deleted will
* appear as a "reserved" entry instead of simply dangling with incorrect
* counts.
*/
void hugetlb_fix_reserve_counts(struct inode *inode)
{
struct hugepage_subpool *spool = subpool_inode(inode);
long rsv_adjust;
bool reserved = false;
rsv_adjust = hugepage_subpool_get_pages(spool, 1);
if (rsv_adjust > 0) {
struct hstate *h = hstate_inode(inode);
if (!hugetlb_acct_memory(h, 1))
reserved = true;
} else if (!rsv_adjust) {
reserved = true;
}
if (!reserved)
pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
}
/*
* Count and return the number of huge pages in the reserve map
* that intersect with the range [f, t).
*/
static long region_count(struct resv_map *resv, long f, long t)
{
struct list_head *head = &resv->regions;
struct file_region *rg;
long chg = 0;
spin_lock(&resv->lock);
/* Locate each segment we overlap with, and count that overlap. */
list_for_each_entry(rg, head, link) {
long seg_from;
long seg_to;
if (rg->to <= f)
continue;
if (rg->from >= t)
break;
seg_from = max(rg->from, f);
seg_to = min(rg->to, t);
chg += seg_to - seg_from;
}
spin_unlock(&resv->lock);
return chg;
}
/*
* Convert the address within this vma to the page offset within
* the mapping, in pagecache page units; huge pages here.
*/
static pgoff_t vma_hugecache_offset(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
{
return ((address - vma->vm_start) >> huge_page_shift(h)) +
(vma->vm_pgoff >> huge_page_order(h));
}
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
unsigned long address)
{
return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
EXPORT_SYMBOL_GPL(linear_hugepage_index);
/**
* vma_kernel_pagesize - Page size granularity for this VMA.
* @vma: The user mapping.
*
* Folios in this VMA will be aligned to, and at least the size of the
* number of bytes returned by this function.
*
* Return: The default size of the folios allocated when backing a VMA.
*/
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
if (vma->vm_ops && vma->vm_ops->pagesize)
return vma->vm_ops->pagesize(vma);
return PAGE_SIZE;
}
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
/*
* Return the page size being used by the MMU to back a VMA. In the majority
* of cases, the page size used by the kernel matches the MMU size. On
* architectures where it differs, an architecture-specific 'strong'
* version of this symbol is required.
*/
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
return vma_kernel_pagesize(vma);
}
/*
* Flags for MAP_PRIVATE reservations. These are stored in the bottom
* bits of the reservation map pointer, which are always clear due to
* alignment.
*/
#define HPAGE_RESV_OWNER (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
/*
* These helpers are used to track how many pages are reserved for
* faults in a MAP_PRIVATE mapping. Only the process that called mmap()
* is guaranteed to have their future faults succeed.
*
* With the exception of hugetlb_dup_vma_private() which is called at fork(),
* the reserve counters are updated with the hugetlb_lock held. It is safe
* to reset the VMA at fork() time as it is not in use yet and there is no
* chance of the global counters getting corrupted as a result of the values.
*
* The private mapping reservation is represented in a subtly different
* manner to a shared mapping. A shared mapping has a region map associated
* with the underlying file, this region map represents the backing file
* pages which have ever had a reservation assigned which this persists even
* after the page is instantiated. A private mapping has a region map
* associated with the original mmap which is attached to all VMAs which
* reference it, this region map represents those offsets which have consumed
* reservation ie. where pages have been instantiated.
*/
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
return (unsigned long)vma->vm_private_data;
}
static void set_vma_private_data(struct vm_area_struct *vma,
unsigned long value)
{
vma->vm_private_data = (void *)value;
}
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
struct hugetlb_cgroup *h_cg,
struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
if (!h_cg || !h) {
resv_map->reservation_counter = NULL;
resv_map->pages_per_hpage = 0;
resv_map->css = NULL;
} else {
resv_map->reservation_counter =
&h_cg->rsvd_hugepage[hstate_index(h)];
resv_map->pages_per_hpage = pages_per_huge_page(h);
resv_map->css = &h_cg->css;
}
#endif
}
struct resv_map *resv_map_alloc(void)
{
struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
if (!resv_map || !rg) {
kfree(resv_map);
kfree(rg);
return NULL;
}
kref_init(&resv_map->refs);
spin_lock_init(&resv_map->lock);
INIT_LIST_HEAD(&resv_map->regions);
resv_map->adds_in_progress = 0;
/*
* Initialize these to 0. On shared mappings, 0's here indicate these
* fields don't do cgroup accounting. On private mappings, these will be
* re-initialized to the proper values, to indicate that hugetlb cgroup
* reservations are to be un-charged from here.
*/
resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
INIT_LIST_HEAD(&resv_map->region_cache);
list_add(&rg->link, &resv_map->region_cache);
resv_map->region_cache_count = 1;
return resv_map;
}
void resv_map_release(struct kref *ref)
{
struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
struct list_head *head = &resv_map->region_cache;
struct file_region *rg, *trg;
/* Clear out any active regions before we release the map. */
region_del(resv_map, 0, LONG_MAX);
/* ... and any entries left in the cache */
list_for_each_entry_safe(rg, trg, head, link) {
list_del(&rg->link);
kfree(rg);
}
VM_BUG_ON(resv_map->adds_in_progress);
kfree(resv_map);
}
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
/*
* At inode evict time, i_mapping may not point to the original
* address space within the inode. This original address space
* contains the pointer to the resv_map. So, always use the
* address space embedded within the inode.
* The VERY common case is inode->mapping == &inode->i_data but,
* this may not be true for device special inodes.
*/
return (struct resv_map *)(&inode->i_data)->private_data;
}
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
if (vma->vm_flags & VM_MAYSHARE) {
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
return inode_resv_map(inode);
} else {
return (struct resv_map *)(get_vma_private_data(vma) &
~HPAGE_RESV_MASK);
}
}
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
set_vma_private_data(vma, (get_vma_private_data(vma) &
HPAGE_RESV_MASK) | (unsigned long)map);
}
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
set_vma_private_data(vma, get_vma_private_data(vma) | flags);
}
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
return (get_vma_private_data(vma) & flag) != 0;
}
void hugetlb_dup_vma_private(struct vm_area_struct *vma)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
/*
* Clear vm_private_data
* - For shared mappings this is a per-vma semaphore that may be
* allocated in a subsequent call to hugetlb_vm_op_open.
* Before clearing, make sure pointer is not associated with vma
* as this will leak the structure. This is the case when called
* via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
* been called to allocate a new structure.
* - For MAP_PRIVATE mappings, this is the reserve map which does
* not apply to children. Faults generated by the children are
* not guaranteed to succeed, even if read-only.
*/
if (vma->vm_flags & VM_MAYSHARE) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
if (vma_lock && vma_lock->vma != vma)
vma->vm_private_data = NULL;
} else
vma->vm_private_data = NULL;
}
/*
* Reset and decrement one ref on hugepage private reservation.
* Called with mm->mmap_lock writer semaphore held.
* This function should be only used by move_vma() and operate on
* same sized vma. It should never come here with last ref on the
* reservation.
*/
void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
{
/*
* Clear the old hugetlb private page reservation.
* It has already been transferred to new_vma.
*
* During a mremap() operation of a hugetlb vma we call move_vma()
* which copies vma into new_vma and unmaps vma. After the copy
* operation both new_vma and vma share a reference to the resv_map
* struct, and at that point vma is about to be unmapped. We don't
* want to return the reservation to the pool at unmap of vma because
* the reservation still lives on in new_vma, so simply decrement the
* ref here and remove the resv_map reference from this vma.
*/
struct resv_map *reservations = vma_resv_map(vma);
if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
kref_put(&reservations->refs, resv_map_release);
}
hugetlb_dup_vma_private(vma);
}
/* Returns true if the VMA has associated reserve pages */
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
{
if (vma->vm_flags & VM_NORESERVE) {
/*
* This address is already reserved by other process(chg == 0),
* so, we should decrement reserved count. Without decrementing,
* reserve count remains after releasing inode, because this
* allocated page will go into page cache and is regarded as
* coming from reserved pool in releasing step. Currently, we
* don't have any other solution to deal with this situation
* properly, so add work-around here.
*/
if (vma->vm_flags & VM_MAYSHARE && chg == 0)
return true;
else
return false;
}
/* Shared mappings always use reserves */
if (vma->vm_flags & VM_MAYSHARE) {
/*
* We know VM_NORESERVE is not set. Therefore, there SHOULD
* be a region map for all pages. The only situation where
* there is no region map is if a hole was punched via
* fallocate. In this case, there really are no reserves to
* use. This situation is indicated if chg != 0.
*/
if (chg)
return false;
else
return true;
}
/*
* Only the process that called mmap() has reserves for
* private mappings.
*/
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
/*
* Like the shared case above, a hole punch or truncate
* could have been performed on the private mapping.
* Examine the value of chg to determine if reserves
* actually exist or were previously consumed.
* Very Subtle - The value of chg comes from a previous
* call to vma_needs_reserves(). The reserve map for
* private mappings has different (opposite) semantics
* than that of shared mappings. vma_needs_reserves()
* has already taken this difference in semantics into
* account. Therefore, the meaning of chg is the same
* as in the shared case above. Code could easily be
* combined, but keeping it separate draws attention to
* subtle differences.
*/
if (chg)
return false;
else
return true;
}
return false;
}
static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
{
int nid = folio_nid(folio);
lockdep_assert_held(&hugetlb_lock);
VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
list_move(&folio->lru, &h->hugepage_freelists[nid]);
h->free_huge_pages++;
h->free_huge_pages_node[nid]++;
folio_set_hugetlb_freed(folio);
}
static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
int nid)
{
struct folio *folio;
bool pin = !!(current->flags & PF_MEMALLOC_PIN);
lockdep_assert_held(&hugetlb_lock);
list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
if (pin && !folio_is_longterm_pinnable(folio))
continue;
if (folio_test_hwpoison(folio))
continue;
list_move(&folio->lru, &h->hugepage_activelist);
folio_ref_unfreeze(folio, 1);
folio_clear_hugetlb_freed(folio);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
return folio;
}
return NULL;
}
static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
int nid, nodemask_t *nmask)
{
unsigned int cpuset_mems_cookie;
struct zonelist *zonelist;
struct zone *zone;
struct zoneref *z;
int node = NUMA_NO_NODE;
zonelist = node_zonelist(nid, gfp_mask);
retry_cpuset:
cpuset_mems_cookie = read_mems_allowed_begin();
for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
struct folio *folio;
if (!cpuset_zone_allowed(zone, gfp_mask))
continue;
/*
* no need to ask again on the same node. Pool is node rather than
* zone aware
*/
if (zone_to_nid(zone) == node)
continue;
node = zone_to_nid(zone);
folio = dequeue_hugetlb_folio_node_exact(h, node);
if (folio)
return folio;
}
if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset;
return NULL;
}
static unsigned long available_huge_pages(struct hstate *h)
{
return h->free_huge_pages - h->resv_huge_pages;
}
static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
struct vm_area_struct *vma,
unsigned long address, int avoid_reserve,
long chg)
{
struct folio *folio = NULL;
struct mempolicy *mpol;
gfp_t gfp_mask;
nodemask_t *nodemask;
int nid;
/*
* A child process with MAP_PRIVATE mappings created by their parent
* have no page reserves. This check ensures that reservations are
* not "stolen". The child may still get SIGKILLed
*/
if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
goto err;
/* If reserves cannot be used, ensure enough pages are in the pool */
if (avoid_reserve && !available_huge_pages(h))
goto err;
gfp_mask = htlb_alloc_mask(h);
nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
if (mpol_is_preferred_many(mpol)) {
folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
nid, nodemask);
/* Fallback to all nodes if page==NULL */
nodemask = NULL;
}
if (!folio)
folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
nid, nodemask);
if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
folio_set_hugetlb_restore_reserve(folio);
h->resv_huge_pages--;
}
mpol_cond_put(mpol);
return folio;
err:
return NULL;
}
/*
* common helper functions for hstate_next_node_to_{alloc|free}.
* We may have allocated or freed a huge page based on a different
* nodes_allowed previously, so h->next_node_to_{alloc|free} might
* be outside of *nodes_allowed. Ensure that we use an allowed
* node for alloc or free.
*/
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
nid = next_node_in(nid, *nodes_allowed);
VM_BUG_ON(nid >= MAX_NUMNODES);
return nid;
}
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
if (!node_isset(nid, *nodes_allowed))
nid = next_node_allowed(nid, nodes_allowed);
return nid;
}
/*
* returns the previously saved node ["this node"] from which to
* allocate a persistent huge page for the pool and advance the
* next node from which to allocate, handling wrap at end of node
* mask.
*/
static int hstate_next_node_to_alloc(struct hstate *h,
nodemask_t *nodes_allowed)
{
int nid;
VM_BUG_ON(!nodes_allowed);
nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
return nid;
}
/*
* helper for remove_pool_huge_page() - return the previously saved
* node ["this node"] from which to free a huge page. Advance the
* next node id whether or not we find a free huge page to free so
* that the next attempt to free addresses the next node.
*/
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
int nid;
VM_BUG_ON(!nodes_allowed);
nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
return nid;
}
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
for (nr_nodes = nodes_weight(*mask); \
nr_nodes > 0 && \
((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
nr_nodes--)
#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
for (nr_nodes = nodes_weight(*mask); \
nr_nodes > 0 && \
((node = hstate_next_node_to_free(hs, mask)) || 1); \
nr_nodes--)
/* used to demote non-gigantic_huge pages as well */
static void __destroy_compound_gigantic_folio(struct folio *folio,
unsigned int order, bool demote)
{
int i;
int nr_pages = 1 << order;
struct page *p;
atomic_set(&folio->_entire_mapcount, 0);
atomic_set(&folio->_nr_pages_mapped, 0);
atomic_set(&folio->_pincount, 0);
for (i = 1; i < nr_pages; i++) {
p = folio_page(folio, i);
p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
p->mapping = NULL;
clear_compound_head(p);
if (!demote)
set_page_refcounted(p);
}
__folio_clear_head(folio);
}
static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
unsigned int order)
{
__destroy_compound_gigantic_folio(folio, order, true);
}
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
static void destroy_compound_gigantic_folio(struct folio *folio,
unsigned int order)
{
__destroy_compound_gigantic_folio(folio, order, false);
}
static void free_gigantic_folio(struct folio *folio, unsigned int order)
{
/*
* If the page isn't allocated using the cma allocator,
* cma_release() returns false.
*/
#ifdef CONFIG_CMA
int nid = folio_nid(folio);
if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
return;
#endif
free_contig_range(folio_pfn(folio), 1 << order);
}
#ifdef CONFIG_CONTIG_ALLOC
static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
int nid, nodemask_t *nodemask)
{
struct page *page;
unsigned long nr_pages = pages_per_huge_page(h);
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
#ifdef CONFIG_CMA
{
int node;
if (hugetlb_cma[nid]) {
page = cma_alloc(hugetlb_cma[nid], nr_pages,
huge_page_order(h), true);
if (page)
return page_folio(page);
}
if (!(gfp_mask & __GFP_THISNODE)) {
for_each_node_mask(node, *nodemask) {
if (node == nid || !hugetlb_cma[node])
continue;
page = cma_alloc(hugetlb_cma[node], nr_pages,
huge_page_order(h), true);
if (page)
return page_folio(page);
}
}
}
#endif
page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
return page ? page_folio(page) : NULL;
}
#else /* !CONFIG_CONTIG_ALLOC */
static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
int nid, nodemask_t *nodemask)
{
return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
int nid, nodemask_t *nodemask)
{
return NULL;
}
static inline void free_gigantic_folio(struct folio *folio,
unsigned int order) { }
static inline void destroy_compound_gigantic_folio(struct folio *folio,
unsigned int order) { }
#endif
static inline void __clear_hugetlb_destructor(struct hstate *h,
struct folio *folio)
{
lockdep_assert_held(&hugetlb_lock);
folio_clear_hugetlb(folio);
}
/*
* Remove hugetlb folio from lists.
* If vmemmap exists for the folio, update dtor so that the folio appears
* as just a compound page. Otherwise, wait until after allocating vmemmap
* to update dtor.
*
* A reference is held on the folio, except in the case of demote.
*
* Must be called with hugetlb lock held.
*/
static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
bool adjust_surplus,
bool demote)
{
int nid = folio_nid(folio);
VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
lockdep_assert_held(&hugetlb_lock);
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
return;
list_del(&folio->lru);
if (folio_test_hugetlb_freed(folio)) {
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
}
if (adjust_surplus) {
h->surplus_huge_pages--;
h->surplus_huge_pages_node[nid]--;
}
/*
* We can only clear the hugetlb destructor after allocating vmemmap
* pages. Otherwise, someone (memory error handling) may try to write
* to tail struct pages.
*/
if (!folio_test_hugetlb_vmemmap_optimized(folio))
__clear_hugetlb_destructor(h, folio);
/*
* In the case of demote we do not ref count the page as it will soon
* be turned into a page of smaller size.
*/
if (!demote)
folio_ref_unfreeze(folio, 1);
h->nr_huge_pages--;
h->nr_huge_pages_node[nid]--;
}
static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
bool adjust_surplus)
{
__remove_hugetlb_folio(h, folio, adjust_surplus, false);
}
static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
bool adjust_surplus)
{
__remove_hugetlb_folio(h, folio, adjust_surplus, true);
}
static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
bool adjust_surplus)
{
int zeroed;
int nid = folio_nid(folio);
VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
lockdep_assert_held(&hugetlb_lock);
INIT_LIST_HEAD(&folio->lru);
h->nr_huge_pages++;
h->nr_huge_pages_node[nid]++;
if (adjust_surplus) {
h->surplus_huge_pages++;
h->surplus_huge_pages_node[nid]++;
}
folio_set_hugetlb(folio);
folio_change_private(folio, NULL);
/*
* We have to set hugetlb_vmemmap_optimized again as above
* folio_change_private(folio, NULL) cleared it.
*/
folio_set_hugetlb_vmemmap_optimized(folio);
/*
* This folio is about to be managed by the hugetlb allocator and
* should have no users. Drop our reference, and check for others
* just in case.
*/
zeroed = folio_put_testzero(folio);
if (unlikely(!zeroed))
/*
* It is VERY unlikely soneone else has taken a ref
* on the folio. In this case, we simply return as
* free_huge_folio() will be called when this other ref
* is dropped.
*/
return;
arch_clear_hugepage_flags(&folio->page);
enqueue_hugetlb_folio(h, folio);
}
static void __update_and_free_hugetlb_folio(struct hstate *h,
struct folio *folio)
{
bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
return;
/*
* If we don't know which subpages are hwpoisoned, we can't free
* the hugepage, so it's leaked intentionally.
*/
if (folio_test_hugetlb_raw_hwp_unreliable(folio))
return;
if (hugetlb_vmemmap_restore(h, &folio->page)) {
spin_lock_irq(&hugetlb_lock);
/*
* If we cannot allocate vmemmap pages, just refuse to free the
* page and put the page back on the hugetlb free list and treat
* as a surplus page.
*/
add_hugetlb_folio(h, folio, true);
spin_unlock_irq(&hugetlb_lock);
return;
}
/*
* Move PageHWPoison flag from head page to the raw error pages,
* which makes any healthy subpages reusable.
*/
if (unlikely(folio_test_hwpoison(folio)))
folio_clear_hugetlb_hwpoison(folio);
/*
* If vmemmap pages were allocated above, then we need to clear the
* hugetlb destructor under the hugetlb lock.
*/
if (clear_dtor) {
spin_lock_irq(&hugetlb_lock);
__clear_hugetlb_destructor(h, folio);
spin_unlock_irq(&hugetlb_lock);
}
/*
* Non-gigantic pages demoted from CMA allocated gigantic pages
* need to be given back to CMA in free_gigantic_folio.
*/
if (hstate_is_gigantic(h) ||
hugetlb_cma_folio(folio, huge_page_order(h))) {
destroy_compound_gigantic_folio(folio, huge_page_order(h));
free_gigantic_folio(folio, huge_page_order(h));
} else {
__free_pages(&folio->page, huge_page_order(h));
}
}
/*
* As update_and_free_hugetlb_folio() can be called under any context, so we cannot
* use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
* actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
* the vmemmap pages.
*
* free_hpage_workfn() locklessly retrieves the linked list of pages to be
* freed and frees them one-by-one. As the page->mapping pointer is going
* to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
* structure of a lockless linked list of huge pages to be freed.
*/
static LLIST_HEAD(hpage_freelist);
static void free_hpage_workfn(struct work_struct *work)
{
struct llist_node *node;
node = llist_del_all(&hpage_freelist);
while (node) {
struct page *page;
struct hstate *h;
page = container_of((struct address_space **)node,
struct page, mapping);
node = node->next;
page->mapping = NULL;
/*
* The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
* folio_hstate() is going to trigger because a previous call to
* remove_hugetlb_folio() will clear the hugetlb bit, so do
* not use folio_hstate() directly.
*/
h = size_to_hstate(page_size(page));
__update_and_free_hugetlb_folio(h, page_folio(page));
cond_resched();
}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
static inline void flush_free_hpage_work(struct hstate *h)
{
if (hugetlb_vmemmap_optimizable(h))
flush_work(&free_hpage_work);
}
static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
bool atomic)
{
if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
__update_and_free_hugetlb_folio(h, folio);
return;
}
/*
* Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
*
* Only call schedule_work() if hpage_freelist is previously
* empty. Otherwise, schedule_work() had been called but the workfn
* hasn't retrieved the list yet.
*/
if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
schedule_work(&free_hpage_work);
}
static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
{
struct page *page, *t_page;
struct folio *folio;
list_for_each_entry_safe(page, t_page, list, lru) {
folio = page_folio(page);
update_and_free_hugetlb_folio(h, folio, false);
cond_resched();
}
}
struct hstate *size_to_hstate(unsigned long size)
{
struct hstate *h;
for_each_hstate(h) {
if (huge_page_size(h) == size)
return h;
}
return NULL;
}
void free_huge_folio(struct folio *folio)
{
/*
* Can't pass hstate in here because it is called from the
* compound page destructor.
*/
struct hstate *h = folio_hstate(folio);
int nid = folio_nid(folio);
struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
bool restore_reserve;
unsigned long flags;
VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
hugetlb_set_folio_subpool(folio, NULL);
if (folio_test_anon(folio))
__ClearPageAnonExclusive(&folio->page);
folio->mapping = NULL;
restore_reserve = folio_test_hugetlb_restore_reserve(folio);
folio_clear_hugetlb_restore_reserve(folio);
/*
* If HPageRestoreReserve was set on page, page allocation consumed a
* reservation. If the page was associated with a subpool, there
* would have been a page reserved in the subpool before allocation
* via hugepage_subpool_get_pages(). Since we are 'restoring' the
* reservation, do not call hugepage_subpool_put_pages() as this will
* remove the reserved page from the subpool.
*/
if (!restore_reserve) {
/*
* A return code of zero implies that the subpool will be
* under its minimum size if the reservation is not restored
* after page is free. Therefore, force restore_reserve
* operation.
*/
if (hugepage_subpool_put_pages(spool, 1) == 0)
restore_reserve = true;
}
spin_lock_irqsave(&hugetlb_lock, flags);
folio_clear_hugetlb_migratable(folio);
hugetlb_cgroup_uncharge_folio(hstate_index(h),
pages_per_huge_page(h), folio);
hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
pages_per_huge_page(h), folio);
if (restore_reserve)
h->resv_huge_pages++;
if (folio_test_hugetlb_temporary(folio)) {
remove_hugetlb_folio(h, folio, false);
spin_unlock_irqrestore(&hugetlb_lock, flags);
update_and_free_hugetlb_folio(h, folio, true);
} else if (h->surplus_huge_pages_node[nid]) {
/* remove the page from active list */
remove_hugetlb_folio(h, folio, true);
spin_unlock_irqrestore(&hugetlb_lock, flags);
update_and_free_hugetlb_folio(h, folio, true);
} else {
arch_clear_hugepage_flags(&folio->page);
enqueue_hugetlb_folio(h, folio);
spin_unlock_irqrestore(&hugetlb_lock, flags);
}
}
/*
* Must be called with the hugetlb lock held
*/
static void __prep_account_new_huge_page(struct hstate *h, int nid)
{
lockdep_assert_held(&hugetlb_lock);
h->nr_huge_pages++;
h->nr_huge_pages_node[nid]++;
}
static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
{
hugetlb_vmemmap_optimize(h, &folio->page);
INIT_LIST_HEAD(&folio->lru);
folio_set_hugetlb(folio);
hugetlb_set_folio_subpool(folio, NULL);
set_hugetlb_cgroup(folio, NULL);
set_hugetlb_cgroup_rsvd(folio, NULL);
}
static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
{
__prep_new_hugetlb_folio(h, folio);
spin_lock_irq(&hugetlb_lock);
__prep_account_new_huge_page(h, nid);
spin_unlock_irq(&hugetlb_lock);
}
static bool __prep_compound_gigantic_folio(struct folio *folio,
unsigned int order, bool demote)
{
int i, j;
int nr_pages = 1 << order;
struct page *p;
__folio_clear_reserved(folio);
for (i = 0; i < nr_pages; i++) {
p = folio_page(folio, i);
/*
* For gigantic hugepages allocated through bootmem at
* boot, it's safer to be consistent with the not-gigantic
* hugepages and clear the PG_reserved bit from all tail pages
* too. Otherwise drivers using get_user_pages() to access tail
* pages may get the reference counting wrong if they see
* PG_reserved set on a tail page (despite the head page not
* having PG_reserved set). Enforcing this consistency between
* head and tail pages allows drivers to optimize away a check
* on the head page when they need know if put_page() is needed
* after get_user_pages().
*/
if (i != 0) /* head page cleared above */
__ClearPageReserved(p);
/*
* Subtle and very unlikely
*
* Gigantic 'page allocators' such as memblock or cma will
* return a set of pages with each page ref counted. We need
* to turn this set of pages into a compound page with tail
* page ref counts set to zero. Code such as speculative page
* cache adding could take a ref on a 'to be' tail page.
* We need to respect any increased ref count, and only set
* the ref count to zero if count is currently 1. If count
* is not 1, we return an error. An error return indicates
* the set of pages can not be converted to a gigantic page.
* The caller who allocated the pages should then discard the
* pages using the appropriate free interface.
*
* In the case of demote, the ref count will be zero.
*/
if (!demote) {
if (!page_ref_freeze(p, 1)) {
pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
goto out_error;
}
} else {
VM_BUG_ON_PAGE(page_count(p), p);
}
if (i != 0)
set_compound_head(p, &folio->page);
}
__folio_set_head(folio);
/* we rely on prep_new_hugetlb_folio to set the destructor */
folio_set_order(folio, order);
atomic_set(&folio->_entire_mapcount, -1);
atomic_set(&folio->_nr_pages_mapped, 0);
atomic_set(&folio->_pincount, 0);
return true;
out_error:
/* undo page modifications made above */
for (j = 0; j < i; j++) {
p = folio_page(folio, j);
if (j != 0)
clear_compound_head(p);
set_page_refcounted(p);
}
/* need to clear PG_reserved on remaining tail pages */
for (; j < nr_pages; j++) {
p = folio_page(folio, j);
__ClearPageReserved(p);
}
return false;
}
static bool prep_compound_gigantic_folio(struct folio *folio,
unsigned int order)
{
return __prep_compound_gigantic_folio(folio, order, false);
}
static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
unsigned int order)
{
return __prep_compound_gigantic_folio(folio, order, true);
}
/*
* PageHuge() only returns true for hugetlbfs pages, but not for normal or
* transparent huge pages. See the PageTransHuge() documentation for more
* details.
*/
int PageHuge(struct page *page)
{
struct folio *folio;
if (!PageCompound(page))
return 0;
folio = page_folio(page);
return folio_test_hugetlb(folio);
}
EXPORT_SYMBOL_GPL(PageHuge);
/*
* Find and lock address space (mapping) in write mode.
*
* Upon entry, the page is locked which means that page_mapping() is
* stable. Due to locking order, we can only trylock_write. If we can
* not get the lock, simply return NULL to caller.
*/
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
struct address_space *mapping = page_mapping(hpage);
if (!mapping)
return mapping;
if (i_mmap_trylock_write(mapping))
return mapping;
return NULL;
}
pgoff_t hugetlb_basepage_index(struct page *page)
{
struct page *page_head = compound_head(page);
pgoff_t index = page_index(page_head);
unsigned long compound_idx;
if (compound_order(page_head) > MAX_ORDER)
compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
else
compound_idx = page - page_head;
return (index << compound_order(page_head)) + compound_idx;
}
static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
gfp_t gfp_mask, int nid, nodemask_t *nmask,
nodemask_t *node_alloc_noretry)
{
int order = huge_page_order(h);
struct page *page;
bool alloc_try_hard = true;
bool retry = true;
/*
* By default we always try hard to allocate the page with
* __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
* a loop (to adjust global huge page counts) and previous allocation
* failed, do not continue to try hard on the same node. Use the
* node_alloc_noretry bitmap to manage this state information.
*/
if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
alloc_try_hard = false;
gfp_mask |= __GFP_COMP|__GFP_NOWARN;
if (alloc_try_hard)
gfp_mask |= __GFP_RETRY_MAYFAIL;
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
retry:
page = __alloc_pages(gfp_mask, order, nid, nmask);
/* Freeze head page */
if (page && !page_ref_freeze(page, 1)) {
__free_pages(page, order);
if (retry) { /* retry once */
retry = false;
goto retry;
}
/* WOW! twice in a row. */
pr_warn("HugeTLB head page unexpected inflated ref count\n");
page = NULL;
}
/*
* If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
* indicates an overall state change. Clear bit so that we resume
* normal 'try hard' allocations.
*/
if (node_alloc_noretry && page && !alloc_try_hard)
node_clear(nid, *node_alloc_noretry);
/*
* If we tried hard to get a page but failed, set bit so that
* subsequent attempts will not try as hard until there is an
* overall state change.
*/
if (node_alloc_noretry && !page && alloc_try_hard)
node_set(nid, *node_alloc_noretry);
if (!page) {
__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
return NULL;
}
__count_vm_event(HTLB_BUDDY_PGALLOC);
return page_folio(page);
}
/*
* Common helper to allocate a fresh hugetlb page. All specific allocators
* should use this function to get new hugetlb pages
*
* Note that returned page is 'frozen': ref count of head page and all tail
* pages is zero.
*/
static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
gfp_t gfp_mask, int nid, nodemask_t *nmask,
nodemask_t *node_alloc_noretry)
{
struct folio *folio;
bool retry = false;
retry:
if (hstate_is_gigantic(h))
folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
else
folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
nid, nmask, node_alloc_noretry);
if (!folio)
return NULL;
if (hstate_is_gigantic(h)) {
if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
/*
* Rare failure to convert pages to compound page.
* Free pages and try again - ONCE!
*/
free_gigantic_folio(folio, huge_page_order(h));
if (!retry) {
retry = true;
goto retry;
}
return NULL;
}
}
prep_new_hugetlb_folio(h, folio, folio_nid(folio));
return folio;
}
/*
* Allocates a fresh page to the hugetlb allocator pool in the node interleaved
* manner.
*/
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
nodemask_t *node_alloc_noretry)
{
struct folio *folio;
int nr_nodes, node;
gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
nodes_allowed, node_alloc_noretry);
if (folio) {
free_huge_folio(folio); /* free it into the hugepage allocator */
return 1;
}
}
return 0;
}
/*
* Remove huge page from pool from next node to free. Attempt to keep
* persistent huge pages more or less balanced over allowed nodes.
* This routine only 'removes' the hugetlb page. The caller must make
* an additional call to free the page to low level allocators.
* Called with hugetlb_lock locked.
*/
static struct page *remove_pool_huge_page(struct hstate *h,
nodemask_t *nodes_allowed,
bool acct_surplus)
{
int nr_nodes, node;
struct page *page = NULL;
struct folio *folio;
lockdep_assert_held(&hugetlb_lock);
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
/*
* If we're returning unused surplus pages, only examine
* nodes with surplus pages.
*/
if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
!list_empty(&h->hugepage_freelists[node])) {
page = list_entry(h->hugepage_freelists[node].next,
struct page, lru);
folio = page_folio(page);
remove_hugetlb_folio(h, folio, acct_surplus);
break;
}
}
return page;
}
/*
* Dissolve a given free hugepage into free buddy pages. This function does
* nothing for in-use hugepages and non-hugepages.
* This function returns values like below:
*
* -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
* when the system is under memory pressure and the feature of
* freeing unused vmemmap pages associated with each hugetlb page
* is enabled.
* -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
* (allocated or reserved.)
* 0: successfully dissolved free hugepages or the page is not a
* hugepage (considered as already dissolved)
*/
int dissolve_free_huge_page(struct page *page)
{
int rc = -EBUSY;
struct folio *folio = page_folio(page);
retry:
/* Not to disrupt normal path by vainly holding hugetlb_lock */
if (!folio_test_hugetlb(folio))
return 0;
spin_lock_irq(&hugetlb_lock);
if (!folio_test_hugetlb(folio)) {
rc = 0;
goto out;
}
if (!folio_ref_count(folio)) {
struct hstate *h = folio_hstate(folio);
if (!available_huge_pages(h))
goto out;
/*
* We should make sure that the page is already on the free list
* when it is dissolved.
*/
if (unlikely(!folio_test_hugetlb_freed(folio))) {
spin_unlock_irq(&hugetlb_lock);
cond_resched();
/*
* Theoretically, we should return -EBUSY when we
* encounter this race. In fact, we have a chance
* to successfully dissolve the page if we do a
* retry. Because the race window is quite small.
* If we seize this opportunity, it is an optimization
* for increasing the success rate of dissolving page.
*/
goto retry;
}
remove_hugetlb_folio(h, folio, false);
h->max_huge_pages--;
spin_unlock_irq(&hugetlb_lock);
/*
* Normally update_and_free_hugtlb_folio will allocate required vmemmmap
* before freeing the page. update_and_free_hugtlb_folio will fail to
* free the page if it can not allocate required vmemmap. We
* need to adjust max_huge_pages if the page is not freed.
* Attempt to allocate vmemmmap here so that we can take
* appropriate action on failure.
*/
rc = hugetlb_vmemmap_restore(h, &folio->page);
if (!rc) {
update_and_free_hugetlb_folio(h, folio, false);
} else {
spin_lock_irq(&hugetlb_lock);
add_hugetlb_folio(h, folio, false);
h->max_huge_pages++;
spin_unlock_irq(&hugetlb_lock);
}
return rc;
}
out:
spin_unlock_irq(&hugetlb_lock);
return rc;
}
/*
* Dissolve free hugepages in a given pfn range. Used by memory hotplug to
* make specified memory blocks removable from the system.
* Note that this will dissolve a free gigantic hugepage completely, if any
* part of it lies within the given range.
* Also note that if dissolve_free_huge_page() returns with an error, all
* free hugepages that were dissolved before that error are lost.
*/
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
struct page *page;
int rc = 0;
unsigned int order;
struct hstate *h;
if (!hugepages_supported())
return rc;
order = huge_page_order(&default_hstate);
for_each_hstate(h)
order = min(order, huge_page_order(h));
for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
page = pfn_to_page(pfn);
rc = dissolve_free_huge_page(page);
if (rc)
break;
}
return rc;
}
/*
* Allocates a fresh surplus page from the page allocator.
*/
static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
gfp_t gfp_mask, int nid, nodemask_t *nmask)
{
struct folio *folio = NULL;
if (hstate_is_gigantic(h))
return NULL;
spin_lock_irq(&hugetlb_lock);
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
goto out_unlock;
spin_unlock_irq(&hugetlb_lock);
folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
if (!folio)
return NULL;
spin_lock_irq(&hugetlb_lock);
/*
* We could have raced with the pool size change.
* Double check that and simply deallocate the new page
* if we would end up overcommiting the surpluses. Abuse
* temporary page to workaround the nasty free_huge_folio
* codeflow
*/
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
folio_set_hugetlb_temporary(folio);
spin_unlock_irq(&hugetlb_lock);
free_huge_folio(folio);
return NULL;
}
h->surplus_huge_pages++;
h->surplus_huge_pages_node[folio_nid(folio)]++;
out_unlock:
spin_unlock_irq(&hugetlb_lock);
return folio;
}
static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
int nid, nodemask_t *nmask)
{
struct folio *folio;
if (hstate_is_gigantic(h))
return NULL;
folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
if (!folio)
return NULL;
/* fresh huge pages are frozen */
folio_ref_unfreeze(folio, 1);
/*
* We do not account these pages as surplus because they are only
* temporary and will be released properly on the last reference
*/
folio_set_hugetlb_temporary(folio);
return folio;
}
/*
* Use the VMA's mpolicy to allocate a huge page from the buddy.
*/
static
struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
struct folio *folio = NULL;
struct mempolicy *mpol;
gfp_t gfp_mask = htlb_alloc_mask(h);
int nid;
nodemask_t *nodemask;
nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
if (mpol_is_preferred_many(mpol)) {
gfp_t gfp = gfp_mask | __GFP_NOWARN;
gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
/* Fallback to all nodes if page==NULL */
nodemask = NULL;
}
if (!folio)
folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
mpol_cond_put(mpol);
return folio;
}
/* folio migration callback function */
struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
nodemask_t *nmask, gfp_t gfp_mask)
{
spin_lock_irq(&hugetlb_lock);
if (available_huge_pages(h)) {
struct folio *folio;
folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
preferred_nid, nmask);
if (folio) {
spin_unlock_irq(&hugetlb_lock);
return folio;
}
}
spin_unlock_irq(&hugetlb_lock);
return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
}
/* mempolicy aware migration callback */
struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
unsigned long address)
{
struct mempolicy *mpol;
nodemask_t *nodemask;
struct folio *folio;
gfp_t gfp_mask;
int node;
gfp_mask = htlb_alloc_mask(h);
node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
mpol_cond_put(mpol);
return folio;
}
/*
* Increase the hugetlb pool such that it can accommodate a reservation
* of size 'delta'.
*/
static int gather_surplus_pages(struct hstate *h, long delta)
__must_hold(&hugetlb_lock)
{
LIST_HEAD(surplus_list);
struct folio *folio, *tmp;
int ret;
long i;
long needed, allocated;
bool alloc_ok = true;
lockdep_assert_held(&hugetlb_lock);
needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
if (needed <= 0) {
h->resv_huge_pages += delta;
return 0;
}
allocated = 0;
ret = -ENOMEM;
retry:
spin_unlock_irq(&hugetlb_lock);
for (i = 0; i < needed; i++) {
folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
NUMA_NO_NODE, NULL);
if (!folio) {
alloc_ok = false;
break;
}
list_add(&folio->lru, &surplus_list);
cond_resched();
}
allocated += i;
/*
* After retaking hugetlb_lock, we need to recalculate 'needed'
* because either resv_huge_pages or free_huge_pages may have changed.
*/
spin_lock_irq(&hugetlb_lock);
needed = (h->resv_huge_pages + delta) -
(h->free_huge_pages + allocated);
if (needed > 0) {
if (alloc_ok)
goto retry;
/*
* We were not able to allocate enough pages to
* satisfy the entire reservation so we free what
* we've allocated so far.
*/
goto free;
}
/*
* The surplus_list now contains _at_least_ the number of extra pages
* needed to accommodate the reservation. Add the appropriate number
* of pages to the hugetlb pool and free the extras back to the buddy
* allocator. Commit the entire reservation here to prevent another
* process from stealing the pages as they are added to the pool but
* before they are reserved.
*/
needed += allocated;
h->resv_huge_pages += delta;
ret = 0;
/* Free the needed pages to the hugetlb pool */
list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
if ((--needed) < 0)
break;
/* Add the page to the hugetlb allocator */
enqueue_hugetlb_folio(h, folio);
}
free:
spin_unlock_irq(&hugetlb_lock);
/*
* Free unnecessary surplus pages to the buddy allocator.
* Pages have no ref count, call free_huge_folio directly.
*/
list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
free_huge_folio(folio);
spin_lock_irq(&hugetlb_lock);
return ret;
}
/*
* This routine has two main purposes:
* 1) Decrement the reservation count (resv_huge_pages) by the value passed
* in unused_resv_pages. This corresponds to the prior adjustments made
* to the associated reservation map.
* 2) Free any unused surplus pages that may have been allocated to satisfy
* the reservation. As many as unused_resv_pages may be freed.
*/
static void return_unused_surplus_pages(struct hstate *h,
unsigned long unused_resv_pages)
{
unsigned long nr_pages;
struct page *page;
LIST_HEAD(page_list);
lockdep_assert_held(&hugetlb_lock);
/* Uncommit the reservation */
h->resv_huge_pages -= unused_resv_pages;
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
goto out;
/*
* Part (or even all) of the reservation could have been backed
* by pre-allocated pages. Only free surplus pages.
*/
nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
/*
* We want to release as many surplus pages as possible, spread
* evenly across all nodes with memory. Iterate across these nodes
* until we can no longer free unreserved surplus pages. This occurs
* when the nodes with surplus pages have no free pages.
* remove_pool_huge_page() will balance the freed pages across the
* on-line nodes with memory and will handle the hstate accounting.
*/
while (nr_pages--) {
page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
if (!page)
goto out;
list_add(&page->lru, &page_list);
}
out:
spin_unlock_irq(&hugetlb_lock);
update_and_free_pages_bulk(h, &page_list);
spin_lock_irq(&hugetlb_lock);
}
/*
* vma_needs_reservation, vma_commit_reservation and vma_end_reservation
* are used by the huge page allocation routines to manage reservations.
*
* vma_needs_reservation is called to determine if the huge page at addr
* within the vma has an associated reservation. If a reservation is
* needed, the value 1 is returned. The caller is then responsible for
* managing the global reservation and subpool usage counts. After
* the huge page has been allocated, vma_commit_reservation is called
* to add the page to the reservation map. If the page allocation fails,
* the reservation must be ended instead of committed. vma_end_reservation
* is called in such cases.
*
* In the normal case, vma_commit_reservation returns the same value
* as the preceding vma_needs_reservation call. The only time this
* is not the case is if a reserve map was changed between calls. It
* is the responsibility of the caller to notice the difference and
* take appropriate action.
*
* vma_add_reservation is used in error paths where a reservation must
* be restored when a newly allocated huge page must be freed. It is
* to be called after calling vma_needs_reservation to determine if a
* reservation exists.
*
* vma_del_reservation is used in error paths where an entry in the reserve
* map was created during huge page allocation and must be removed. It is to
* be called after calling vma_needs_reservation to determine if a reservation
* exists.
*/
enum vma_resv_mode {
VMA_NEEDS_RESV,
VMA_COMMIT_RESV,
VMA_END_RESV,
VMA_ADD_RESV,
VMA_DEL_RESV,
};
static long __vma_reservation_common(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr,
enum vma_resv_mode mode)
{
struct resv_map *resv;
pgoff_t idx;
long ret;
long dummy_out_regions_needed;
resv = vma_resv_map(vma);
if (!resv)
return 1;
idx = vma_hugecache_offset(h, vma, addr);
switch (mode) {
case VMA_NEEDS_RESV:
ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
/* We assume that vma_reservation_* routines always operate on
* 1 page, and that adding to resv map a 1 page entry can only
* ever require 1 region.
*/
VM_BUG_ON(dummy_out_regions_needed != 1);
break;
case VMA_COMMIT_RESV:
ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
/* region_add calls of range 1 should never fail. */
VM_BUG_ON(ret < 0);
break;
case VMA_END_RESV:
region_abort(resv, idx, idx + 1, 1);
ret = 0;
break;
case VMA_ADD_RESV:
if (vma->vm_flags & VM_MAYSHARE) {
ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
/* region_add calls of range 1 should never fail. */
VM_BUG_ON(ret < 0);
} else {
region_abort(resv, idx, idx + 1, 1);
ret = region_del(resv, idx, idx + 1);
}
break;
case VMA_DEL_RESV:
if (vma->vm_flags & VM_MAYSHARE) {
region_abort(resv, idx, idx + 1, 1);
ret = region_del(resv, idx, idx + 1);
} else {
ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
/* region_add calls of range 1 should never fail. */
VM_BUG_ON(ret < 0);
}
break;
default:
BUG();
}
if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
return ret;
/*
* We know private mapping must have HPAGE_RESV_OWNER set.
*
* In most cases, reserves always exist for private mappings.
* However, a file associated with mapping could have been
* hole punched or truncated after reserves were consumed.
* As subsequent fault on such a range will not use reserves.
* Subtle - The reserve map for private mappings has the
* opposite meaning than that of shared mappings. If NO
* entry is in the reserve map, it means a reservation exists.
* If an entry exists in the reserve map, it means the
* reservation has already been consumed. As a result, the
* return value of this routine is the opposite of the
* value returned from reserve map manipulation routines above.
*/
if (ret > 0)
return 0;
if (ret == 0)
return 1;
return ret;
}
static long vma_needs_reservation(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
}
static long vma_commit_reservation(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}
static void vma_end_reservation(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
}
static long vma_add_reservation(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}
static long vma_del_reservation(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
}
/*
* This routine is called to restore reservation information on error paths.
* It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
* and the hugetlb mutex should remain held when calling this routine.
*
* It handles two specific cases:
* 1) A reservation was in place and the folio consumed the reservation.
* hugetlb_restore_reserve is set in the folio.
* 2) No reservation was in place for the page, so hugetlb_restore_reserve is
* not set. However, alloc_hugetlb_folio always updates the reserve map.
*
* In case 1, free_huge_folio later in the error path will increment the
* global reserve count. But, free_huge_folio does not have enough context
* to adjust the reservation map. This case deals primarily with private
* mappings. Adjust the reserve map here to be consistent with global
* reserve count adjustments to be made by free_huge_folio. Make sure the
* reserve map indicates there is a reservation present.
*
* In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
*/
void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
unsigned long address, struct folio *folio)
{
long rc = vma_needs_reservation(h, vma, address);
if (folio_test_hugetlb_restore_reserve(folio)) {
if (unlikely(rc < 0))
/*
* Rare out of memory condition in reserve map
* manipulation. Clear hugetlb_restore_reserve so
* that global reserve count will not be incremented
* by free_huge_folio. This will make it appear
* as though the reservation for this folio was
* consumed. This may prevent the task from
* faulting in the folio at a later time. This
* is better than inconsistent global huge page
* accounting of reserve counts.
*/
folio_clear_hugetlb_restore_reserve(folio);
else if (rc)
(void)vma_add_reservation(h, vma, address);
else
vma_end_reservation(h, vma, address);
} else {
if (!rc) {
/*
* This indicates there is an entry in the reserve map
* not added by alloc_hugetlb_folio. We know it was added
* before the alloc_hugetlb_folio call, otherwise
* hugetlb_restore_reserve would be set on the folio.
* Remove the entry so that a subsequent allocation
* does not consume a reservation.
*/
rc = vma_del_reservation(h, vma, address);
if (rc < 0)
/*
* VERY rare out of memory condition. Since
* we can not delete the entry, set
* hugetlb_restore_reserve so that the reserve
* count will be incremented when the folio
* is freed. This reserve will be consumed
* on a subsequent allocation.
*/
folio_set_hugetlb_restore_reserve(folio);
} else if (rc < 0) {
/*
* Rare out of memory condition from
* vma_needs_reservation call. Memory allocation is
* only attempted if a new entry is needed. Therefore,
* this implies there is not an entry in the
* reserve map.
*
* For shared mappings, no entry in the map indicates
* no reservation. We are done.
*/
if (!(vma->vm_flags & VM_MAYSHARE))
/*
* For private mappings, no entry indicates
* a reservation is present. Since we can
* not add an entry, set hugetlb_restore_reserve
* on the folio so reserve count will be
* incremented when freed. This reserve will
* be consumed on a subsequent allocation.
*/
folio_set_hugetlb_restore_reserve(folio);
} else
/*
* No reservation present, do nothing
*/
vma_end_reservation(h, vma, address);
}
}
/*
* alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
* the old one
* @h: struct hstate old page belongs to
* @old_folio: Old folio to dissolve
* @list: List to isolate the page in case we need to
* Returns 0 on success, otherwise negated error.
*/
static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
struct folio *old_folio, struct list_head *list)
{
gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
int nid = folio_nid(old_folio);
struct folio *new_folio;
int ret = 0;
/*
* Before dissolving the folio, we need to allocate a new one for the
* pool to remain stable. Here, we allocate the folio and 'prep' it
* by doing everything but actually updating counters and adding to
* the pool. This simplifies and let us do most of the processing
* under the lock.
*/
new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
if (!new_folio)
return -ENOMEM;
__prep_new_hugetlb_folio(h, new_folio);
retry:
spin_lock_irq(&hugetlb_lock);
if (!folio_test_hugetlb(old_folio)) {
/*
* Freed from under us. Drop new_folio too.
*/
goto free_new;
} else if (folio_ref_count(old_folio)) {
bool isolated;
/*
* Someone has grabbed the folio, try to isolate it here.
* Fail with -EBUSY if not possible.
*/
spin_unlock_irq(&hugetlb_lock);
isolated = isolate_hugetlb(old_folio, list);
ret = isolated ? 0 : -EBUSY;
spin_lock_irq(&hugetlb_lock);
goto free_new;
} else if (!folio_test_hugetlb_freed(old_folio)) {
/*
* Folio's refcount is 0 but it has not been enqueued in the
* freelist yet. Race window is small, so we can succeed here if
* we retry.
*/
spin_unlock_irq(&hugetlb_lock);
cond_resched();
goto retry;
} else {
/*
* Ok, old_folio is still a genuine free hugepage. Remove it from
* the freelist and decrease the counters. These will be
* incremented again when calling __prep_account_new_huge_page()
* and enqueue_hugetlb_folio() for new_folio. The counters will
* remain stable since this happens under the lock.
*/
remove_hugetlb_folio(h, old_folio, false);
/*
* Ref count on new_folio is already zero as it was dropped
* earlier. It can be directly added to the pool free list.
*/
__prep_account_new_huge_page(h, nid);
enqueue_hugetlb_folio(h, new_folio);
/*
* Folio has been replaced, we can safely free the old one.
*/
spin_unlock_irq(&hugetlb_lock);
update_and_free_hugetlb_folio(h, old_folio, false);
}
return ret;
free_new:
spin_unlock_irq(&hugetlb_lock);
/* Folio has a zero ref count, but needs a ref to be freed */
folio_ref_unfreeze(new_folio, 1);
update_and_free_hugetlb_folio(h, new_folio, false);
return ret;
}
int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
{
struct hstate *h;
struct folio *folio = page_folio(page);
int ret = -EBUSY;
/*
* The page might have been dissolved from under our feet, so make sure
* to carefully check the state under the lock.
* Return success when racing as if we dissolved the page ourselves.
*/
spin_lock_irq(&hugetlb_lock);
if (folio_test_hugetlb(folio)) {
h = folio_hstate(folio);
} else {
spin_unlock_irq(&hugetlb_lock);
return 0;
}
spin_unlock_irq(&hugetlb_lock);
/*
* Fence off gigantic pages as there is a cyclic dependency between
* alloc_contig_range and them. Return -ENOMEM as this has the effect
* of bailing out right away without further retrying.
*/
if (hstate_is_gigantic(h))
return -ENOMEM;
if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
ret = 0;
else if (!folio_ref_count(folio))
ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
return ret;
}
struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
unsigned long addr, int avoid_reserve)
{
struct hugepage_subpool *spool = subpool_vma(vma);
struct hstate *h = hstate_vma(vma);
struct folio *folio;
long map_chg, map_commit;
long gbl_chg;
int ret, idx;
struct hugetlb_cgroup *h_cg = NULL;
bool deferred_reserve;
idx = hstate_index(h);
/*
* Examine the region/reserve map to determine if the process
* has a reservation for the page to be allocated. A return
* code of zero indicates a reservation exists (no change).
*/
map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
if (map_chg < 0)
return ERR_PTR(-ENOMEM);
/*
* Processes that did not create the mapping will have no
* reserves as indicated by the region/reserve map. Check
* that the allocation will not exceed the subpool limit.
* Allocations for MAP_NORESERVE mappings also need to be
* checked against any subpool limit.
*/
if (map_chg || avoid_reserve) {
gbl_chg = hugepage_subpool_get_pages(spool, 1);
if (gbl_chg < 0) {
vma_end_reservation(h, vma, addr);
return ERR_PTR(-ENOSPC);
}
/*
* Even though there was no reservation in the region/reserve
* map, there could be reservations associated with the
* subpool that can be used. This would be indicated if the
* return value of hugepage_subpool_get_pages() is zero.
* However, if avoid_reserve is specified we still avoid even
* the subpool reservations.
*/
if (avoid_reserve)
gbl_chg = 1;
}
/* If this allocation is not consuming a reservation, charge it now.
*/
deferred_reserve = map_chg || avoid_reserve;
if (deferred_reserve) {
ret = hugetlb_cgroup_charge_cgroup_rsvd(
idx, pages_per_huge_page(h), &h_cg);
if (ret)
goto out_subpool_put;
}
ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
if (ret)
goto out_uncharge_cgroup_reservation;
spin_lock_irq(&hugetlb_lock);
/*
* glb_chg is passed to indicate whether or not a page must be taken
* from the global free pool (global change). gbl_chg == 0 indicates
* a reservation exists for the allocation.
*/
folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
if (!folio) {
spin_unlock_irq(&hugetlb_lock);
folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
if (!folio)
goto out_uncharge_cgroup;
spin_lock_irq(&hugetlb_lock);
if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
folio_set_hugetlb_restore_reserve(folio);
h->resv_huge_pages--;
}
list_add(&folio->lru, &h->hugepage_activelist);
folio_ref_unfreeze(folio, 1);
/* Fall through */
}
hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
/* If allocation is not consuming a reservation, also store the
* hugetlb_cgroup pointer on the page.
*/
if (deferred_reserve) {
hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
h_cg, folio);
}
spin_unlock_irq(&hugetlb_lock);
hugetlb_set_folio_subpool(folio, spool);
map_commit = vma_commit_reservation(h, vma, addr);
if (unlikely(map_chg > map_commit)) {
/*
* The page was added to the reservation map between
* vma_needs_reservation and vma_commit_reservation.
* This indicates a race with hugetlb_reserve_pages.
* Adjust for the subpool count incremented above AND
* in hugetlb_reserve_pages for the same page. Also,
* the reservation count added in hugetlb_reserve_pages
* no longer applies.
*/
long rsv_adjust;
rsv_adjust = hugepage_subpool_put_pages(spool, 1);
hugetlb_acct_memory(h, -rsv_adjust);
if (deferred_reserve)
hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
pages_per_huge_page(h), folio);
}
return folio;
out_uncharge_cgroup:
hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_uncharge_cgroup_reservation:
if (deferred_reserve)
hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
h_cg);
out_subpool_put:
if (map_chg || avoid_reserve)
hugepage_subpool_put_pages(spool, 1);
vma_end_reservation(h, vma, addr);
return ERR_PTR(-ENOSPC);
}
int alloc_bootmem_huge_page(struct hstate *h, int nid)
__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h, int nid)
{
struct huge_bootmem_page *m = NULL; /* initialize for clang */
int nr_nodes, node;
/* do node specific alloc */
if (nid != NUMA_NO_NODE) {
m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
if (!m)
return 0;
goto found;
}
/* allocate from next node when distributing huge pages */
for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
m = memblock_alloc_try_nid_raw(
huge_page_size(h), huge_page_size(h),
0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
/*
* Use the beginning of the huge page to store the
* huge_bootmem_page struct (until gather_bootmem
* puts them into the mem_map).
*/
if (!m)
return 0;
goto found;
}
found:
/* Put them into a private list first because mem_map is not up yet */
INIT_LIST_HEAD(&m->list);
list_add(&m->list, &huge_boot_pages);
m->hstate = h;
return 1;
}
/*
* Put bootmem huge pages into the standard lists after mem_map is up.
* Note: This only applies to gigantic (order > MAX_ORDER) pages.
*/
static void __init gather_bootmem_prealloc(void)
{
struct huge_bootmem_page *m;
list_for_each_entry(m, &huge_boot_pages, list) {
struct page *page = virt_to_page(m);
struct folio *folio = page_folio(page);
struct hstate *h = m->hstate;
VM_BUG_ON(!hstate_is_gigantic(h));
WARN_ON(folio_ref_count(folio) != 1);
if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
WARN_ON(folio_test_reserved(folio));
prep_new_hugetlb_folio(h, folio, folio_nid(folio));
free_huge_folio(folio); /* add to the hugepage allocator */
} else {
/* VERY unlikely inflated ref count on a tail page */
free_gigantic_folio(folio, huge_page_order(h));
}
/*
* We need to restore the 'stolen' pages to totalram_pages
* in order to fix confusing memory reports from free(1) and
* other side-effects, like CommitLimit going negative.
*/
adjust_managed_page_count(page, pages_per_huge_page(h));
cond_resched();
}
}
static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
{
unsigned long i;
char buf[32];
for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
if (hstate_is_gigantic(h)) {
if (!alloc_bootmem_huge_page(h, nid))
break;
} else {
struct folio *folio;
gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
&node_states[N_MEMORY], NULL);
if (!folio)
break;
free_huge_folio(folio); /* free it into the hugepage allocator */
}
cond_resched();
}
if (i == h->max_huge_pages_node[nid])
return;
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
h->max_huge_pages_node[nid], buf, nid, i);
h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
h->max_huge_pages_node[nid] = i;
}
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
{
unsigned long i;
nodemask_t *node_alloc_noretry;
bool node_specific_alloc = false;
/* skip gigantic hugepages allocation if hugetlb_cma enabled */
if (hstate_is_gigantic(h) && hugetlb_cma_size) {
pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
return;
}
/* do node specific alloc */
for_each_online_node(i) {
if (h->max_huge_pages_node[i] > 0) {
hugetlb_hstate_alloc_pages_onenode(h, i);
node_specific_alloc = true;
}
}
if (node_specific_alloc)
return;
/* below will do all node balanced alloc */
if (!hstate_is_gigantic(h)) {
/*
* Bit mask controlling how hard we retry per-node allocations.
* Ignore errors as lower level routines can deal with
* node_alloc_noretry == NULL. If this kmalloc fails at boot
* time, we are likely in bigger trouble.
*/
node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
GFP_KERNEL);
} else {
/* allocations done at boot time */
node_alloc_noretry = NULL;
}
/* bit mask controlling how hard we retry per-node allocations */
if (node_alloc_noretry)
nodes_clear(*node_alloc_noretry);
for (i = 0; i < h->max_huge_pages; ++i) {
if (hstate_is_gigantic(h)) {
if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
break;
} else if (!alloc_pool_huge_page(h,
&node_states[N_MEMORY],
node_alloc_noretry))
break;
cond_resched();
}
if (i < h->max_huge_pages) {
char buf[32];
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
h->max_huge_pages, buf, i);
h->max_huge_pages = i;
}
kfree(node_alloc_noretry);
}
static void __init hugetlb_init_hstates(void)
{
struct hstate *h, *h2;
for_each_hstate(h) {
/* oversize hugepages were init'ed in early boot */
if (!hstate_is_gigantic(h))
hugetlb_hstate_alloc_pages(h);
/*
* Set demote order for each hstate. Note that
* h->demote_order is initially 0.
* - We can not demote gigantic pages if runtime freeing
* is not supported, so skip this.
* - If CMA allocation is possible, we can not demote
* HUGETLB_PAGE_ORDER or smaller size pages.
*/
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
continue;
if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
continue;
for_each_hstate(h2) {
if (h2 == h)
continue;
if (h2->order < h->order &&
h2->order > h->demote_order)
h->demote_order = h2->order;
}
}
}
static void __init report_hugepages(void)
{
struct hstate *h;
for_each_hstate(h) {
char buf[32];
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
buf, h->free_huge_pages);
pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
}
}
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(struct hstate *h, unsigned long count,
nodemask_t *nodes_allowed)
{
int i;
LIST_HEAD(page_list);
lockdep_assert_held(&hugetlb_lock);
if (hstate_is_gigantic(h))
return;
/*
* Collect pages to be freed on a list, and free after dropping lock
*/
for_each_node_mask(i, *nodes_allowed) {
struct page *page, *next;
struct list_head *freel = &h->hugepage_freelists[i];
list_for_each_entry_safe(page, next, freel, lru) {
if (count >= h->nr_huge_pages)
goto out;
if (PageHighMem(page))
continue;
remove_hugetlb_folio(h, page_folio(page), false);
list_add(&page->lru, &page_list);
}
}
out:
spin_unlock_irq(&hugetlb_lock);
update_and_free_pages_bulk(h, &page_list);
spin_lock_irq(&hugetlb_lock);
}
#else
static inline void try_to_free_low(struct hstate *h, unsigned long count,
nodemask_t *nodes_allowed)
{
}
#endif
/*
* Increment or decrement surplus_huge_pages. Keep node-specific counters
* balanced by operating on them in a round-robin fashion.
* Returns 1 if an adjustment was made.
*/
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
int delta)
{
int nr_nodes, node;
lockdep_assert_held(&hugetlb_lock);
VM_BUG_ON(delta != -1 && delta != 1);
if (delta < 0) {
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
if (h->surplus_huge_pages_node[node])
goto found;
}
} else {
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
if (h->surplus_huge_pages_node[node] <
h->nr_huge_pages_node[node])
goto found;
}
}
return 0;
found:
h->surplus_huge_pages += delta;
h->surplus_huge_pages_node[node] += delta;
return 1;
}
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
nodemask_t *nodes_allowed)
{
unsigned long min_count, ret;
struct page *page;
LIST_HEAD(page_list);
NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
/*
* Bit mask controlling how hard we retry per-node allocations.
* If we can not allocate the bit mask, do not attempt to allocate
* the requested huge pages.
*/
if (node_alloc_noretry)
nodes_clear(*node_alloc_noretry);
else
return -ENOMEM;
/*
* resize_lock mutex prevents concurrent adjustments to number of
* pages in hstate via the proc/sysfs interfaces.
*/
mutex_lock(&h->resize_lock);
flush_free_hpage_work(h);
spin_lock_irq(&hugetlb_lock);
/*
* Check for a node specific request.
* Changing node specific huge page count may require a corresponding
* change to the global count. In any case, the passed node mask
* (nodes_allowed) will restrict alloc/free to the specified node.
*/
if (nid != NUMA_NO_NODE) {
unsigned long old_count = count;
count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
/*
* User may have specified a large count value which caused the
* above calculation to overflow. In this case, they wanted
* to allocate as many huge pages as possible. Set count to
* largest possible value to align with their intention.
*/
if (count < old_count)
count = ULONG_MAX;
}
/*
* Gigantic pages runtime allocation depend on the capability for large
* page range allocation.
* If the system does not provide this feature, return an error when
* the user tries to allocate gigantic pages but let the user free the
* boottime allocated gigantic pages.
*/
if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
if (count > persistent_huge_pages(h)) {
spin_unlock_irq(&hugetlb_lock);
mutex_unlock(&h->resize_lock);
NODEMASK_FREE(node_alloc_noretry);
return -EINVAL;
}
/* Fall through to decrease pool */
}
/*
* Increase the pool size
* First take pages out of surplus state. Then make up the
* remaining difference by allocating fresh huge pages.
*
* We might race with alloc_surplus_hugetlb_folio() here and be unable
* to convert a surplus huge page to a normal huge page. That is
* not critical, though, it just means the overall size of the
* pool might be one hugepage larger than it needs to be, but
* within all the constraints specified by the sysctls.
*/
while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
if (!adjust_pool_surplus(h, nodes_allowed, -1))
break;
}
while (count > persistent_huge_pages(h)) {
/*
* If this allocation races such that we no longer need the
* page, free_huge_folio will handle it by freeing the page
* and reducing the surplus.
*/
spin_unlock_irq(&hugetlb_lock);
/* yield cpu to avoid soft lockup */
cond_resched();
ret = alloc_pool_huge_page(h, nodes_allowed,
node_alloc_noretry);
spin_lock_irq(&hugetlb_lock);
if (!ret)
goto out;
/* Bail for signals. Probably ctrl-c from user */
if (signal_pending(current))
goto out;
}
/*
* Decrease the pool size
* First return free pages to the buddy allocator (being careful
* to keep enough around to satisfy reservations). Then place
* pages into surplus state as needed so the pool will shrink
* to the desired size as pages become free.
*
* By placing pages into the surplus state independent of the
* overcommit value, we are allowing the surplus pool size to
* exceed overcommit. There are few sane options here. Since
* alloc_surplus_hugetlb_folio() is checking the global counter,
* though, we'll note that we're not allowed to exceed surplus
* and won't grow the pool anywhere else. Not until one of the
* sysctls are changed, or the surplus pages go out of use.
*/
min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
min_count = max(count, min_count);
try_to_free_low(h, min_count, nodes_allowed);
/*
* Collect pages to be removed on list without dropping lock
*/
while (min_count < persistent_huge_pages(h)) {
page = remove_pool_huge_page(h, nodes_allowed, 0);
if (!page)
break;
list_add(&page->lru, &page_list);
}
/* free the pages after dropping lock */
spin_unlock_irq(&hugetlb_lock);
update_and_free_pages_bulk(h, &page_list);
flush_free_hpage_work(h);
spin_lock_irq(&hugetlb_lock);
while (count < persistent_huge_pages(h)) {
if (!adjust_pool_surplus(h, nodes_allowed, 1))
break;
}
out:
h->max_huge_pages = persistent_huge_pages(h);
spin_unlock_irq(&hugetlb_lock);
mutex_unlock(&h->resize_lock);
NODEMASK_FREE(node_alloc_noretry);
return 0;
}
static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
{
int i, nid = folio_nid(folio);
struct hstate *target_hstate;
struct page *subpage;
struct folio *inner_folio;
int rc = 0;
target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
remove_hugetlb_folio_for_demote(h, folio, false);
spin_unlock_irq(&hugetlb_lock);
rc = hugetlb_vmemmap_restore(h, &folio->page);
if (rc) {
/* Allocation of vmemmmap failed, we can not demote folio */
spin_lock_irq(&hugetlb_lock);
folio_ref_unfreeze(folio, 1);
add_hugetlb_folio(h, folio, false);
return rc;
}
/*
* Use destroy_compound_hugetlb_folio_for_demote for all huge page
* sizes as it will not ref count folios.
*/
destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
/*
* Taking target hstate mutex synchronizes with set_max_huge_pages.
* Without the mutex, pages added to target hstate could be marked
* as surplus.
*
* Note that we already hold h->resize_lock. To prevent deadlock,
* use the convention of always taking larger size hstate mutex first.
*/
mutex_lock(&target_hstate->resize_lock);
for (i = 0; i < pages_per_huge_page(h);
i += pages_per_huge_page(target_hstate)) {
subpage = folio_page(folio, i);
inner_folio = page_folio(subpage);
if (hstate_is_gigantic(target_hstate))
prep_compound_gigantic_folio_for_demote(inner_folio,
target_hstate->order);
else
prep_compound_page(subpage, target_hstate->order);
folio_change_private(inner_folio, NULL);
prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
free_huge_folio(inner_folio);
}
mutex_unlock(&target_hstate->resize_lock);
spin_lock_irq(&hugetlb_lock);
/*
* Not absolutely necessary, but for consistency update max_huge_pages
* based on pool changes for the demoted page.
*/
h->max_huge_pages--;
target_hstate->max_huge_pages +=
pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
return rc;
}
static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
__must_hold(&hugetlb_lock)
{
int nr_nodes, node;
struct folio *folio;
lockdep_assert_held(&hugetlb_lock);
/* We should never get here if no demote order */
if (!h->demote_order) {
pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
return -EINVAL; /* internal error */
}
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
if (folio_test_hwpoison(folio))
continue;
return demote_free_hugetlb_folio(h, folio);
}
}
/*
* Only way to get here is if all pages on free lists are poisoned.
* Return -EBUSY so that caller will not retry.
*/
return -EBUSY;
}
#define HSTATE_ATTR_RO(_name) \
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
#define HSTATE_ATTR_WO(_name) \
static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
#define HSTATE_ATTR(_name) \
static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
{
int i;
for (i = 0; i < HUGE_MAX_HSTATE; i++)
if (hstate_kobjs[i] == kobj) {
if (nidp)
*nidp = NUMA_NO_NODE;
return &hstates[i];
}
return kobj_to_node_hstate(kobj, nidp);
}
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h;
unsigned long nr_huge_pages;
int nid;
h = kobj_to_hstate(kobj, &nid);
if (nid == NUMA_NO_NODE)
nr_huge_pages = h->nr_huge_pages;
else
nr_huge_pages = h->nr_huge_pages_node[nid];
return sysfs_emit(buf, "%lu\n", nr_huge_pages);
}
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
struct hstate *h, int nid,
unsigned long count, size_t len)
{
int err;
nodemask_t nodes_allowed, *n_mask;
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
return -EINVAL;
if (nid == NUMA_NO_NODE) {
/*
* global hstate attribute
*/
if (!(obey_mempolicy &&
init_nodemask_of_mempolicy(&nodes_allowed)))
n_mask = &node_states[N_MEMORY];
else
n_mask = &nodes_allowed;
} else {
/*
* Node specific request. count adjustment happens in
* set_max_huge_pages() after acquiring hugetlb_lock.
*/
init_nodemask_of_node(&nodes_allowed, nid);
n_mask = &nodes_allowed;
}
err = set_max_huge_pages(h, count, nid, n_mask);
return err ? err : len;
}
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
struct kobject *kobj, const char *buf,
size_t len)
{
struct hstate *h;
unsigned long count;
int nid;
int err;
err = kstrtoul(buf, 10, &count);
if (err)
return err;
h = kobj_to_hstate(kobj, &nid);
return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}
static ssize_t nr_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return nr_hugepages_show_common(kobj, attr, buf);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t len)
{
return nr_hugepages_store_common(false, kobj, buf, len);
}
HSTATE_ATTR(nr_hugepages);
#ifdef CONFIG_NUMA
/*
* hstate attribute for optionally mempolicy-based constraint on persistent
* huge page alloc/free.
*/
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return nr_hugepages_show_common(kobj, attr, buf);
}
static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t len)
{
return nr_hugepages_store_common(true, kobj, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h = kobj_to_hstate(kobj, NULL);
return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int err;
unsigned long input;
struct hstate *h = kobj_to_hstate(kobj, NULL);
if (hstate_is_gigantic(h))
return -EINVAL;
err = kstrtoul(buf, 10, &input);
if (err)
return err;
spin_lock_irq(&hugetlb_lock);
h->nr_overcommit_huge_pages = input;
spin_unlock_irq(&hugetlb_lock);
return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);
static ssize_t free_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h;
unsigned long free_huge_pages;
int nid;
h = kobj_to_hstate(kobj, &nid);
if (nid == NUMA_NO_NODE)
free_huge_pages = h->free_huge_pages;
else
free_huge_pages = h->free_huge_pages_node[nid];
return sysfs_emit(buf, "%lu\n", free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);
static ssize_t resv_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h = kobj_to_hstate(kobj, NULL);
return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);
static ssize_t surplus_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h;
unsigned long surplus_huge_pages;
int nid;
h = kobj_to_hstate(kobj, &nid);
if (nid == NUMA_NO_NODE)
surplus_huge_pages = h->surplus_huge_pages;
else
surplus_huge_pages = h->surplus_huge_pages_node[nid];
return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);
static ssize_t demote_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t len)
{
unsigned long nr_demote;
unsigned long nr_available;
nodemask_t nodes_allowed, *n_mask;
struct hstate *h;
int err;
int nid;
err = kstrtoul(buf, 10, &nr_demote);
if (err)
return err;
h = kobj_to_hstate(kobj, &nid);
if (nid != NUMA_NO_NODE) {
init_nodemask_of_node(&nodes_allowed, nid);
n_mask = &nodes_allowed;
} else {
n_mask = &node_states[N_MEMORY];
}
/* Synchronize with other sysfs operations modifying huge pages */
mutex_lock(&h->resize_lock);
spin_lock_irq(&hugetlb_lock);
while (nr_demote) {
/*
* Check for available pages to demote each time thorough the
* loop as demote_pool_huge_page will drop hugetlb_lock.
*/
if (nid != NUMA_NO_NODE)
nr_available = h->free_huge_pages_node[nid];
else
nr_available = h->free_huge_pages;
nr_available -= h->resv_huge_pages;
if (!nr_available)
break;
err = demote_pool_huge_page(h, n_mask);
if (err)
break;
nr_demote--;
}
spin_unlock_irq(&hugetlb_lock);
mutex_unlock(&h->resize_lock);
if (err)
return err;
return len;
}
HSTATE_ATTR_WO(demote);
static ssize_t demote_size_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct hstate *h = kobj_to_hstate(kobj, NULL);
unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
return sysfs_emit(buf, "%lukB\n", demote_size);
}
static ssize_t demote_size_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct hstate *h, *demote_hstate;
unsigned long demote_size;
unsigned int demote_order;
demote_size = (unsigned long)memparse(buf, NULL);
demote_hstate = size_to_hstate(demote_size);
if (!demote_hstate)
return -EINVAL;
demote_order = demote_hstate->order;
if (demote_order < HUGETLB_PAGE_ORDER)
return -EINVAL;
/* demote order must be smaller than hstate order */
h = kobj_to_hstate(kobj, NULL);
if (demote_order >= h->order)
return -EINVAL;
/* resize_lock synchronizes access to demote size and writes */
mutex_lock(&h->resize_lock);
h->demote_order = demote_order;
mutex_unlock(&h->resize_lock);
return count;
}
HSTATE_ATTR(demote_size);
static struct attribute *hstate_attrs[] = {
&nr_hugepages_attr.attr,
&nr_overcommit_hugepages_attr.attr,
&free_hugepages_attr.attr,
&resv_hugepages_attr.attr,
&surplus_hugepages_attr.attr,
#ifdef CONFIG_NUMA
&nr_hugepages_mempolicy_attr.attr,
#endif
NULL,
};
static const struct attribute_group hstate_attr_group = {
.attrs = hstate_attrs,
};
static struct attribute *hstate_demote_attrs[] = {
&demote_size_attr.attr,
&demote_attr.attr,
NULL,
};
static const struct attribute_group hstate_demote_attr_group = {
.attrs = hstate_demote_attrs,
};
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
struct kobject **hstate_kobjs,
const struct attribute_group *hstate_attr_group)
{
int retval;
int hi = hstate_index(h);
hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
if (!hstate_kobjs[hi])
return -ENOMEM;
retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
if (retval) {
kobject_put(hstate_kobjs[hi]);
hstate_kobjs[hi] = NULL;
return retval;
}
if (h->demote_order) {
retval = sysfs_create_group(hstate_kobjs[hi],
&hstate_demote_attr_group);
if (retval) {
pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
kobject_put(hstate_kobjs[hi]);
hstate_kobjs[hi] = NULL;
return retval;
}
}
return 0;
}
#ifdef CONFIG_NUMA
static bool hugetlb_sysfs_initialized __ro_after_init;
/*
* node_hstate/s - associate per node hstate attributes, via their kobjects,
* with node devices in node_devices[] using a parallel array. The array
* index of a node device or _hstate == node id.
* This is here to avoid any static dependency of the node device driver, in
* the base kernel, on the hugetlb module.
*/
struct node_hstate {
struct kobject *hugepages_kobj;
struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
};
static struct node_hstate node_hstates[MAX_NUMNODES];
/*
* A subset of global hstate attributes for node devices
*/
static struct attribute *per_node_hstate_attrs[] = {
&nr_hugepages_attr.attr,
&free_hugepages_attr.attr,
&surplus_hugepages_attr.attr,
NULL,
};
static const struct attribute_group per_node_hstate_attr_group = {
.attrs = per_node_hstate_attrs,
};
/*
* kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
* Returns node id via non-NULL nidp.
*/
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
int nid;
for (nid = 0; nid < nr_node_ids; nid++) {
struct node_hstate *nhs = &node_hstates[nid];
int i;
for (i = 0; i < HUGE_MAX_HSTATE; i++)
if (nhs->hstate_kobjs[i] == kobj) {
if (nidp)
*nidp = nid;
return &hstates[i];
}
}
BUG();
return NULL;
}
/*
* Unregister hstate attributes from a single node device.
* No-op if no hstate attributes attached.
*/
void hugetlb_unregister_node(struct node *node)
{
struct hstate *h;
struct node_hstate *nhs = &node_hstates[node->dev.id];
if (!nhs->hugepages_kobj)
return; /* no hstate attributes */
for_each_hstate(h) {
int idx = hstate_index(h);
struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
if (!hstate_kobj)
continue;
if (h->demote_order)
sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
kobject_put(hstate_kobj);
nhs->hstate_kobjs[idx] = NULL;
}
kobject_put(nhs->hugepages_kobj);
nhs->hugepages_kobj = NULL;
}
/*
* Register hstate attributes for a single node device.
* No-op if attributes already registered.
*/
void hugetlb_register_node(struct node *node)
{
struct hstate *h;
struct node_hstate *nhs = &node_hstates[node->dev.id];
int err;
if (!hugetlb_sysfs_initialized)
return;
if (nhs->hugepages_kobj)
return; /* already allocated */
nhs->hugepages_kobj = kobject_create_and_add("hugepages",
&node->dev.kobj);
if (!nhs->hugepages_kobj)
return;
for_each_hstate(h) {
err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
nhs->hstate_kobjs,
&per_node_hstate_attr_group);
if (err) {
pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
h->name, node->dev.id);
hugetlb_unregister_node(node);
break;
}
}
}
/*
* hugetlb init time: register hstate attributes for all registered node
* devices of nodes that have memory. All on-line nodes should have
* registered their associated device by this time.
*/
static void __init hugetlb_register_all_nodes(void)
{
int nid;
for_each_online_node(nid)
hugetlb_register_node(node_devices[nid]);
}
#else /* !CONFIG_NUMA */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
BUG();
if (nidp)
*nidp = -1;
return NULL;
}
static void hugetlb_register_all_nodes(void) { }
#endif
#ifdef CONFIG_CMA
static void __init hugetlb_cma_check(void);
#else
static inline __init void hugetlb_cma_check(void)
{
}
#endif
static void __init hugetlb_sysfs_init(void)
{
struct hstate *h;
int err;
hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
if (!hugepages_kobj)
return;
for_each_hstate(h) {
err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
hstate_kobjs, &hstate_attr_group);
if (err)
pr_err("HugeTLB: Unable to add hstate %s", h->name);
}
#ifdef CONFIG_NUMA
hugetlb_sysfs_initialized = true;
#endif
hugetlb_register_all_nodes();
}
#ifdef CONFIG_SYSCTL
static void hugetlb_sysctl_init(void);
#else
static inline void hugetlb_sysctl_init(void) { }
#endif
static int __init hugetlb_init(void)
{
int i;
BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
__NR_HPAGEFLAGS);
if (!hugepages_supported()) {
if (hugetlb_max_hstate || default_hstate_max_huge_pages)
pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
return 0;
}
/*
* Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
* architectures depend on setup being done here.
*/
hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
if (!parsed_default_hugepagesz) {
/*
* If we did not parse a default huge page size, set
* default_hstate_idx to HPAGE_SIZE hstate. And, if the
* number of huge pages for this default size was implicitly
* specified, set that here as well.
* Note that the implicit setting will overwrite an explicit
* setting. A warning will be printed in this case.
*/
default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
if (default_hstate_max_huge_pages) {
if (default_hstate.max_huge_pages) {
char buf[32];
string_get_size(huge_page_size(&default_hstate),
1, STRING_UNITS_2, buf, 32);
pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
default_hstate.max_huge_pages, buf);
pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
default_hstate_max_huge_pages);
}
default_hstate.max_huge_pages =
default_hstate_max_huge_pages;
for_each_online_node(i)
default_hstate.max_huge_pages_node[i] =
default_hugepages_in_node[i];
}
}
hugetlb_cma_check();
hugetlb_init_hstates();
gather_bootmem_prealloc();
report_hugepages();
hugetlb_sysfs_init();
hugetlb_cgroup_file_init();
hugetlb_sysctl_init();
#ifdef CONFIG_SMP
num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
num_fault_mutexes = 1;
#endif
hugetlb_fault_mutex_table =
kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
GFP_KERNEL);
BUG_ON(!hugetlb_fault_mutex_table);
for (i = 0; i < num_fault_mutexes; i++)
mutex_init(&hugetlb_fault_mutex_table[i]);
return 0;
}
subsys_initcall(hugetlb_init);
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
{
return size == HPAGE_SIZE;
}
void __init hugetlb_add_hstate(unsigned int order)
{
struct hstate *h;
unsigned long i;
if (size_to_hstate(PAGE_SIZE << order)) {
return;
}
BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
BUG_ON(order == 0);
h = &hstates[hugetlb_max_hstate++];
mutex_init(&h->resize_lock);
h->order = order;
h->mask = ~(huge_page_size(h) - 1);
for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&h->hugepage_freelists[i]);
INIT_LIST_HEAD(&h->hugepage_activelist);
h->next_nid_to_alloc = first_memory_node;
h->next_nid_to_free = first_memory_node;
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
huge_page_size(h)/SZ_1K);
parsed_hstate = h;
}
bool __init __weak hugetlb_node_alloc_supported(void)
{
return true;
}
static void __init hugepages_clear_pages_in_node(void)
{
if (!hugetlb_max_hstate) {
default_hstate_max_huge_pages = 0;
memset(default_hugepages_in_node, 0,
sizeof(default_hugepages_in_node));
} else {
parsed_hstate->max_huge_pages = 0;
memset(parsed_hstate->max_huge_pages_node, 0,
sizeof(parsed_hstate->max_huge_pages_node));
}
}
/*
* hugepages command line processing
* hugepages normally follows a valid hugepagsz or default_hugepagsz
* specification. If not, ignore the hugepages value. hugepages can also
* be the first huge page command line option in which case it implicitly
* specifies the number of huge pages for the default size.
*/
static int __init hugepages_setup(char *s)
{
unsigned long *mhp;
static unsigned long *last_mhp;
int node = NUMA_NO_NODE;
int count;
unsigned long tmp;
char *p = s;
if (!parsed_valid_hugepagesz) {
pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
parsed_valid_hugepagesz = true;
return 1;
}
/*
* !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
* yet, so this hugepages= parameter goes to the "default hstate".
* Otherwise, it goes with the previously parsed hugepagesz or
* default_hugepagesz.
*/
else if (!hugetlb_max_hstate)
mhp = &default_hstate_max_huge_pages;
else
mhp = &parsed_hstate->max_huge_pages;
if (mhp == last_mhp) {
pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
return 1;
}
while (*p) {
count = 0;
if (sscanf(p, "%lu%n", &tmp, &count) != 1)
goto invalid;
/* Parameter is node format */
if (p[count] == ':') {
if (!hugetlb_node_alloc_supported()) {
pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
return 1;
}
if (tmp >= MAX_NUMNODES || !node_online(tmp))
goto invalid;
node = array_index_nospec(tmp, MAX_NUMNODES);
p += count + 1;
/* Parse hugepages */
if (sscanf(p, "%lu%n", &tmp, &count) != 1)
goto invalid;
if (!hugetlb_max_hstate)
default_hugepages_in_node[node] = tmp;
else
parsed_hstate->max_huge_pages_node[node] = tmp;
*mhp += tmp;
/* Go to parse next node*/
if (p[count] == ',')
p += count + 1;
else
break;
} else {
if (p != s)
goto invalid;
*mhp = tmp;
break;
}
}
/*
* Global state is always initialized later in hugetlb_init.
* But we need to allocate gigantic hstates here early to still
* use the bootmem allocator.
*/
if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
hugetlb_hstate_alloc_pages(parsed_hstate);
last_mhp = mhp;
return 1;
invalid:
pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
hugepages_clear_pages_in_node();
return 1;
}
__setup("hugepages=", hugepages_setup);
/*
* hugepagesz command line processing
* A specific huge page size can only be specified once with hugepagesz.
* hugepagesz is followed by hugepages on the command line. The global
* variable 'parsed_valid_hugepagesz' is used to determine if prior
* hugepagesz argument was valid.
*/
static int __init hugepagesz_setup(char *s)
{
unsigned long size;
struct hstate *h;
parsed_valid_hugepagesz = false;
size = (unsigned long)memparse(s, NULL);
if (!arch_hugetlb_valid_size(size)) {
pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
return 1;
}
h = size_to_hstate(size);
if (h) {
/*
* hstate for this size already exists. This is normally
* an error, but is allowed if the existing hstate is the
* default hstate. More specifically, it is only allowed if
* the number of huge pages for the default hstate was not
* previously specified.
*/
if (!parsed_default_hugepagesz || h != &default_hstate ||
default_hstate.max_huge_pages) {
pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
return 1;
}
/*
* No need to call hugetlb_add_hstate() as hstate already
* exists. But, do set parsed_hstate so that a following
* hugepages= parameter will be applied to this hstate.
*/
parsed_hstate = h;
parsed_valid_hugepagesz = true;
return 1;
}
hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
parsed_valid_hugepagesz = true;
return 1;
}
__setup("hugepagesz=", hugepagesz_setup);
/*
* default_hugepagesz command line input
* Only one instance of default_hugepagesz allowed on command line.
*/
static int __init default_hugepagesz_setup(char *s)
{
unsigned long size;
int i;
parsed_valid_hugepagesz = false;
if (parsed_default_hugepagesz) {
pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
return 1;
}
size = (unsigned long)memparse(s, NULL);
if (!arch_hugetlb_valid_size(size)) {
pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
return 1;
}
hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
parsed_valid_hugepagesz = true;
parsed_default_hugepagesz = true;
default_hstate_idx = hstate_index(size_to_hstate(size));
/*
* The number of default huge pages (for this size) could have been
* specified as the first hugetlb parameter: hugepages=X. If so,
* then default_hstate_max_huge_pages is set. If the default huge
* page size is gigantic (> MAX_ORDER), then the pages must be
* allocated here from bootmem allocator.
*/
if (default_hstate_max_huge_pages) {
default_hstate.max_huge_pages = default_hstate_max_huge_pages;
for_each_online_node(i)
default_hstate.max_huge_pages_node[i] =
default_hugepages_in_node[i];
if (hstate_is_gigantic(&default_hstate))
hugetlb_hstate_alloc_pages(&default_hstate);
default_hstate_max_huge_pages = 0;
}
return 1;
}
__setup("default_hugepagesz=", default_hugepagesz_setup);
static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
{
#ifdef CONFIG_NUMA
struct mempolicy *mpol = get_task_policy(current);
/*
* Only enforce MPOL_BIND policy which overlaps with cpuset policy
* (from policy_nodemask) specifically for hugetlb case
*/
if (mpol->mode == MPOL_BIND &&
(apply_policy_zone(mpol, gfp_zone(gfp)) &&
cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
return &mpol->nodes;
#endif
return NULL;
}
static unsigned int allowed_mems_nr(struct hstate *h)
{
int node;
unsigned int nr = 0;
nodemask_t *mbind_nodemask;
unsigned int *array = h->free_huge_pages_node;
gfp_t gfp_mask = htlb_alloc_mask(h);
mbind_nodemask = policy_mbind_nodemask(gfp_mask);
for_each_node_mask(node, cpuset_current_mems_allowed) {
if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
nr += array[node];
}
return nr;
}
#ifdef CONFIG_SYSCTL
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
void *buffer, size_t *length,
loff_t *ppos, unsigned long *out)
{
struct ctl_table dup_table;
/*
* In order to avoid races with __do_proc_doulongvec_minmax(), we
* can duplicate the @table and alter the duplicate of it.
*/
dup_table = *table;
dup_table.data = out;
return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
struct ctl_table *table, int write,
void *buffer, size_t *length, loff_t *ppos)
{
struct hstate *h = &default_hstate;
unsigned long tmp = h->max_huge_pages;
int ret;
if (!hugepages_supported())
return -EOPNOTSUPP;
ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
&tmp);
if (ret)
goto out;
if (write)
ret = __nr_hugepages_store_common(obey_mempolicy, h,
NUMA_NO_NODE, tmp, *length);
out:
return ret;
}
static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
void *buffer, size_t *length, loff_t *ppos)
{
return hugetlb_sysctl_handler_common(false, table, write,
buffer, length, ppos);
}
#ifdef CONFIG_NUMA
static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
void *buffer, size_t *length, loff_t *ppos)
{
return hugetlb_sysctl_handler_common(true, table, write,
buffer, length, ppos);
}
#endif /* CONFIG_NUMA */
static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
void *buffer, size_t *length, loff_t *ppos)
{
struct hstate *h = &default_hstate;
unsigned long tmp;
int ret;
if (!hugepages_supported())
return -EOPNOTSUPP;
tmp = h->nr_overcommit_huge_pages;
if (write && hstate_is_gigantic(h))
return -EINVAL;
ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
&tmp);
if (ret)
goto out;
if (write) {
spin_lock_irq(&hugetlb_lock);
h->nr_overcommit_huge_pages = tmp;
spin_unlock_irq(&hugetlb_lock);
}
out:
return ret;
}
static struct ctl_table hugetlb_table[] = {
{
.procname = "nr_hugepages",
.data = NULL,
.maxlen = sizeof(unsigned long),
.mode = 0644,
.proc_handler = hugetlb_sysctl_handler,
},
#ifdef CONFIG_NUMA
{
.procname = "nr_hugepages_mempolicy",
.data = NULL,
.maxlen = sizeof(unsigned long),
.mode = 0644,
.proc_handler = &hugetlb_mempolicy_sysctl_handler,
},
#endif
{
.procname = "hugetlb_shm_group",
.data = &sysctl_hugetlb_shm_group,
.maxlen = sizeof(gid_t),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "nr_overcommit_hugepages",
.data = NULL,
.maxlen = sizeof(unsigned long),
.mode = 0644,
.proc_handler = hugetlb_overcommit_handler,
},
{ }
};
static void hugetlb_sysctl_init(void)
{
register_sysctl_init("vm", hugetlb_table);
}
#endif /* CONFIG_SYSCTL */
void hugetlb_report_meminfo(struct seq_file *m)
{
struct hstate *h;
unsigned long total = 0;
if (!hugepages_supported())
return;
for_each_hstate(h) {
unsigned long count = h->nr_huge_pages;
total += huge_page_size(h) * count;
if (h == &default_hstate)
seq_printf(m,
"HugePages_Total: %5lu\n"
"HugePages_Free: %5lu\n"
"HugePages_Rsvd: %5lu\n"
"HugePages_Surp: %5lu\n"
"Hugepagesize: %8lu kB\n",
count,
h->free_huge_pages,
h->resv_huge_pages,
h->surplus_huge_pages,
huge_page_size(h) / SZ_1K);
}
seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
}
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
{
struct hstate *h = &default_hstate;
if (!hugepages_supported())
return 0;
return sysfs_emit_at(buf, len,
"Node %d HugePages_Total: %5u\n"
"Node %d HugePages_Free: %5u\n"
"Node %d HugePages_Surp: %5u\n",
nid, h->nr_huge_pages_node[nid],
nid, h->free_huge_pages_node[nid],
nid, h->surplus_huge_pages_node[nid]);
}
void hugetlb_show_meminfo_node(int nid)
{
struct hstate *h;
if (!hugepages_supported())
return;
for_each_hstate(h)
printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
nid,
h->nr_huge_pages_node[nid],
h->free_huge_pages_node[nid],
h->surplus_huge_pages_node[nid],
huge_page_size(h) / SZ_1K);
}
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
seq_printf(m, "HugetlbPages:\t%8lu kB\n",
K(atomic_long_read(&mm->hugetlb_usage)));
}
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
struct hstate *h;
unsigned long nr_total_pages = 0;
for_each_hstate(h)
nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
return nr_total_pages;
}
static int hugetlb_acct_memory(struct hstate *h, long delta)
{
int ret = -ENOMEM;
if (!delta)
return 0;
spin_lock_irq(&hugetlb_lock);
/*
* When cpuset is configured, it breaks the strict hugetlb page
* reservation as the accounting is done on a global variable. Such
* reservation is completely rubbish in the presence of cpuset because
* the reservation is not checked against page availability for the
* current cpuset. Application can still potentially OOM'ed by kernel
* with lack of free htlb page in cpuset that the task is in.
* Attempt to enforce strict accounting with cpuset is almost
* impossible (or too ugly) because cpuset is too fluid that
* task or memory node can be dynamically moved between cpusets.
*
* The change of semantics for shared hugetlb mapping with cpuset is
* undesirable. However, in order to preserve some of the semantics,
* we fall back to check against current free page availability as
* a best attempt and hopefully to minimize the impact of changing
* semantics that cpuset has.
*
* Apart from cpuset, we also have memory policy mechanism that
* also determines from which node the kernel will allocate memory
* in a NUMA system. So similar to cpuset, we also should consider
* the memory policy of the current task. Similar to the description
* above.
*/
if (delta > 0) {
if (gather_surplus_pages(h, delta) < 0)
goto out;
if (delta > allowed_mems_nr(h)) {
return_unused_surplus_pages(h, delta);
goto out;
}
}
ret = 0;
if (delta < 0)
return_unused_surplus_pages(h, (unsigned long) -delta);
out:
spin_unlock_irq(&hugetlb_lock);
return ret;
}
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
struct resv_map *resv = vma_resv_map(vma);
/*
* HPAGE_RESV_OWNER indicates a private mapping.
* This new VMA should share its siblings reservation map if present.
* The VMA will only ever have a valid reservation map pointer where
* it is being copied for another still existing VMA. As that VMA
* has a reference to the reservation map it cannot disappear until
* after this open call completes. It is therefore safe to take a
* new reference here without additional locking.
*/
if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
kref_get(&resv->refs);
}
/*
* vma_lock structure for sharable mappings is vma specific.
* Clear old pointer (if copied via vm_area_dup) and allocate
* new structure. Before clearing, make sure vma_lock is not
* for this vma.
*/
if (vma->vm_flags & VM_MAYSHARE) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
if (vma_lock) {
if (vma_lock->vma != vma) {
vma->vm_private_data = NULL;
hugetlb_vma_lock_alloc(vma);
} else
pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
} else
hugetlb_vma_lock_alloc(vma);
}
}
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
struct hstate *h = hstate_vma(vma);
struct resv_map *resv;
struct hugepage_subpool *spool = subpool_vma(vma);
unsigned long reserve, start, end;
long gbl_reserve;
hugetlb_vma_lock_free(vma);
resv = vma_resv_map(vma);
if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
return;
start = vma_hugecache_offset(h, vma, vma->vm_start);
end = vma_hugecache_offset(h, vma, vma->vm_end);
reserve = (end - start) - region_count(resv, start, end);
hugetlb_cgroup_uncharge_counter(resv, start, end);
if (reserve) {
/*
* Decrement reserve counts. The global reserve count may be
* adjusted if the subpool has a minimum size.
*/
gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
hugetlb_acct_memory(h, -gbl_reserve);
}
kref_put(&resv->refs, resv_map_release);
}
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
if (addr & ~(huge_page_mask(hstate_vma(vma))))
return -EINVAL;
/*
* PMD sharing is only possible for PUD_SIZE-aligned address ranges
* in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
* split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
*/
if (addr & ~PUD_MASK) {
/*
* hugetlb_vm_op_split is called right before we attempt to
* split the VMA. We will need to unshare PMDs in the old and
* new VMAs, so let's unshare before we split.
*/
unsigned long floor = addr & PUD_MASK;
unsigned long ceil = floor + PUD_SIZE;
if (floor >= vma->vm_start && ceil <= vma->vm_end)
hugetlb_unshare_pmds(vma, floor, ceil);
}
return 0;
}
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
return huge_page_size(hstate_vma(vma));
}
/*
* We cannot handle pagefaults against hugetlb pages at all. They cause
* handle_mm_fault() to try to instantiate regular-sized pages in the
* hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
* this far.
*/
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
{
BUG();
return 0;
}
/*
* When a new function is introduced to vm_operations_struct and added
* to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
* This is because under System V memory model, mappings created via
* shmget/shmat with "huge page" specified are backed by hugetlbfs files,
* their original vm_ops are overwritten with shm_vm_ops.
*/
const struct vm_operations_struct hugetlb_vm_ops = {
.fault = hugetlb_vm_op_fault,
.open = hugetlb_vm_op_open,
.close = hugetlb_vm_op_close,
.may_split = hugetlb_vm_op_split,
.pagesize = hugetlb_vm_op_pagesize,
};
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
int writable)
{
pte_t entry;
unsigned int shift = huge_page_shift(hstate_vma(vma));
if (writable) {
entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
vma->vm_page_prot)));
} else {
entry = huge_pte_wrprotect(mk_huge_pte(page,
vma->vm_page_prot));
}
entry = pte_mkyoung(entry);
entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
return entry;
}
static void set_huge_ptep_writable(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
pte_t entry;
entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
update_mmu_cache(vma, address, ptep);
}
bool is_hugetlb_entry_migration(pte_t pte)
{
swp_entry_t swp;
if (huge_pte_none(pte) || pte_present(pte))
return false;
swp = pte_to_swp_entry(pte);
if (is_migration_entry(swp))
return true;
else
return false;
}
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
{
swp_entry_t swp;
if (huge_pte_none(pte) || pte_present(pte))
return false;
swp = pte_to_swp_entry(pte);
if (is_hwpoison_entry(swp))
return true;
else
return false;
}
static void
hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
struct folio *new_folio, pte_t old, unsigned long sz)
{
pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
__folio_mark_uptodate(new_folio);
hugepage_add_new_anon_rmap(new_folio, vma, addr);
if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
newpte = huge_pte_mkuffd_wp(newpte);
set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
folio_set_hugetlb_migratable(new_folio);
}
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *dst_vma,
struct vm_area_struct *src_vma)
{
pte_t *src_pte, *dst_pte, entry;
struct folio *pte_folio;
unsigned long addr;
bool cow = is_cow_mapping(src_vma->vm_flags);
struct hstate *h = hstate_vma(src_vma);
unsigned long sz = huge_page_size(h);
unsigned long npages = pages_per_huge_page(h);
struct mmu_notifier_range range;
unsigned long last_addr_mask;
int ret = 0;
if (cow) {
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
src_vma->vm_start,
src_vma->vm_end);
mmu_notifier_invalidate_range_start(&range);
vma_assert_write_locked(src_vma);
raw_write_seqcount_begin(&src->write_protect_seq);
} else {
/*
* For shared mappings the vma lock must be held before
* calling hugetlb_walk() in the src vma. Otherwise, the
* returned ptep could go away if part of a shared pmd and
* another thread calls huge_pmd_unshare.
*/
hugetlb_vma_lock_read(src_vma);
}
last_addr_mask = hugetlb_mask_last_page(h);
for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
spinlock_t *src_ptl, *dst_ptl;
src_pte = hugetlb_walk(src_vma, addr, sz);
if (!src_pte) {
addr |= last_addr_mask;
continue;
}
dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
if (!dst_pte) {
ret = -ENOMEM;
break;
}
/*
* If the pagetables are shared don't copy or take references.
*
* dst_pte == src_pte is the common case of src/dest sharing.
* However, src could have 'unshared' and dst shares with
* another vma. So page_count of ptep page is checked instead
* to reliably determine whether pte is shared.
*/
if (page_count(virt_to_page(dst_pte)) > 1) {
addr |= last_addr_mask;
continue;
}
dst_ptl = huge_pte_lock(h, dst, dst_pte);
src_ptl = huge_pte_lockptr(h, src, src_pte);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
entry = huge_ptep_get(src_pte);
again:
if (huge_pte_none(entry)) {
/*
* Skip if src entry none.
*/
;
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
if (!userfaultfd_wp(dst_vma))
entry = huge_pte_clear_uffd_wp(entry);
set_huge_pte_at(dst, addr, dst_pte, entry, sz);
} else if (unlikely(is_hugetlb_entry_migration(entry))) {
swp_entry_t swp_entry = pte_to_swp_entry(entry);
bool uffd_wp = pte_swp_uffd_wp(entry);
if (!is_readable_migration_entry(swp_entry) && cow) {
/*
* COW mappings require pages in both
* parent and child to be set to read.
*/
swp_entry = make_readable_migration_entry(
swp_offset(swp_entry));
entry = swp_entry_to_pte(swp_entry);
if (userfaultfd_wp(src_vma) && uffd_wp)
entry = pte_swp_mkuffd_wp(entry);
set_huge_pte_at(src, addr, src_pte, entry, sz);
}
if (!userfaultfd_wp(dst_vma))
entry = huge_pte_clear_uffd_wp(entry);
set_huge_pte_at(dst, addr, dst_pte, entry, sz);
} else if (unlikely(is_pte_marker(entry))) {
pte_marker marker = copy_pte_marker(
pte_to_swp_entry(entry), dst_vma);
if (marker)
set_huge_pte_at(dst, addr, dst_pte,
make_pte_marker(marker), sz);
} else {
entry = huge_ptep_get(src_pte);
pte_folio = page_folio(pte_page(entry));
folio_get(pte_folio);
/*
* Failing to duplicate the anon rmap is a rare case
* where we see pinned hugetlb pages while they're
* prone to COW. We need to do the COW earlier during
* fork.
*
* When pre-allocating the page or copying data, we
* need to be without the pgtable locks since we could
* sleep during the process.
*/
if (!folio_test_anon(pte_folio)) {
page_dup_file_rmap(&pte_folio->page, true);
} else if (page_try_dup_anon_rmap(&pte_folio->page,
true, src_vma)) {
pte_t src_pte_old = entry;
struct folio *new_folio;
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
/* Do not use reserve as it's private owned */
new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
if (IS_ERR(new_folio)) {
folio_put(pte_folio);
ret = PTR_ERR(new_folio);
break;
}
ret = copy_user_large_folio(new_folio,
pte_folio,
addr, dst_vma);
folio_put(pte_folio);
if (ret) {
folio_put(new_folio);
break;
}
/* Install the new hugetlb folio if src pte stable */
dst_ptl = huge_pte_lock(h, dst, dst_pte);
src_ptl = huge_pte_lockptr(h, src, src_pte);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
entry = huge_ptep_get(src_pte);
if (!pte_same(src_pte_old, entry)) {
restore_reserve_on_error(h, dst_vma, addr,
new_folio);
folio_put(new_folio);
/* huge_ptep of dst_pte won't change as in child */
goto again;
}
hugetlb_install_folio(dst_vma, dst_pte, addr,
new_folio, src_pte_old, sz);
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
continue;
}
if (cow) {
/*
* No need to notify as we are downgrading page
* table protection not changing it to point
* to a new page.
*
* See Documentation/mm/mmu_notifier.rst
*/
huge_ptep_set_wrprotect(src, addr, src_pte);
entry = huge_pte_wrprotect(entry);
}
if (!userfaultfd_wp(dst_vma))
entry = huge_pte_clear_uffd_wp(entry);
set_huge_pte_at(dst, addr, dst_pte, entry, sz);
hugetlb_count_add(npages, dst);
}
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
}
if (cow) {
raw_write_seqcount_end(&src->write_protect_seq);
mmu_notifier_invalidate_range_end(&range);
} else {
hugetlb_vma_unlock_read(src_vma);
}
return ret;
}
static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
unsigned long sz)
{
struct hstate *h = hstate_vma(vma);
struct mm_struct *mm = vma->vm_mm;
spinlock_t *src_ptl, *dst_ptl;
pte_t pte;
dst_ptl = huge_pte_lock(h, mm, dst_pte);
src_ptl = huge_pte_lockptr(h, mm, src_pte);
/*
* We don't have to worry about the ordering of src and dst ptlocks
* because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
*/
if (src_ptl != dst_ptl)
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
if (src_ptl != dst_ptl)
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
}
int move_hugetlb_page_tables(struct vm_area_struct *vma,
struct vm_area_struct *new_vma,
unsigned long old_addr, unsigned long new_addr,
unsigned long len)
{
struct hstate *h = hstate_vma(vma);
struct address_space *mapping = vma->vm_file->f_mapping;
unsigned long sz = huge_page_size(h);
struct mm_struct *mm = vma->vm_mm;
unsigned long old_end = old_addr + len;
unsigned long last_addr_mask;
pte_t *src_pte, *dst_pte;
struct mmu_notifier_range range;
bool shared_pmd = false;
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
old_end);
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
/*
* In case of shared PMDs, we should cover the maximum possible
* range.
*/
flush_cache_range(vma, range.start, range.end);
mmu_notifier_invalidate_range_start(&range);
last_addr_mask = hugetlb_mask_last_page(h);
/* Prevent race with file truncation */
hugetlb_vma_lock_write(vma);
i_mmap_lock_write(mapping);
for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
src_pte = hugetlb_walk(vma, old_addr, sz);
if (!src_pte) {
old_addr |= last_addr_mask;
new_addr |= last_addr_mask;
continue;
}
if (huge_pte_none(huge_ptep_get(src_pte)))
continue;
if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
shared_pmd = true;
old_addr |= last_addr_mask;
new_addr |= last_addr_mask;
continue;
}
dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
if (!dst_pte)
break;
move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
}
if (shared_pmd)
flush_hugetlb_tlb_range(vma, range.start, range.end);
else
flush_hugetlb_tlb_range(vma, old_end - len, old_end);
mmu_notifier_invalidate_range_end(&range);
i_mmap_unlock_write(mapping);
hugetlb_vma_unlock_write(vma);
return len + old_addr - old_end;
}
static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct page *ref_page, zap_flags_t zap_flags)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long address;
pte_t *ptep;
pte_t pte;
spinlock_t *ptl;
struct page *page;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
unsigned long last_addr_mask;
bool force_flush = false;
WARN_ON(!is_vm_hugetlb_page(vma));
BUG_ON(start & ~huge_page_mask(h));
BUG_ON(end & ~huge_page_mask(h));
/*
* This is a hugetlb vma, all the pte entries should point
* to huge page.
*/
tlb_change_page_size(tlb, sz);
tlb_start_vma(tlb, vma);
last_addr_mask = hugetlb_mask_last_page(h);
address = start;
for (; address < end; address += sz) {
ptep = hugetlb_walk(vma, address, sz);
if (!ptep) {
address |= last_addr_mask;
continue;
}
ptl = huge_pte_lock(h, mm, ptep);
if (huge_pmd_unshare(mm, vma, address, ptep)) {
spin_unlock(ptl);
tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
force_flush = true;
address |= last_addr_mask;
continue;
}
pte = huge_ptep_get(ptep);
if (huge_pte_none(pte)) {
spin_unlock(ptl);
continue;
}
/*
* Migrating hugepage or HWPoisoned hugepage is already
* unmapped and its refcount is dropped, so just clear pte here.
*/
if (unlikely(!pte_present(pte))) {
/*
* If the pte was wr-protected by uffd-wp in any of the
* swap forms, meanwhile the caller does not want to
* drop the uffd-wp bit in this zap, then replace the
* pte with a marker.
*/
if (pte_swp_uffd_wp_any(pte) &&
!(zap_flags & ZAP_FLAG_DROP_MARKER))
set_huge_pte_at(mm, address, ptep,
make_pte_marker(PTE_MARKER_UFFD_WP),
sz);
else
huge_pte_clear(mm, address, ptep, sz);
spin_unlock(ptl);
continue;
}
page = pte_page(pte);
/*
* If a reference page is supplied, it is because a specific
* page is being unmapped, not a range. Ensure the page we
* are about to unmap is the actual page of interest.
*/
if (ref_page) {
if (page != ref_page) {
spin_unlock(ptl);
continue;
}
/*
* Mark the VMA as having unmapped its page so that
* future faults in this VMA will fail rather than
* looking like data was lost
*/
set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
}
pte = huge_ptep_get_and_clear(mm, address, ptep);
tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
if (huge_pte_dirty(pte))
set_page_dirty(page);
/* Leave a uffd-wp pte marker if needed */
if (huge_pte_uffd_wp(pte) &&
!(zap_flags & ZAP_FLAG_DROP_MARKER))
set_huge_pte_at(mm, address, ptep,
make_pte_marker(PTE_MARKER_UFFD_WP),
sz);
hugetlb_count_sub(pages_per_huge_page(h), mm);
page_remove_rmap(page, vma, true);
spin_unlock(ptl);
tlb_remove_page_size(tlb, page, huge_page_size(h));
/*
* Bail out after unmapping reference page if supplied
*/
if (ref_page)
break;
}
tlb_end_vma(tlb, vma);
/*
* If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
* could defer the flush until now, since by holding i_mmap_rwsem we
* guaranteed that the last refernece would not be dropped. But we must
* do the flushing before we return, as otherwise i_mmap_rwsem will be
* dropped and the last reference to the shared PMDs page might be
* dropped as well.
*
* In theory we could defer the freeing of the PMD pages as well, but
* huge_pmd_unshare() relies on the exact page_count for the PMD page to
* detect sharing, so we cannot defer the release of the page either.
* Instead, do flush now.
*/
if (force_flush)
tlb_flush_mmu_tlbonly(tlb);
}
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
struct vm_area_struct *vma, unsigned long start,
unsigned long end, struct page *ref_page,
zap_flags_t zap_flags)
{
hugetlb_vma_lock_write(vma);
i_mmap_lock_write(vma->vm_file->f_mapping);
/* mmu notification performed in caller */
__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
/*
* Unlock and free the vma lock before releasing i_mmap_rwsem.
* When the vma_lock is freed, this makes the vma ineligible
* for pmd sharing. And, i_mmap_rwsem is required to set up
* pmd sharing. This is important as page tables for this
* unmapped range will be asynchrously deleted. If the page
* tables are shared, there will be issues when accessed by
* someone else.
*/
__hugetlb_vma_unlock_write_free(vma);
i_mmap_unlock_write(vma->vm_file->f_mapping);
} else {
i_mmap_unlock_write(vma->vm_file->f_mapping);
hugetlb_vma_unlock_write(vma);
}
}
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end, struct page *ref_page,
zap_flags_t zap_flags)
{
struct mmu_notifier_range range;
struct mmu_gather tlb;
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
start, end);
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
mmu_notifier_invalidate_range_start(&range);
tlb_gather_mmu(&tlb, vma->vm_mm);
__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
mmu_notifier_invalidate_range_end(&range);
tlb_finish_mmu(&tlb);
}
/*
* This is called when the original mapper is failing to COW a MAP_PRIVATE
* mapping it owns the reserve page for. The intention is to unmap the page
* from other VMAs and let the children be SIGKILLed if they are faulting the
* same region.
*/
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
struct page *page, unsigned long address)
{
struct hstate *h = hstate_vma(vma);
struct vm_area_struct *iter_vma;
struct address_space *mapping;
pgoff_t pgoff;
/*
* vm_pgoff is in PAGE_SIZE units, hence the different calculation
* from page cache lookup which is in HPAGE_SIZE units.
*/
address = address & huge_page_mask(h);
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
vma->vm_pgoff;
mapping = vma->vm_file->f_mapping;
/*
* Take the mapping lock for the duration of the table walk. As
* this mapping should be shared between all the VMAs,
* __unmap_hugepage_range() is called as the lock is already held
*/
i_mmap_lock_write(mapping);
vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
/* Do not unmap the current VMA */
if (iter_vma == vma)
continue;
/*
* Shared VMAs have their own reserves and do not affect
* MAP_PRIVATE accounting but it is possible that a shared
* VMA is using the same page so check and skip such VMAs.
*/
if (iter_vma->vm_flags & VM_MAYSHARE)
continue;
/*
* Unmap the page from other VMAs without their own reserves.
* They get marked to be SIGKILLed if they fault in these
* areas. This is because a future no-page fault on this VMA
* could insert a zeroed page instead of the data existing
* from the time of fork. This would look like data corruption
*/
if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
unmap_hugepage_range(iter_vma, address,
address + huge_page_size(h), page, 0);
}
i_mmap_unlock_write(mapping);
}
/*
* hugetlb_wp() should be called with page lock of the original hugepage held.
* Called with hugetlb_fault_mutex_table held and pte_page locked so we
* cannot race with other handlers or page migration.
* Keep the pte_same checks anyway to make transition from the mutex easier.
*/
static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, unsigned int flags,
struct folio *pagecache_folio, spinlock_t *ptl)
{
const bool unshare = flags & FAULT_FLAG_UNSHARE;
pte_t pte = huge_ptep_get(ptep);
struct hstate *h = hstate_vma(vma);
struct folio *old_folio;
struct folio *new_folio;
int outside_reserve = 0;
vm_fault_t ret = 0;
unsigned long haddr = address & huge_page_mask(h);
struct mmu_notifier_range range;
/*
* Never handle CoW for uffd-wp protected pages. It should be only
* handled when the uffd-wp protection is removed.
*
* Note that only the CoW optimization path (in hugetlb_no_page())
* can trigger this, because hugetlb_fault() will always resolve
* uffd-wp bit first.
*/
if (!unshare && huge_pte_uffd_wp(pte))
return 0;
/*
* hugetlb does not support FOLL_FORCE-style write faults that keep the
* PTE mapped R/O such as maybe_mkwrite() would do.
*/
if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
return VM_FAULT_SIGSEGV;
/* Let's take out MAP_SHARED mappings first. */
if (vma->vm_flags & VM_MAYSHARE) {
set_huge_ptep_writable(vma, haddr, ptep);
return 0;
}
old_folio = page_folio(pte_page(pte));
delayacct_wpcopy_start();
retry_avoidcopy:
/*
* If no-one else is actually using this page, we're the exclusive
* owner and can reuse this page.
*/
if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
if (!PageAnonExclusive(&old_folio->page))
page_move_anon_rmap(&old_folio->page, vma);
if (likely(!unshare))
set_huge_ptep_writable(vma, haddr, ptep);
delayacct_wpcopy_end();
return 0;
}
VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
PageAnonExclusive(&old_folio->page), &old_folio->page);
/*
* If the process that created a MAP_PRIVATE mapping is about to
* perform a COW due to a shared page count, attempt to satisfy
* the allocation without using the existing reserves. The pagecache
* page is used to determine if the reserve at this address was
* consumed or not. If reserves were used, a partial faulted mapping
* at the time of fork() could consume its reserves on COW instead
* of the full address range.
*/
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
old_folio != pagecache_folio)
outside_reserve = 1;
folio_get(old_folio);
/*
* Drop page table lock as buddy allocator may be called. It will
* be acquired again before returning to the caller, as expected.
*/
spin_unlock(ptl);
new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
if (IS_ERR(new_folio)) {
/*
* If a process owning a MAP_PRIVATE mapping fails to COW,
* it is due to references held by a child and an insufficient
* huge page pool. To guarantee the original mappers
* reliability, unmap the page from child processes. The child
* may get SIGKILLed if it later faults.
*/
if (outside_reserve) {
struct address_space *mapping = vma->vm_file->f_mapping;
pgoff_t idx;
u32 hash;
folio_put(old_folio);
/*
* Drop hugetlb_fault_mutex and vma_lock before
* unmapping. unmapping needs to hold vma_lock
* in write mode. Dropping vma_lock in read mode
* here is OK as COW mappings do not interact with
* PMD sharing.
*
* Reacquire both after unmap operation.
*/
idx = vma_hugecache_offset(h, vma, haddr);
hash = hugetlb_fault_mutex_hash(mapping, idx);
hugetlb_vma_unlock_read(vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
unmap_ref_private(mm, vma, &old_folio->page, haddr);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
hugetlb_vma_lock_read(vma);
spin_lock(ptl);
ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
if (likely(ptep &&
pte_same(huge_ptep_get(ptep), pte)))
goto retry_avoidcopy;
/*
* race occurs while re-acquiring page table
* lock, and our job is done.
*/
delayacct_wpcopy_end();
return 0;
}
ret = vmf_error(PTR_ERR(new_folio));
goto out_release_old;
}
/*
* When the original hugepage is shared one, it does not have
* anon_vma prepared.
*/
if (unlikely(anon_vma_prepare(vma))) {
ret = VM_FAULT_OOM;
goto out_release_all;
}
if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
ret = VM_FAULT_HWPOISON_LARGE;
goto out_release_all;
}
__folio_mark_uptodate(new_folio);
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
haddr + huge_page_size(h));
mmu_notifier_invalidate_range_start(&range);
/*
* Retake the page table lock to check for racing updates
* before the page tables are altered
*/
spin_lock(ptl);
ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
/* Break COW or unshare */
huge_ptep_clear_flush(vma, haddr, ptep);
page_remove_rmap(&old_folio->page, vma, true);
hugepage_add_new_anon_rmap(new_folio, vma, haddr);
if (huge_pte_uffd_wp(pte))
newpte = huge_pte_mkuffd_wp(newpte);
set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
folio_set_hugetlb_migratable(new_folio);
/* Make the old page be freed below */
new_folio = old_folio;
}
spin_unlock(ptl);
mmu_notifier_invalidate_range_end(&range);
out_release_all:
/*
* No restore in case of successful pagetable update (Break COW or
* unshare)
*/
if (new_folio != old_folio)
restore_reserve_on_error(h, vma, haddr, new_folio);
folio_put(new_folio);
out_release_old:
folio_put(old_folio);
spin_lock(ptl); /* Caller expects lock to be held */
delayacct_wpcopy_end();
return ret;
}
/*
* Return whether there is a pagecache page to back given address within VMA.
*/
static bool hugetlbfs_pagecache_present(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
{
struct address_space *mapping = vma->vm_file->f_mapping;
pgoff_t idx = vma_hugecache_offset(h, vma, address);
struct folio *folio;
folio = filemap_get_folio(mapping, idx);
if (IS_ERR(folio))
return false;
folio_put(folio);
return true;
}
int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
pgoff_t idx)
{
struct inode *inode = mapping->host;
struct hstate *h = hstate_inode(inode);
int err;
__folio_set_locked(folio);
err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
if (unlikely(err)) {
__folio_clear_locked(folio);
return err;
}
folio_clear_hugetlb_restore_reserve(folio);
/*
* mark folio dirty so that it will not be removed from cache/file
* by non-hugetlbfs specific code paths.
*/
folio_mark_dirty(folio);
spin_lock(&inode->i_lock);
inode->i_blocks += blocks_per_huge_page(h);
spin_unlock(&inode->i_lock);
return 0;
}
static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
struct address_space *mapping,
pgoff_t idx,
unsigned int flags,
unsigned long haddr,
unsigned long addr,
unsigned long reason)
{
u32 hash;
struct vm_fault vmf = {
.vma = vma,
.address = haddr,
.real_address = addr,
.flags = flags,
/*
* Hard to debug if it ends up being
* used by a callee that assumes
* something about the other
* uninitialized fields... same as in
* memory.c
*/
};
/*
* vma_lock and hugetlb_fault_mutex must be dropped before handling
* userfault. Also mmap_lock could be dropped due to handling
* userfault, any vma operation should be careful from here.
*/
hugetlb_vma_unlock_read(vma);
hash = hugetlb_fault_mutex_hash(mapping, idx);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
return handle_userfault(&vmf, reason);
}
/*
* Recheck pte with pgtable lock. Returns true if pte didn't change, or
* false if pte changed or is changing.
*/
static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
pte_t *ptep, pte_t old_pte)
{
spinlock_t *ptl;
bool same;
ptl = huge_pte_lock(h, mm, ptep);
same = pte_same(huge_ptep_get(ptep), old_pte);
spin_unlock(ptl);
return same;
}
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
struct vm_area_struct *vma,
struct address_space *mapping, pgoff_t idx,
unsigned long address, pte_t *ptep,
pte_t old_pte, unsigned int flags)
{
struct hstate *h = hstate_vma(vma);
vm_fault_t ret = VM_FAULT_SIGBUS;
int anon_rmap = 0;
unsigned long size;
struct folio *folio;
pte_t new_pte;
spinlock_t *ptl;
unsigned long haddr = address & huge_page_mask(h);
bool new_folio, new_pagecache_folio = false;
u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
/*
* Currently, we are forced to kill the process in the event the
* original mapper has unmapped pages from the child due to a failed
* COW/unsharing. Warn that such a situation has occurred as it may not
* be obvious.
*/
if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
current->pid);
goto out;
}
/*
* Use page lock to guard against racing truncation
* before we get page_table_lock.
*/
new_folio = false;
folio = filemap_lock_folio(mapping, idx);
if (IS_ERR(folio)) {
size = i_size_read(mapping->host) >> huge_page_shift(h);
if (idx >= size)
goto out;
/* Check for page in userfault range */
if (userfaultfd_missing(vma)) {
/*
* Since hugetlb_no_page() was examining pte
* without pgtable lock, we need to re-test under
* lock because the pte may not be stable and could
* have changed from under us. Try to detect
* either changed or during-changing ptes and retry
* properly when needed.
*
* Note that userfaultfd is actually fine with
* false positives (e.g. caused by pte changed),
* but not wrong logical events (e.g. caused by
* reading a pte during changing). The latter can
* confuse the userspace, so the strictness is very
* much preferred. E.g., MISSING event should
* never happen on the page after UFFDIO_COPY has
* correctly installed the page and returned.
*/
if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
ret = 0;
goto out;
}
return hugetlb_handle_userfault(vma, mapping, idx, flags,
haddr, address,
VM_UFFD_MISSING);
}
folio = alloc_hugetlb_folio(vma, haddr, 0);
if (IS_ERR(folio)) {
/*
* Returning error will result in faulting task being
* sent SIGBUS. The hugetlb fault mutex prevents two
* tasks from racing to fault in the same page which
* could result in false unable to allocate errors.
* Page migration does not take the fault mutex, but
* does a clear then write of pte's under page table
* lock. Page fault code could race with migration,
* notice the clear pte and try to allocate a page
* here. Before returning error, get ptl and make
* sure there really is no pte entry.
*/
if (hugetlb_pte_stable(h, mm, ptep, old_pte))
ret = vmf_error(PTR_ERR(folio));
else
ret = 0;
goto out;
}
clear_huge_page(&folio->page, address, pages_per_huge_page(h));
__folio_mark_uptodate(folio);
new_folio = true;
if (vma->vm_flags & VM_MAYSHARE) {
int err = hugetlb_add_to_page_cache(folio, mapping, idx);
if (err) {
/*
* err can't be -EEXIST which implies someone
* else consumed the reservation since hugetlb
* fault mutex is held when add a hugetlb page
* to the page cache. So it's safe to call
* restore_reserve_on_error() here.
*/
restore_reserve_on_error(h, vma, haddr, folio);
folio_put(folio);
goto out;
}
new_pagecache_folio = true;
} else {
folio_lock(folio);
if (unlikely(anon_vma_prepare(vma))) {
ret = VM_FAULT_OOM;
goto backout_unlocked;
}
anon_rmap = 1;
}
} else {
/*
* If memory error occurs between mmap() and fault, some process
* don't have hwpoisoned swap entry for errored virtual address.
* So we need to block hugepage fault by PG_hwpoison bit check.
*/
if (unlikely(folio_test_hwpoison(folio))) {
ret = VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(hstate_index(h));
goto backout_unlocked;
}
/* Check for page in userfault range. */
if (userfaultfd_minor(vma)) {
folio_unlock(folio);
folio_put(folio);
/* See comment in userfaultfd_missing() block above */
if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
ret = 0;
goto out;
}
return hugetlb_handle_userfault(vma, mapping, idx, flags,
haddr, address,
VM_UFFD_MINOR);
}
}
/*
* If we are going to COW a private mapping later, we examine the
* pending reservations for this page now. This will ensure that
* any allocations necessary to record that reservation occur outside
* the spinlock.
*/
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
if (vma_needs_reservation(h, vma, haddr) < 0) {
ret = VM_FAULT_OOM;
goto backout_unlocked;
}
/* Just decrements count, does not deallocate */
vma_end_reservation(h, vma, haddr);
}
ptl = huge_pte_lock(h, mm, ptep);
ret = 0;
/* If pte changed from under us, retry */
if (!pte_same(huge_ptep_get(ptep), old_pte))
goto backout;
if (anon_rmap)
hugepage_add_new_anon_rmap(folio, vma, haddr);
else
page_dup_file_rmap(&folio->page, true);
new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
&& (vma->vm_flags & VM_SHARED)));
/*
* If this pte was previously wr-protected, keep it wr-protected even
* if populated.
*/
if (unlikely(pte_marker_uffd_wp(old_pte)))
new_pte = huge_pte_mkuffd_wp(new_pte);
set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
hugetlb_count_add(pages_per_huge_page(h), mm);
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
/* Optimization, do the COW without a second fault */
ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
}
spin_unlock(ptl);
/*
* Only set hugetlb_migratable in newly allocated pages. Existing pages
* found in the pagecache may not have hugetlb_migratable if they have
* been isolated for migration.
*/
if (new_folio)
folio_set_hugetlb_migratable(folio);
folio_unlock(folio);
out:
hugetlb_vma_unlock_read(vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
return ret;
backout:
spin_unlock(ptl);
backout_unlocked:
if (new_folio && !new_pagecache_folio)
restore_reserve_on_error(h, vma, haddr, folio);
folio_unlock(folio);
folio_put(folio);
goto out;
}
#ifdef CONFIG_SMP
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
{
unsigned long key[2];
u32 hash;
key[0] = (unsigned long) mapping;
key[1] = idx;
hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
return hash & (num_fault_mutexes - 1);
}
#else
/*
* For uniprocessor systems we always use a single mutex, so just
* return 0 and avoid the hashing overhead.
*/
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
{
return 0;
}
#endif
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
pte_t *ptep, entry;
spinlock_t *ptl;
vm_fault_t ret;
u32 hash;
pgoff_t idx;
struct folio *folio = NULL;
struct folio *pagecache_folio = NULL;
struct hstate *h = hstate_vma(vma);
struct address_space *mapping;
int need_wait_lock = 0;
unsigned long haddr = address & huge_page_mask(h);
/* TODO: Handle faults under the VMA lock */
if (flags & FAULT_FLAG_VMA_LOCK) {
vma_end_read(vma);
return VM_FAULT_RETRY;
}
/*
* Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache.
*/
mapping = vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, vma, haddr);
hash = hugetlb_fault_mutex_hash(mapping, idx);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
/*
* Acquire vma lock before calling huge_pte_alloc and hold
* until finished with ptep. This prevents huge_pmd_unshare from
* being called elsewhere and making the ptep no longer valid.
*/
hugetlb_vma_lock_read(vma);
ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
if (!ptep) {
hugetlb_vma_unlock_read(vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
return VM_FAULT_OOM;
}
entry = huge_ptep_get(ptep);
if (huge_pte_none_mostly(entry)) {
if (is_pte_marker(entry)) {
pte_marker marker =
pte_marker_get(pte_to_swp_entry(entry));
if (marker & PTE_MARKER_POISONED) {
ret = VM_FAULT_HWPOISON_LARGE;
goto out_mutex;
}
}
/*
* Other PTE markers should be handled the same way as none PTE.
*
* hugetlb_no_page will drop vma lock and hugetlb fault
* mutex internally, which make us return immediately.
*/
return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
entry, flags);
}
ret = 0;
/*
* entry could be a migration/hwpoison entry at this point, so this
* check prevents the kernel from going below assuming that we have
* an active hugepage in pagecache. This goto expects the 2nd page
* fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
* properly handle it.
*/
if (!pte_present(entry)) {
if (unlikely(is_hugetlb_entry_migration(entry))) {
/*
* Release the hugetlb fault lock now, but retain
* the vma lock, because it is needed to guard the
* huge_pte_lockptr() later in
* migration_entry_wait_huge(). The vma lock will
* be released there.
*/
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
migration_entry_wait_huge(vma, ptep);
return 0;
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
ret = VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(hstate_index(h));
goto out_mutex;
}
/*
* If we are going to COW/unshare the mapping later, we examine the
* pending reservations for this page now. This will ensure that any
* allocations necessary to record that reservation occur outside the
* spinlock. Also lookup the pagecache page now as it is used to
* determine if a reservation has been consumed.
*/
if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
!(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
if (vma_needs_reservation(h, vma, haddr) < 0) {
ret = VM_FAULT_OOM;
goto out_mutex;
}
/* Just decrements count, does not deallocate */
vma_end_reservation(h, vma, haddr);
pagecache_folio = filemap_lock_folio(mapping, idx);
if (IS_ERR(pagecache_folio))
pagecache_folio = NULL;
}
ptl = huge_pte_lock(h, mm, ptep);
/* Check for a racing update before calling hugetlb_wp() */
if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
goto out_ptl;
/* Handle userfault-wp first, before trying to lock more pages */
if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
(flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
struct vm_fault vmf = {
.vma = vma,
.address = haddr,
.real_address = address,
.flags = flags,
};
spin_unlock(ptl);
if (pagecache_folio) {
folio_unlock(pagecache_folio);
folio_put(pagecache_folio);
}
hugetlb_vma_unlock_read(vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
return handle_userfault(&vmf, VM_UFFD_WP);
}
/*
* hugetlb_wp() requires page locks of pte_page(entry) and
* pagecache_folio, so here we need take the former one
* when folio != pagecache_folio or !pagecache_folio.
*/
folio = page_folio(pte_page(entry));
if (folio != pagecache_folio)
if (!folio_trylock(folio)) {
need_wait_lock = 1;
goto out_ptl;
}
folio_get(folio);
if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
if (!huge_pte_write(entry)) {
ret = hugetlb_wp(mm, vma, address, ptep, flags,
pagecache_folio, ptl);
goto out_put_page;
} else if (likely(flags & FAULT_FLAG_WRITE)) {
entry = huge_pte_mkdirty(entry);
}
}
entry = pte_mkyoung(entry);
if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
flags & FAULT_FLAG_WRITE))
update_mmu_cache(vma, haddr, ptep);
out_put_page:
if (folio != pagecache_folio)
folio_unlock(folio);
folio_put(folio);
out_ptl:
spin_unlock(ptl);
if (pagecache_folio) {
folio_unlock(pagecache_folio);
folio_put(pagecache_folio);
}
out_mutex:
hugetlb_vma_unlock_read(vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
/*
* Generally it's safe to hold refcount during waiting page lock. But
* here we just wait to defer the next page fault to avoid busy loop and
* the page is not used after unlocked before returning from the current
* page fault. So we are safe from accessing freed page, even if we wait
* here without taking refcount.
*/
if (need_wait_lock)
folio_wait_locked(folio);
return ret;
}
#ifdef CONFIG_USERFAULTFD
/*
* Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
* with modifications for hugetlb pages.
*/
int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
uffd_flags_t flags,
struct folio **foliop)
{
struct mm_struct *dst_mm = dst_vma->vm_mm;
bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
bool wp_enabled = (flags & MFILL_ATOMIC_WP);
struct hstate *h = hstate_vma(dst_vma);
struct address_space *mapping = dst_vma->vm_file->f_mapping;
pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
unsigned long size;
int vm_shared = dst_vma->vm_flags & VM_SHARED;
pte_t _dst_pte;
spinlock_t *ptl;
int ret = -ENOMEM;
struct folio *folio;
int writable;
bool folio_in_pagecache = false;
if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
ptl = huge_pte_lock(h, dst_mm, dst_pte);
/* Don't overwrite any existing PTEs (even markers) */
if (!huge_pte_none(huge_ptep_get(dst_pte))) {
spin_unlock(ptl);
return -EEXIST;
}
_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
huge_page_size(h));
/* No need to invalidate - it was non-present before */
update_mmu_cache(dst_vma, dst_addr, dst_pte);
spin_unlock(ptl);
return 0;
}
if (is_continue) {
ret = -EFAULT;
folio = filemap_lock_folio(mapping, idx);
if (IS_ERR(folio))
goto out;
folio_in_pagecache = true;
} else if (!*foliop) {
/* If a folio already exists, then it's UFFDIO_COPY for
* a non-missing case. Return -EEXIST.
*/
if (vm_shared &&
hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
ret = -EEXIST;
goto out;
}
folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
if (IS_ERR(folio)) {
ret = -ENOMEM;
goto out;
}
ret = copy_folio_from_user(folio, (const void __user *) src_addr,
false);
/* fallback to copy_from_user outside mmap_lock */
if (unlikely(ret)) {
ret = -ENOENT;
/* Free the allocated folio which may have
* consumed a reservation.
*/
restore_reserve_on_error(h, dst_vma, dst_addr, folio);
folio_put(folio);
/* Allocate a temporary folio to hold the copied
* contents.
*/
folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
if (!folio) {
ret = -ENOMEM;
goto out;
}
*foliop = folio;
/* Set the outparam foliop and return to the caller to
* copy the contents outside the lock. Don't free the
* folio.
*/
goto out;
}
} else {
if (vm_shared &&
hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
folio_put(*foliop);
ret = -EEXIST;
*foliop = NULL;
goto out;
}
folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
if (IS_ERR(folio)) {
folio_put(*foliop);
ret = -ENOMEM;
*foliop = NULL;
goto out;
}
ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
folio_put(*foliop);
*foliop = NULL;
if (ret) {
folio_put(folio);
goto out;
}
}
/*
* The memory barrier inside __folio_mark_uptodate makes sure that
* preceding stores to the page contents become visible before
* the set_pte_at() write.
*/
__folio_mark_uptodate(folio);
/* Add shared, newly allocated pages to the page cache. */
if (vm_shared && !is_continue) {
size = i_size_read(mapping->host) >> huge_page_shift(h);
ret = -EFAULT;
if (idx >= size)
goto out_release_nounlock;
/*
* Serialization between remove_inode_hugepages() and
* hugetlb_add_to_page_cache() below happens through the
* hugetlb_fault_mutex_table that here must be hold by
* the caller.
*/
ret = hugetlb_add_to_page_cache(folio, mapping, idx);
if (ret)
goto out_release_nounlock;
folio_in_pagecache = true;
}
ptl = huge_pte_lock(h, dst_mm, dst_pte);
ret = -EIO;
if (folio_test_hwpoison(folio))
goto out_release_unlock;
/*
* We allow to overwrite a pte marker: consider when both MISSING|WP
* registered, we firstly wr-protect a none pte which has no page cache
* page backing it, then access the page.
*/
ret = -EEXIST;
if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
goto out_release_unlock;
if (folio_in_pagecache)
page_dup_file_rmap(&folio->page, true);
else
hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
/*
* For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
* with wp flag set, don't set pte write bit.
*/
if (wp_enabled || (is_continue && !vm_shared))
writable = 0;
else
writable = dst_vma->vm_flags & VM_WRITE;
_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
/*
* Always mark UFFDIO_COPY page dirty; note that this may not be
* extremely important for hugetlbfs for now since swapping is not
* supported, but we should still be clear in that this page cannot be
* thrown away at will, even if write bit not set.
*/
_dst_pte = huge_pte_mkdirty(_dst_pte);
_dst_pte = pte_mkyoung(_dst_pte);
if (wp_enabled)
_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
hugetlb_count_add(pages_per_huge_page(h), dst_mm);
/* No need to invalidate - it was non-present before */
update_mmu_cache(dst_vma, dst_addr, dst_pte);
spin_unlock(ptl);
if (!is_continue)
folio_set_hugetlb_migratable(folio);
if (vm_shared || is_continue)
folio_unlock(folio);
ret = 0;
out:
return ret;
out_release_unlock:
spin_unlock(ptl);
if (vm_shared || is_continue)
folio_unlock(folio);
out_release_nounlock:
if (!folio_in_pagecache)
restore_reserve_on_error(h, dst_vma, dst_addr, folio);
folio_put(folio);
goto out;
}
#endif /* CONFIG_USERFAULTFD */
struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
unsigned int *page_mask)
{
struct hstate *h = hstate_vma(vma);
struct mm_struct *mm = vma->vm_mm;
unsigned long haddr = address & huge_page_mask(h);
struct page *page = NULL;
spinlock_t *ptl;
pte_t *pte, entry;
int ret;
hugetlb_vma_lock_read(vma);
pte = hugetlb_walk(vma, haddr, huge_page_size(h));
if (!pte)
goto out_unlock;
ptl = huge_pte_lock(h, mm, pte);
entry = huge_ptep_get(pte);
if (pte_present(entry)) {
page = pte_page(entry);
if (!huge_pte_write(entry)) {
if (flags & FOLL_WRITE) {
page = NULL;
goto out;
}
if (gup_must_unshare(vma, flags, page)) {
/* Tell the caller to do unsharing */
page = ERR_PTR(-EMLINK);
goto out;
}
}
page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
/*
* Note that page may be a sub-page, and with vmemmap
* optimizations the page struct may be read only.
* try_grab_page() will increase the ref count on the
* head page, so this will be OK.
*
* try_grab_page() should always be able to get the page here,
* because we hold the ptl lock and have verified pte_present().
*/
ret = try_grab_page(page, flags);
if (WARN_ON_ONCE(ret)) {
page = ERR_PTR(ret);
goto out;
}
*page_mask = (1U << huge_page_order(h)) - 1;
}
out:
spin_unlock(ptl);
out_unlock:
hugetlb_vma_unlock_read(vma);
/*
* Fixup retval for dump requests: if pagecache doesn't exist,
* don't try to allocate a new page but just skip it.
*/
if (!page && (flags & FOLL_DUMP) &&
!hugetlbfs_pagecache_present(h, vma, address))
page = ERR_PTR(-EFAULT);
return page;
}
long hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end,
pgprot_t newprot, unsigned long cp_flags)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long start = address;
pte_t *ptep;
pte_t pte;
struct hstate *h = hstate_vma(vma);
long pages = 0, psize = huge_page_size(h);
bool shared_pmd = false;
struct mmu_notifier_range range;
unsigned long last_addr_mask;
bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
/*
* In the case of shared PMDs, the area to flush could be beyond
* start/end. Set range.start/range.end to cover the maximum possible
* range if PMD sharing is possible.
*/
mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
0, mm, start, end);
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
BUG_ON(address >= end);
flush_cache_range(vma, range.start, range.end);
mmu_notifier_invalidate_range_start(&range);
hugetlb_vma_lock_write(vma);
i_mmap_lock_write(vma->vm_file->f_mapping);
last_addr_mask = hugetlb_mask_last_page(h);
for (; address < end; address += psize) {
spinlock_t *ptl;
ptep = hugetlb_walk(vma, address, psize);
if (!ptep) {
if (!uffd_wp) {
address |= last_addr_mask;
continue;
}
/*
* Userfaultfd wr-protect requires pgtable
* pre-allocations to install pte markers.
*/
ptep = huge_pte_alloc(mm, vma, address, psize);
if (!ptep) {
pages = -ENOMEM;
break;
}
}
ptl = huge_pte_lock(h, mm, ptep);
if (huge_pmd_unshare(mm, vma, address, ptep)) {
/*
* When uffd-wp is enabled on the vma, unshare
* shouldn't happen at all. Warn about it if it
* happened due to some reason.
*/
WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
pages++;
spin_unlock(ptl);
shared_pmd = true;
address |= last_addr_mask;
continue;
}
pte = huge_ptep_get(ptep);
if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
/* Nothing to do. */
} else if (unlikely(is_hugetlb_entry_migration(pte))) {
swp_entry_t entry = pte_to_swp_entry(pte);
struct page *page = pfn_swap_entry_to_page(entry);
pte_t newpte = pte;
if (is_writable_migration_entry(entry)) {
if (PageAnon(page))
entry = make_readable_exclusive_migration_entry(
swp_offset(entry));
else
entry = make_readable_migration_entry(
swp_offset(entry));
newpte = swp_entry_to_pte(entry);
pages++;
}
if (uffd_wp)
newpte = pte_swp_mkuffd_wp(newpte);
else if (uffd_wp_resolve)
newpte = pte_swp_clear_uffd_wp(newpte);
if (!pte_same(pte, newpte))
set_huge_pte_at(mm, address, ptep, newpte, psize);
} else if (unlikely(is_pte_marker(pte))) {
/* No other markers apply for now. */
WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
if (uffd_wp_resolve)
/* Safe to modify directly (non-present->none). */
huge_pte_clear(mm, address, ptep, psize);
} else if (!huge_pte_none(pte)) {
pte_t old_pte;
unsigned int shift = huge_page_shift(hstate_vma(vma));
old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
pte = huge_pte_modify(old_pte, newprot);
pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
if (uffd_wp)
pte = huge_pte_mkuffd_wp(pte);
else if (uffd_wp_resolve)
pte = huge_pte_clear_uffd_wp(pte);
huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
pages++;
} else {
/* None pte */
if (unlikely(uffd_wp))
/* Safe to modify directly (none->non-present). */
set_huge_pte_at(mm, address, ptep,
make_pte_marker(PTE_MARKER_UFFD_WP),
psize);
}
spin_unlock(ptl);
}
/*
* Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
* may have cleared our pud entry and done put_page on the page table:
* once we release i_mmap_rwsem, another task can do the final put_page
* and that page table be reused and filled with junk. If we actually
* did unshare a page of pmds, flush the range corresponding to the pud.
*/
if (shared_pmd)
flush_hugetlb_tlb_range(vma, range.start, range.end);
else
flush_hugetlb_tlb_range(vma, start, end);
/*
* No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
* downgrading page table protection not changing it to point to a new
* page.
*
* See Documentation/mm/mmu_notifier.rst
*/
i_mmap_unlock_write(vma->vm_file->f_mapping);
hugetlb_vma_unlock_write(vma);
mmu_notifier_invalidate_range_end(&range);
return pages > 0 ? (pages << h->order) : pages;
}
/* Return true if reservation was successful, false otherwise. */
bool hugetlb_reserve_pages(struct inode *inode,
long from, long to,
struct vm_area_struct *vma,
vm_flags_t vm_flags)
{
long chg = -1, add = -1;
struct hstate *h = hstate_inode(inode);
struct hugepage_subpool *spool = subpool_inode(inode);
struct resv_map *resv_map;
struct hugetlb_cgroup *h_cg = NULL;
long gbl_reserve, regions_needed = 0;
/* This should never happen */
if (from > to) {
VM_WARN(1, "%s called with a negative range\n", __func__);
return false;
}
/*
* vma specific semaphore used for pmd sharing and fault/truncation
* synchronization
*/
hugetlb_vma_lock_alloc(vma);
/*
* Only apply hugepage reservation if asked. At fault time, an
* attempt will be made for VM_NORESERVE to allocate a page
* without using reserves
*/
if (vm_flags & VM_NORESERVE)
return true;
/*
* Shared mappings base their reservation on the number of pages that
* are already allocated on behalf of the file. Private mappings need
* to reserve the full area even if read-only as mprotect() may be
* called to make the mapping read-write. Assume !vma is a shm mapping
*/
if (!vma || vma->vm_flags & VM_MAYSHARE) {
/*
* resv_map can not be NULL as hugetlb_reserve_pages is only
* called for inodes for which resv_maps were created (see
* hugetlbfs_get_inode).
*/
resv_map = inode_resv_map(inode);
chg = region_chg(resv_map, from, to, &regions_needed);
} else {
/* Private mapping. */
resv_map = resv_map_alloc();
if (!resv_map)
goto out_err;
chg = to - from;
set_vma_resv_map(vma, resv_map);
set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
}
if (chg < 0)
goto out_err;
if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
chg * pages_per_huge_page(h), &h_cg) < 0)
goto out_err;
if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
/* For private mappings, the hugetlb_cgroup uncharge info hangs
* of the resv_map.
*/
resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
}
/*
* There must be enough pages in the subpool for the mapping. If
* the subpool has a minimum size, there may be some global
* reservations already in place (gbl_reserve).
*/
gbl_reserve = hugepage_subpool_get_pages(spool, chg);
if (gbl_reserve < 0)
goto out_uncharge_cgroup;
/*
* Check enough hugepages are available for the reservation.
* Hand the pages back to the subpool if there are not
*/
if (hugetlb_acct_memory(h, gbl_reserve) < 0)
goto out_put_pages;
/*
* Account for the reservations made. Shared mappings record regions
* that have reservations as they are shared by multiple VMAs.
* When the last VMA disappears, the region map says how much
* the reservation was and the page cache tells how much of
* the reservation was consumed. Private mappings are per-VMA and
* only the consumed reservations are tracked. When the VMA
* disappears, the original reservation is the VMA size and the
* consumed reservations are stored in the map. Hence, nothing
* else has to be done for private mappings here
*/
if (!vma || vma->vm_flags & VM_MAYSHARE) {
add = region_add(resv_map, from, to, regions_needed, h, h_cg);
if (unlikely(add < 0)) {
hugetlb_acct_memory(h, -gbl_reserve);
goto out_put_pages;
} else if (unlikely(chg > add)) {
/*
* pages in this range were added to the reserve
* map between region_chg and region_add. This
* indicates a race with alloc_hugetlb_folio. Adjust
* the subpool and reserve counts modified above
* based on the difference.
*/
long rsv_adjust;
/*
* hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
* reference to h_cg->css. See comment below for detail.
*/
hugetlb_cgroup_uncharge_cgroup_rsvd(
hstate_index(h),
(chg - add) * pages_per_huge_page(h), h_cg);
rsv_adjust = hugepage_subpool_put_pages(spool,
chg - add);
hugetlb_acct_memory(h, -rsv_adjust);
} else if (h_cg) {
/*
* The file_regions will hold their own reference to
* h_cg->css. So we should release the reference held
* via hugetlb_cgroup_charge_cgroup_rsvd() when we are
* done.
*/
hugetlb_cgroup_put_rsvd_cgroup(h_cg);
}
}
return true;
out_put_pages:
/* put back original number of pages, chg */
(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
chg * pages_per_huge_page(h), h_cg);
out_err:
hugetlb_vma_lock_free(vma);
if (!vma || vma->vm_flags & VM_MAYSHARE)
/* Only call region_abort if the region_chg succeeded but the
* region_add failed or didn't run.
*/
if (chg >= 0 && add < 0)
region_abort(resv_map, from, to, regions_needed);
if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
kref_put(&resv_map->refs, resv_map_release);
return false;
}
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
long freed)
{
struct hstate *h = hstate_inode(inode);
struct resv_map *resv_map = inode_resv_map(inode);
long chg = 0;
struct hugepage_subpool *spool = subpool_inode(inode);
long gbl_reserve;
/*
* Since this routine can be called in the evict inode path for all
* hugetlbfs inodes, resv_map could be NULL.
*/
if (resv_map) {
chg = region_del(resv_map, start, end);
/*
* region_del() can fail in the rare case where a region
* must be split and another region descriptor can not be
* allocated. If end == LONG_MAX, it will not fail.
*/
if (chg < 0)
return chg;
}
spin_lock(&inode->i_lock);
inode->i_blocks -= (blocks_per_huge_page(h) * freed);
spin_unlock(&inode->i_lock);
/*
* If the subpool has a minimum size, the number of global
* reservations to be released may be adjusted.
*
* Note that !resv_map implies freed == 0. So (chg - freed)
* won't go negative.
*/
gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
hugetlb_acct_memory(h, -gbl_reserve);
return 0;
}
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
struct vm_area_struct *vma,
unsigned long addr, pgoff_t idx)
{
unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
svma->vm_start;
unsigned long sbase = saddr & PUD_MASK;
unsigned long s_end = sbase + PUD_SIZE;
/* Allow segments to share if only one is marked locked */
unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
/*
* match the virtual addresses, permission and the alignment of the
* page table page.
*
* Also, vma_lock (vm_private_data) is required for sharing.
*/
if (pmd_index(addr) != pmd_index(saddr) ||
vm_flags != svm_flags ||
!range_in_vma(svma, sbase, s_end) ||
!svma->vm_private_data)
return 0;
return saddr;
}
bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
unsigned long start = addr & PUD_MASK;
unsigned long end = start + PUD_SIZE;
#ifdef CONFIG_USERFAULTFD
if (uffd_disable_huge_pmd_share(vma))
return false;
#endif
/*
* check on proper vm_flags and page table alignment
*/
if (!(vma->vm_flags & VM_MAYSHARE))
return false;
if (!vma->vm_private_data) /* vma lock required for sharing */
return false;
if (!range_in_vma(vma, start, end))
return false;
return true;
}
/*
* Determine if start,end range within vma could be mapped by shared pmd.
* If yes, adjust start and end to cover range associated with possible
* shared pmd mappings.
*/
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
unsigned long *start, unsigned long *end)
{
unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
/*
* vma needs to span at least one aligned PUD size, and the range
* must be at least partially within in.
*/
if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
(*end <= v_start) || (*start >= v_end))
return;
/* Extend the range to be PUD aligned for a worst case scenario */
if (*start > v_start)
*start = ALIGN_DOWN(*start, PUD_SIZE);
if (*end < v_end)
*end = ALIGN(*end, PUD_SIZE);
}
/*
* Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
* and returns the corresponding pte. While this is not necessary for the
* !shared pmd case because we can allocate the pmd later as well, it makes the
* code much cleaner. pmd allocation is essential for the shared case because
* pud has to be populated inside the same i_mmap_rwsem section - otherwise
* racing tasks could either miss the sharing (see huge_pte_offset) or select a
* bad pmd for sharing.
*/
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pud_t *pud)
{
struct address_space *mapping = vma->vm_file->f_mapping;
pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
vma->vm_pgoff;
struct vm_area_struct *svma;
unsigned long saddr;
pte_t *spte = NULL;
pte_t *pte;
i_mmap_lock_read(mapping);
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
if (svma == vma)
continue;
saddr = page_table_shareable(svma, vma, addr, idx);
if (saddr) {
spte = hugetlb_walk(svma, saddr,
vma_mmu_pagesize(svma));
if (spte) {
get_page(virt_to_page(spte));
break;
}
}
}
if (!spte)
goto out;
spin_lock(&mm->page_table_lock);
if (pud_none(*pud)) {
pud_populate(mm, pud,
(pmd_t *)((unsigned long)spte & PAGE_MASK));
mm_inc_nr_pmds(mm);
} else {
put_page(virt_to_page(spte));
}
spin_unlock(&mm->page_table_lock);
out:
pte = (pte_t *)pmd_alloc(mm, pud, addr);
i_mmap_unlock_read(mapping);
return pte;
}
/*
* unmap huge page backed by shared pte.
*
* Hugetlb pte page is ref counted at the time of mapping. If pte is shared
* indicated by page_count > 1, unmap is achieved by clearing pud and
* decrementing the ref count. If count == 1, the pte page is not shared.
*
* Called with page table lock held.
*
* returns: 1 successfully unmapped a shared pte page
* 0 the underlying pte page is not shared, or it is the last user
*/
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
pgd_t *pgd = pgd_offset(mm, addr);
p4d_t *p4d = p4d_offset(pgd, addr);
pud_t *pud = pud_offset(p4d, addr);
i_mmap_assert_write_locked(vma->vm_file->f_mapping);
hugetlb_vma_assert_locked(vma);
BUG_ON(page_count(virt_to_page(ptep)) == 0);
if (page_count(virt_to_page(ptep)) == 1)
return 0;
pud_clear(pud);
put_page(virt_to_page(ptep));
mm_dec_nr_pmds(mm);
return 1;
}
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pud_t *pud)
{
return NULL;
}
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
return 0;
}
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
unsigned long *start, unsigned long *end)
{
}
bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
return false;
}
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, unsigned long sz)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pte_t *pte = NULL;
pgd = pgd_offset(mm, addr);
p4d = p4d_alloc(mm, pgd, addr);
if (!p4d)
return NULL;
pud = pud_alloc(mm, p4d, addr);
if (pud) {
if (sz == PUD_SIZE) {
pte = (pte_t *)pud;
} else {
BUG_ON(sz != PMD_SIZE);
if (want_pmd_share(vma, addr) && pud_none(*pud))
pte = huge_pmd_share(mm, vma, addr, pud);
else
pte = (pte_t *)pmd_alloc(mm, pud, addr);
}
}
if (pte) {
pte_t pteval = ptep_get_lockless(pte);
BUG_ON(pte_present(pteval) && !pte_huge(pteval));
}
return pte;
}
/*
* huge_pte_offset() - Walk the page table to resolve the hugepage
* entry at address @addr
*
* Return: Pointer to page table entry (PUD or PMD) for
* address @addr, or NULL if a !p*d_present() entry is encountered and the
* size @sz doesn't match the hugepage size at this level of the page
* table.
*/
pte_t *huge_pte_offset(struct mm_struct *mm,
unsigned long addr, unsigned long sz)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pgd = pgd_offset(mm, addr);
if (!pgd_present(*pgd))
return NULL;
p4d = p4d_offset(pgd, addr);
if (!p4d_present(*p4d))
return NULL;
pud = pud_offset(p4d, addr);
if (sz == PUD_SIZE)
/* must be pud huge, non-present or none */
return (pte_t *)pud;
if (!pud_present(*pud))
return NULL;
/* must have a valid entry and size to go further */
pmd = pmd_offset(pud, addr);
/* must be pmd huge, non-present or none */
return (pte_t *)pmd;
}
/*
* Return a mask that can be used to update an address to the last huge
* page in a page table page mapping size. Used to skip non-present
* page table entries when linearly scanning address ranges. Architectures
* with unique huge page to page table relationships can define their own
* version of this routine.
*/
unsigned long hugetlb_mask_last_page(struct hstate *h)
{
unsigned long hp_size = huge_page_size(h);
if (hp_size == PUD_SIZE)
return P4D_SIZE - PUD_SIZE;
else if (hp_size == PMD_SIZE)
return PUD_SIZE - PMD_SIZE;
else
return 0UL;
}
#else
/* See description above. Architectures can provide their own version. */
__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
{
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
if (huge_page_size(h) == PMD_SIZE)
return PUD_SIZE - PMD_SIZE;
#endif
return 0UL;
}
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
/*
* These functions are overwritable if your architecture needs its own
* behavior.
*/
bool isolate_hugetlb(struct folio *folio, struct list_head *list)
{
bool ret = true;
spin_lock_irq(&hugetlb_lock);
if (!folio_test_hugetlb(folio) ||
!folio_test_hugetlb_migratable(folio) ||
!folio_try_get(folio)) {
ret = false;
goto unlock;
}
folio_clear_hugetlb_migratable(folio);
list_move_tail(&folio->lru, list);
unlock:
spin_unlock_irq(&hugetlb_lock);
return ret;
}
int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
{
int ret = 0;
*hugetlb = false;
spin_lock_irq(&hugetlb_lock);
if (folio_test_hugetlb(folio)) {
*hugetlb = true;
if (folio_test_hugetlb_freed(folio))
ret = 0;
else if (folio_test_hugetlb_migratable(folio) || unpoison)
ret = folio_try_get(folio);
else
ret = -EBUSY;
}
spin_unlock_irq(&hugetlb_lock);
return ret;
}
int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
bool *migratable_cleared)
{
int ret;
spin_lock_irq(&hugetlb_lock);
ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
spin_unlock_irq(&hugetlb_lock);
return ret;
}
void folio_putback_active_hugetlb(struct folio *folio)
{
spin_lock_irq(&hugetlb_lock);
folio_set_hugetlb_migratable(folio);
list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
spin_unlock_irq(&hugetlb_lock);
folio_put(folio);
}
void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
{
struct hstate *h = folio_hstate(old_folio);
hugetlb_cgroup_migrate(old_folio, new_folio);
set_page_owner_migrate_reason(&new_folio->page, reason);
/*
* transfer temporary state of the new hugetlb folio. This is
* reverse to other transitions because the newpage is going to
* be final while the old one will be freed so it takes over
* the temporary status.
*
* Also note that we have to transfer the per-node surplus state
* here as well otherwise the global surplus count will not match
* the per-node's.
*/
if (folio_test_hugetlb_temporary(new_folio)) {
int old_nid = folio_nid(old_folio);
int new_nid = folio_nid(new_folio);
folio_set_hugetlb_temporary(old_folio);
folio_clear_hugetlb_temporary(new_folio);
/*
* There is no need to transfer the per-node surplus state
* when we do not cross the node.
*/
if (new_nid == old_nid)
return;
spin_lock_irq(&hugetlb_lock);
if (h->surplus_huge_pages_node[old_nid]) {
h->surplus_huge_pages_node[old_nid]--;
h->surplus_huge_pages_node[new_nid]++;
}
spin_unlock_irq(&hugetlb_lock);
}
}
static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
struct mm_struct *mm = vma->vm_mm;
struct mmu_notifier_range range;
unsigned long address;
spinlock_t *ptl;
pte_t *ptep;
if (!(vma->vm_flags & VM_MAYSHARE))
return;
if (start >= end)
return;
flush_cache_range(vma, start, end);
/*
* No need to call adjust_range_if_pmd_sharing_possible(), because
* we have already done the PUD_SIZE alignment.
*/
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
start, end);
mmu_notifier_invalidate_range_start(&range);
hugetlb_vma_lock_write(vma);
i_mmap_lock_write(vma->vm_file->f_mapping);
for (address = start; address < end; address += PUD_SIZE) {
ptep = hugetlb_walk(vma, address, sz);
if (!ptep)
continue;
ptl = huge_pte_lock(h, mm, ptep);
huge_pmd_unshare(mm, vma, address, ptep);
spin_unlock(ptl);
}
flush_hugetlb_tlb_range(vma, start, end);
i_mmap_unlock_write(vma->vm_file->f_mapping);
hugetlb_vma_unlock_write(vma);
/*
* No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
* Documentation/mm/mmu_notifier.rst.
*/
mmu_notifier_invalidate_range_end(&range);
}
/*
* This function will unconditionally remove all the shared pmd pgtable entries
* within the specific vma for a hugetlbfs memory range.
*/
void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
{
hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
ALIGN_DOWN(vma->vm_end, PUD_SIZE));
}
#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;
static int __init cmdline_parse_hugetlb_cma(char *p)
{
int nid, count = 0;
unsigned long tmp;
char *s = p;
while (*s) {
if (sscanf(s, "%lu%n", &tmp, &count) != 1)
break;
if (s[count] == ':') {
if (tmp >= MAX_NUMNODES)
break;
nid = array_index_nospec(tmp, MAX_NUMNODES);
s += count + 1;
tmp = memparse(s, &s);
hugetlb_cma_size_in_node[nid] = tmp;
hugetlb_cma_size += tmp;
/*
* Skip the separator if have one, otherwise
* break the parsing.
*/
if (*s == ',')
s++;
else
break;
} else {
hugetlb_cma_size = memparse(p, &p);
break;
}
}
return 0;
}
early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
void __init hugetlb_cma_reserve(int order)
{
unsigned long size, reserved, per_node;
bool node_specific_cma_alloc = false;
int nid;
cma_reserve_called = true;
if (!hugetlb_cma_size)
return;
for (nid = 0; nid < MAX_NUMNODES; nid++) {
if (hugetlb_cma_size_in_node[nid] == 0)
continue;
if (!node_online(nid)) {
pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
hugetlb_cma_size_in_node[nid] = 0;
continue;
}
if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
nid, (PAGE_SIZE << order) / SZ_1M);
hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
hugetlb_cma_size_in_node[nid] = 0;
} else {
node_specific_cma_alloc = true;
}
}
/* Validate the CMA size again in case some invalid nodes specified. */
if (!hugetlb_cma_size)
return;
if (hugetlb_cma_size < (PAGE_SIZE << order)) {
pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
(PAGE_SIZE << order) / SZ_1M);
hugetlb_cma_size = 0;
return;
}
if (!node_specific_cma_alloc) {
/*
* If 3 GB area is requested on a machine with 4 numa nodes,
* let's allocate 1 GB on first three nodes and ignore the last one.
*/
per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
}
reserved = 0;
for_each_online_node(nid) {
int res;
char name[CMA_MAX_NAME];
if (node_specific_cma_alloc) {
if (hugetlb_cma_size_in_node[nid] == 0)
continue;
size = hugetlb_cma_size_in_node[nid];
} else {
size = min(per_node, hugetlb_cma_size - reserved);
}
size = round_up(size, PAGE_SIZE << order);
snprintf(name, sizeof(name), "hugetlb%d", nid);
/*
* Note that 'order per bit' is based on smallest size that
* may be returned to CMA allocator in the case of
* huge page demotion.
*/
res = cma_declare_contiguous_nid(0, size, 0,
PAGE_SIZE << HUGETLB_PAGE_ORDER,
0, false, name,
&hugetlb_cma[nid], nid);
if (res) {
pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
res, nid);
continue;
}
reserved += size;
pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
size / SZ_1M, nid);
if (reserved >= hugetlb_cma_size)
break;
}
if (!reserved)
/*
* hugetlb_cma_size is used to determine if allocations from
* cma are possible. Set to zero if no cma regions are set up.
*/
hugetlb_cma_size = 0;
}
static void __init hugetlb_cma_check(void)
{
if (!hugetlb_cma_size || cma_reserve_called)
return;
pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}
#endif /* CONFIG_CMA */