linux/drivers/net/wireless/brcm80211/brcmsmac/channel.c
Arend van Spriel 94a2ca311c brcm80211: smac: only provide valid regulatory hint
The driver provides a regulatory hint to cfg80211 as obtained from the
SPROM. Mostly, this will be a two-letter ISO country code. However, it
may obtain special country code similar to the world regulatory domain
as used in cfg80211. This patch avoids setting these special codes as
the hint is lost to cfg80211.

Reviewed-by: Pieter-Paul Giesberts <pieterpg@broadcom.com>
Reviewed-by: Brett Rudley <brudley@broadcom.com>
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2012-04-13 14:32:53 -04:00

1508 lines
43 KiB
C

/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/types.h>
#include <net/mac80211.h>
#include <defs.h>
#include "pub.h"
#include "phy/phy_hal.h"
#include "main.h"
#include "stf.h"
#include "channel.h"
/* QDB() macro takes a dB value and converts to a quarter dB value */
#define QDB(n) ((n) * BRCMS_TXPWR_DB_FACTOR)
#define LOCALE_CHAN_01_11 (1<<0)
#define LOCALE_CHAN_12_13 (1<<1)
#define LOCALE_CHAN_14 (1<<2)
#define LOCALE_SET_5G_LOW_JP1 (1<<3) /* 34-48, step 2 */
#define LOCALE_SET_5G_LOW_JP2 (1<<4) /* 34-46, step 4 */
#define LOCALE_SET_5G_LOW1 (1<<5) /* 36-48, step 4 */
#define LOCALE_SET_5G_LOW2 (1<<6) /* 52 */
#define LOCALE_SET_5G_LOW3 (1<<7) /* 56-64, step 4 */
#define LOCALE_SET_5G_MID1 (1<<8) /* 100-116, step 4 */
#define LOCALE_SET_5G_MID2 (1<<9) /* 120-124, step 4 */
#define LOCALE_SET_5G_MID3 (1<<10) /* 128 */
#define LOCALE_SET_5G_HIGH1 (1<<11) /* 132-140, step 4 */
#define LOCALE_SET_5G_HIGH2 (1<<12) /* 149-161, step 4 */
#define LOCALE_SET_5G_HIGH3 (1<<13) /* 165 */
#define LOCALE_CHAN_52_140_ALL (1<<14)
#define LOCALE_SET_5G_HIGH4 (1<<15) /* 184-216 */
#define LOCALE_CHAN_36_64 (LOCALE_SET_5G_LOW1 | \
LOCALE_SET_5G_LOW2 | \
LOCALE_SET_5G_LOW3)
#define LOCALE_CHAN_52_64 (LOCALE_SET_5G_LOW2 | LOCALE_SET_5G_LOW3)
#define LOCALE_CHAN_100_124 (LOCALE_SET_5G_MID1 | LOCALE_SET_5G_MID2)
#define LOCALE_CHAN_100_140 (LOCALE_SET_5G_MID1 | LOCALE_SET_5G_MID2 | \
LOCALE_SET_5G_MID3 | LOCALE_SET_5G_HIGH1)
#define LOCALE_CHAN_149_165 (LOCALE_SET_5G_HIGH2 | LOCALE_SET_5G_HIGH3)
#define LOCALE_CHAN_184_216 LOCALE_SET_5G_HIGH4
#define LOCALE_CHAN_01_14 (LOCALE_CHAN_01_11 | \
LOCALE_CHAN_12_13 | \
LOCALE_CHAN_14)
#define LOCALE_RADAR_SET_NONE 0
#define LOCALE_RADAR_SET_1 1
#define LOCALE_RESTRICTED_NONE 0
#define LOCALE_RESTRICTED_SET_2G_SHORT 1
#define LOCALE_RESTRICTED_CHAN_165 2
#define LOCALE_CHAN_ALL_5G 3
#define LOCALE_RESTRICTED_JAPAN_LEGACY 4
#define LOCALE_RESTRICTED_11D_2G 5
#define LOCALE_RESTRICTED_11D_5G 6
#define LOCALE_RESTRICTED_LOW_HI 7
#define LOCALE_RESTRICTED_12_13_14 8
#define LOCALE_2G_IDX_i 0
#define LOCALE_5G_IDX_11 0
#define LOCALE_MIMO_IDX_bn 0
#define LOCALE_MIMO_IDX_11n 0
/* max of BAND_5G_PWR_LVLS and 6 for 2.4 GHz */
#define BRCMS_MAXPWR_TBL_SIZE 6
/* max of BAND_5G_PWR_LVLS and 14 for 2.4 GHz */
#define BRCMS_MAXPWR_MIMO_TBL_SIZE 14
/* power level in group of 2.4GHz band channels:
* maxpwr[0] - CCK channels [1]
* maxpwr[1] - CCK channels [2-10]
* maxpwr[2] - CCK channels [11-14]
* maxpwr[3] - OFDM channels [1]
* maxpwr[4] - OFDM channels [2-10]
* maxpwr[5] - OFDM channels [11-14]
*/
/* maxpwr mapping to 5GHz band channels:
* maxpwr[0] - channels [34-48]
* maxpwr[1] - channels [52-60]
* maxpwr[2] - channels [62-64]
* maxpwr[3] - channels [100-140]
* maxpwr[4] - channels [149-165]
*/
#define BAND_5G_PWR_LVLS 5 /* 5 power levels for 5G */
#define LC(id) LOCALE_MIMO_IDX_ ## id
#define LC_2G(id) LOCALE_2G_IDX_ ## id
#define LC_5G(id) LOCALE_5G_IDX_ ## id
#define LOCALES(band2, band5, mimo2, mimo5) \
{LC_2G(band2), LC_5G(band5), LC(mimo2), LC(mimo5)}
/* macro to get 2.4 GHz channel group index for tx power */
#define CHANNEL_POWER_IDX_2G_CCK(c) (((c) < 2) ? 0 : (((c) < 11) ? 1 : 2))
#define CHANNEL_POWER_IDX_2G_OFDM(c) (((c) < 2) ? 3 : (((c) < 11) ? 4 : 5))
/* macro to get 5 GHz channel group index for tx power */
#define CHANNEL_POWER_IDX_5G(c) (((c) < 52) ? 0 : \
(((c) < 62) ? 1 : \
(((c) < 100) ? 2 : \
(((c) < 149) ? 3 : 4))))
#define ISDFS_EU(fl) (((fl) & BRCMS_DFS_EU) == BRCMS_DFS_EU)
struct brcms_cm_band {
/* struct locale_info flags */
u8 locale_flags;
/* List of valid channels in the country */
struct brcms_chanvec valid_channels;
/* List of restricted use channels */
const struct brcms_chanvec *restricted_channels;
/* List of radar sensitive channels */
const struct brcms_chanvec *radar_channels;
u8 PAD[8];
};
/* locale per-channel tx power limits for MIMO frames
* maxpwr arrays are index by channel for 2.4 GHz limits, and
* by sub-band for 5 GHz limits using CHANNEL_POWER_IDX_5G(channel)
*/
struct locale_mimo_info {
/* tx 20 MHz power limits, qdBm units */
s8 maxpwr20[BRCMS_MAXPWR_MIMO_TBL_SIZE];
/* tx 40 MHz power limits, qdBm units */
s8 maxpwr40[BRCMS_MAXPWR_MIMO_TBL_SIZE];
u8 flags;
};
/* Country names and abbreviations with locale defined from ISO 3166 */
struct country_info {
const u8 locale_2G; /* 2.4G band locale */
const u8 locale_5G; /* 5G band locale */
const u8 locale_mimo_2G; /* 2.4G mimo info */
const u8 locale_mimo_5G; /* 5G mimo info */
};
struct brcms_cm_info {
struct brcms_pub *pub;
struct brcms_c_info *wlc;
char srom_ccode[BRCM_CNTRY_BUF_SZ]; /* Country Code in SROM */
uint srom_regrev; /* Regulatory Rev for the SROM ccode */
const struct country_info *country; /* current country def */
char ccode[BRCM_CNTRY_BUF_SZ]; /* current internal Country Code */
uint regrev; /* current Regulatory Revision */
char country_abbrev[BRCM_CNTRY_BUF_SZ]; /* current advertised ccode */
/* per-band state (one per phy/radio) */
struct brcms_cm_band bandstate[MAXBANDS];
/* quiet channels currently for radar sensitivity or 11h support */
/* channels on which we cannot transmit */
struct brcms_chanvec quiet_channels;
};
/* locale channel and power info. */
struct locale_info {
u32 valid_channels;
/* List of radar sensitive channels */
u8 radar_channels;
/* List of channels used only if APs are detected */
u8 restricted_channels;
/* Max tx pwr in qdBm for each sub-band */
s8 maxpwr[BRCMS_MAXPWR_TBL_SIZE];
/* Country IE advertised max tx pwr in dBm per sub-band */
s8 pub_maxpwr[BAND_5G_PWR_LVLS];
u8 flags;
};
/* Regulatory Matrix Spreadsheet (CLM) MIMO v3.7.9 */
/*
* Some common channel sets
*/
/* No channels */
static const struct brcms_chanvec chanvec_none = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* All 2.4 GHz HW channels */
static const struct brcms_chanvec chanvec_all_2G = {
{0xfe, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* All 5 GHz HW channels */
static const struct brcms_chanvec chanvec_all_5G = {
{0x00, 0x00, 0x00, 0x00, 0x54, 0x55, 0x11, 0x11,
0x01, 0x00, 0x00, 0x00, 0x10, 0x11, 0x11, 0x11,
0x11, 0x11, 0x20, 0x22, 0x22, 0x00, 0x00, 0x11,
0x11, 0x11, 0x11, 0x01}
};
/*
* Radar channel sets
*/
/* Channels 52 - 64, 100 - 140 */
static const struct brcms_chanvec radar_set1 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x11, /* 52 - 60 */
0x01, 0x00, 0x00, 0x00, 0x10, 0x11, 0x11, 0x11, /* 64, 100 - 124 */
0x11, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 128 - 140 */
0x00, 0x00, 0x00, 0x00}
};
/*
* Restricted channel sets
*/
/* Channels 34, 38, 42, 46 */
static const struct brcms_chanvec restricted_set_japan_legacy = {
{0x00, 0x00, 0x00, 0x00, 0x44, 0x44, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* Channels 12, 13 */
static const struct brcms_chanvec restricted_set_2g_short = {
{0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* Channel 165 */
static const struct brcms_chanvec restricted_chan_165 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* Channels 36 - 48 & 149 - 165 */
static const struct brcms_chanvec restricted_low_hi = {
{0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x20, 0x22, 0x22, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* Channels 12 - 14 */
static const struct brcms_chanvec restricted_set_12_13_14 = {
{0x00, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
/* global memory to provide working buffer for expanded locale */
static const struct brcms_chanvec *g_table_radar_set[] = {
&chanvec_none,
&radar_set1
};
static const struct brcms_chanvec *g_table_restricted_chan[] = {
&chanvec_none, /* restricted_set_none */
&restricted_set_2g_short,
&restricted_chan_165,
&chanvec_all_5G,
&restricted_set_japan_legacy,
&chanvec_all_2G, /* restricted_set_11d_2G */
&chanvec_all_5G, /* restricted_set_11d_5G */
&restricted_low_hi,
&restricted_set_12_13_14
};
static const struct brcms_chanvec locale_2g_01_11 = {
{0xfe, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_2g_12_13 = {
{0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_2g_14 = {
{0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW_JP1 = {
{0x00, 0x00, 0x00, 0x00, 0x54, 0x55, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW_JP2 = {
{0x00, 0x00, 0x00, 0x00, 0x44, 0x44, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW1 = {
{0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW2 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_LOW3 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_MID1 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x11, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_MID2 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_MID3 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_HIGH1 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x10, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_HIGH2 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x20, 0x22, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_HIGH3 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_52_140_ALL = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}
};
static const struct brcms_chanvec locale_5g_HIGH4 = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11,
0x11, 0x11, 0x11, 0x11}
};
static const struct brcms_chanvec *g_table_locale_base[] = {
&locale_2g_01_11,
&locale_2g_12_13,
&locale_2g_14,
&locale_5g_LOW_JP1,
&locale_5g_LOW_JP2,
&locale_5g_LOW1,
&locale_5g_LOW2,
&locale_5g_LOW3,
&locale_5g_MID1,
&locale_5g_MID2,
&locale_5g_MID3,
&locale_5g_HIGH1,
&locale_5g_HIGH2,
&locale_5g_HIGH3,
&locale_5g_52_140_ALL,
&locale_5g_HIGH4
};
static void brcms_c_locale_add_channels(struct brcms_chanvec *target,
const struct brcms_chanvec *channels)
{
u8 i;
for (i = 0; i < sizeof(struct brcms_chanvec); i++)
target->vec[i] |= channels->vec[i];
}
static void brcms_c_locale_get_channels(const struct locale_info *locale,
struct brcms_chanvec *channels)
{
u8 i;
memset(channels, 0, sizeof(struct brcms_chanvec));
for (i = 0; i < ARRAY_SIZE(g_table_locale_base); i++) {
if (locale->valid_channels & (1 << i))
brcms_c_locale_add_channels(channels,
g_table_locale_base[i]);
}
}
/*
* Locale Definitions - 2.4 GHz
*/
static const struct locale_info locale_i = { /* locale i. channel 1 - 13 */
LOCALE_CHAN_01_11 | LOCALE_CHAN_12_13,
LOCALE_RADAR_SET_NONE,
LOCALE_RESTRICTED_SET_2G_SHORT,
{QDB(19), QDB(19), QDB(19),
QDB(19), QDB(19), QDB(19)},
{20, 20, 20, 0},
BRCMS_EIRP
};
/*
* Locale Definitions - 5 GHz
*/
static const struct locale_info locale_11 = {
/* locale 11. channel 36 - 48, 52 - 64, 100 - 140, 149 - 165 */
LOCALE_CHAN_36_64 | LOCALE_CHAN_100_140 | LOCALE_CHAN_149_165,
LOCALE_RADAR_SET_1,
LOCALE_RESTRICTED_NONE,
{QDB(21), QDB(21), QDB(21), QDB(21), QDB(21)},
{23, 23, 23, 30, 30},
BRCMS_EIRP | BRCMS_DFS_EU
};
static const struct locale_info *g_locale_2g_table[] = {
&locale_i
};
static const struct locale_info *g_locale_5g_table[] = {
&locale_11
};
/*
* MIMO Locale Definitions - 2.4 GHz
*/
static const struct locale_mimo_info locale_bn = {
{QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
QDB(13), QDB(13), QDB(13)},
{0, 0, QDB(13), QDB(13), QDB(13),
QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
QDB(13), 0, 0},
0
};
static const struct locale_mimo_info *g_mimo_2g_table[] = {
&locale_bn
};
/*
* MIMO Locale Definitions - 5 GHz
*/
static const struct locale_mimo_info locale_11n = {
{ /* 12.5 dBm */ 50, 50, 50, QDB(15), QDB(15)},
{QDB(14), QDB(15), QDB(15), QDB(15), QDB(15)},
0
};
static const struct locale_mimo_info *g_mimo_5g_table[] = {
&locale_11n
};
static const struct {
char abbrev[BRCM_CNTRY_BUF_SZ]; /* country abbreviation */
struct country_info country;
} cntry_locales[] = {
{
"X2", LOCALES(i, 11, bn, 11n)}, /* Worldwide RoW 2 */
};
#ifdef SUPPORT_40MHZ
/* 20MHz channel info for 40MHz pairing support */
struct chan20_info {
u8 sb;
u8 adj_sbs;
};
/* indicates adjacent channels that are allowed for a 40 Mhz channel and
* those that permitted by the HT
*/
struct chan20_info chan20_info[] = {
/* 11b/11g */
/* 0 */ {1, (CH_UPPER_SB | CH_EWA_VALID)},
/* 1 */ {2, (CH_UPPER_SB | CH_EWA_VALID)},
/* 2 */ {3, (CH_UPPER_SB | CH_EWA_VALID)},
/* 3 */ {4, (CH_UPPER_SB | CH_EWA_VALID)},
/* 4 */ {5, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 5 */ {6, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 6 */ {7, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 7 */ {8, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 8 */ {9, (CH_UPPER_SB | CH_LOWER_SB | CH_EWA_VALID)},
/* 9 */ {10, (CH_LOWER_SB | CH_EWA_VALID)},
/* 10 */ {11, (CH_LOWER_SB | CH_EWA_VALID)},
/* 11 */ {12, (CH_LOWER_SB)},
/* 12 */ {13, (CH_LOWER_SB)},
/* 13 */ {14, (CH_LOWER_SB)},
/* 11a japan high */
/* 14 */ {34, (CH_UPPER_SB)},
/* 15 */ {38, (CH_LOWER_SB)},
/* 16 */ {42, (CH_LOWER_SB)},
/* 17 */ {46, (CH_LOWER_SB)},
/* 11a usa low */
/* 18 */ {36, (CH_UPPER_SB | CH_EWA_VALID)},
/* 19 */ {40, (CH_LOWER_SB | CH_EWA_VALID)},
/* 20 */ {44, (CH_UPPER_SB | CH_EWA_VALID)},
/* 21 */ {48, (CH_LOWER_SB | CH_EWA_VALID)},
/* 22 */ {52, (CH_UPPER_SB | CH_EWA_VALID)},
/* 23 */ {56, (CH_LOWER_SB | CH_EWA_VALID)},
/* 24 */ {60, (CH_UPPER_SB | CH_EWA_VALID)},
/* 25 */ {64, (CH_LOWER_SB | CH_EWA_VALID)},
/* 11a Europe */
/* 26 */ {100, (CH_UPPER_SB | CH_EWA_VALID)},
/* 27 */ {104, (CH_LOWER_SB | CH_EWA_VALID)},
/* 28 */ {108, (CH_UPPER_SB | CH_EWA_VALID)},
/* 29 */ {112, (CH_LOWER_SB | CH_EWA_VALID)},
/* 30 */ {116, (CH_UPPER_SB | CH_EWA_VALID)},
/* 31 */ {120, (CH_LOWER_SB | CH_EWA_VALID)},
/* 32 */ {124, (CH_UPPER_SB | CH_EWA_VALID)},
/* 33 */ {128, (CH_LOWER_SB | CH_EWA_VALID)},
/* 34 */ {132, (CH_UPPER_SB | CH_EWA_VALID)},
/* 35 */ {136, (CH_LOWER_SB | CH_EWA_VALID)},
/* 36 */ {140, (CH_LOWER_SB)},
/* 11a usa high, ref5 only */
/* The 0x80 bit in pdiv means these are REF5, other entries are REF20 */
/* 37 */ {149, (CH_UPPER_SB | CH_EWA_VALID)},
/* 38 */ {153, (CH_LOWER_SB | CH_EWA_VALID)},
/* 39 */ {157, (CH_UPPER_SB | CH_EWA_VALID)},
/* 40 */ {161, (CH_LOWER_SB | CH_EWA_VALID)},
/* 41 */ {165, (CH_LOWER_SB)},
/* 11a japan */
/* 42 */ {184, (CH_UPPER_SB)},
/* 43 */ {188, (CH_LOWER_SB)},
/* 44 */ {192, (CH_UPPER_SB)},
/* 45 */ {196, (CH_LOWER_SB)},
/* 46 */ {200, (CH_UPPER_SB)},
/* 47 */ {204, (CH_LOWER_SB)},
/* 48 */ {208, (CH_UPPER_SB)},
/* 49 */ {212, (CH_LOWER_SB)},
/* 50 */ {216, (CH_LOWER_SB)}
};
#endif /* SUPPORT_40MHZ */
static const struct locale_info *brcms_c_get_locale_2g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_locale_2g_table))
return NULL; /* error condition */
return g_locale_2g_table[locale_idx];
}
static const struct locale_info *brcms_c_get_locale_5g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_locale_5g_table))
return NULL; /* error condition */
return g_locale_5g_table[locale_idx];
}
static const struct locale_mimo_info *brcms_c_get_mimo_2g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_mimo_2g_table))
return NULL;
return g_mimo_2g_table[locale_idx];
}
static const struct locale_mimo_info *brcms_c_get_mimo_5g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_mimo_5g_table))
return NULL;
return g_mimo_5g_table[locale_idx];
}
static int
brcms_c_country_aggregate_map(struct brcms_cm_info *wlc_cm, const char *ccode,
char *mapped_ccode, uint *mapped_regrev)
{
return false;
}
/*
* Indicates whether the country provided is valid to pass
* to cfg80211 or not.
*
* returns true if valid; false if not.
*/
static bool brcms_c_country_valid(const char *ccode)
{
/*
* only allow ascii alpha uppercase for the first 2
* chars.
*/
if (!((0x80 & ccode[0]) == 0 && ccode[0] >= 0x41 && ccode[0] <= 0x5A &&
(0x80 & ccode[1]) == 0 && ccode[1] >= 0x41 && ccode[1] <= 0x5A &&
ccode[2] == '\0'))
return false;
/*
* do not match ISO 3166-1 user assigned country codes
* that may be in the driver table
*/
if (!strcmp("AA", ccode) || /* AA */
!strcmp("ZZ", ccode) || /* ZZ */
ccode[0] == 'X' || /* XA - XZ */
(ccode[0] == 'Q' && /* QM - QZ */
(ccode[1] >= 'M' && ccode[1] <= 'Z')))
return false;
if (!strcmp("NA", ccode))
return false;
return true;
}
/* Lookup a country info structure from a null terminated country
* abbreviation and regrev directly with no translation.
*/
static const struct country_info *
brcms_c_country_lookup_direct(const char *ccode, uint regrev)
{
uint size, i;
/* Should just return 0 for single locale driver. */
/* Keep it this way in case we add more locales. (for now anyway) */
/*
* all other country def arrays are for regrev == 0, so if
* regrev is non-zero, fail
*/
if (regrev > 0)
return NULL;
/* find matched table entry from country code */
size = ARRAY_SIZE(cntry_locales);
for (i = 0; i < size; i++) {
if (strcmp(ccode, cntry_locales[i].abbrev) == 0)
return &cntry_locales[i].country;
}
return NULL;
}
static const struct country_info *
brcms_c_countrycode_map(struct brcms_cm_info *wlc_cm, const char *ccode,
char *mapped_ccode, uint *mapped_regrev)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
const struct country_info *country;
uint srom_regrev = wlc_cm->srom_regrev;
const char *srom_ccode = wlc_cm->srom_ccode;
int mapped;
/* check for currently supported ccode size */
if (strlen(ccode) > (BRCM_CNTRY_BUF_SZ - 1)) {
wiphy_err(wlc->wiphy, "wl%d: %s: ccode \"%s\" too long for "
"match\n", wlc->pub->unit, __func__, ccode);
return NULL;
}
/* default mapping is the given ccode and regrev 0 */
strncpy(mapped_ccode, ccode, BRCM_CNTRY_BUF_SZ);
*mapped_regrev = 0;
/* If the desired country code matches the srom country code,
* then the mapped country is the srom regulatory rev.
* Otherwise look for an aggregate mapping.
*/
if (!strcmp(srom_ccode, ccode)) {
*mapped_regrev = srom_regrev;
mapped = 0;
wiphy_err(wlc->wiphy, "srom_code == ccode %s\n", __func__);
} else {
mapped =
brcms_c_country_aggregate_map(wlc_cm, ccode, mapped_ccode,
mapped_regrev);
}
/* find the matching built-in country definition */
country = brcms_c_country_lookup_direct(mapped_ccode, *mapped_regrev);
/* if there is not an exact rev match, default to rev zero */
if (country == NULL && *mapped_regrev != 0) {
*mapped_regrev = 0;
country =
brcms_c_country_lookup_direct(mapped_ccode, *mapped_regrev);
}
return country;
}
/* Lookup a country info structure from a null terminated country code
* The lookup is case sensitive.
*/
static const struct country_info *
brcms_c_country_lookup(struct brcms_c_info *wlc, const char *ccode)
{
const struct country_info *country;
char mapped_ccode[BRCM_CNTRY_BUF_SZ];
uint mapped_regrev;
/*
* map the country code to a built-in country code, regrev, and
* country_info struct
*/
country = brcms_c_countrycode_map(wlc->cmi, ccode, mapped_ccode,
&mapped_regrev);
return country;
}
/*
* reset the quiet channels vector to the union
* of the restricted and radar channel sets
*/
static void brcms_c_quiet_channels_reset(struct brcms_cm_info *wlc_cm)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
uint i, j;
struct brcms_band *band;
const struct brcms_chanvec *chanvec;
memset(&wlc_cm->quiet_channels, 0, sizeof(struct brcms_chanvec));
band = wlc->band;
for (i = 0; i < wlc->pub->_nbands;
i++, band = wlc->bandstate[OTHERBANDUNIT(wlc)]) {
/* initialize quiet channels for restricted channels */
chanvec = wlc_cm->bandstate[band->bandunit].restricted_channels;
for (j = 0; j < sizeof(struct brcms_chanvec); j++)
wlc_cm->quiet_channels.vec[j] |= chanvec->vec[j];
}
}
/* Is the channel valid for the current locale and current band? */
static bool brcms_c_valid_channel20(struct brcms_cm_info *wlc_cm, uint val)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
return ((val < MAXCHANNEL) &&
isset(wlc_cm->bandstate[wlc->band->bandunit].valid_channels.vec,
val));
}
/* Is the channel valid for the current locale and specified band? */
static bool brcms_c_valid_channel20_in_band(struct brcms_cm_info *wlc_cm,
uint bandunit, uint val)
{
return ((val < MAXCHANNEL)
&& isset(wlc_cm->bandstate[bandunit].valid_channels.vec, val));
}
/* Is the channel valid for the current locale? (but don't consider channels not
* available due to bandlocking)
*/
static bool brcms_c_valid_channel20_db(struct brcms_cm_info *wlc_cm, uint val)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
return brcms_c_valid_channel20(wlc->cmi, val) ||
(!wlc->bandlocked
&& brcms_c_valid_channel20_in_band(wlc->cmi,
OTHERBANDUNIT(wlc), val));
}
/* JP, J1 - J10 are Japan ccodes */
static bool brcms_c_japan_ccode(const char *ccode)
{
return (ccode[0] == 'J' &&
(ccode[1] == 'P' || (ccode[1] >= '1' && ccode[1] <= '9')));
}
/* Returns true if currently set country is Japan or variant */
static bool brcms_c_japan(struct brcms_c_info *wlc)
{
return brcms_c_japan_ccode(wlc->cmi->country_abbrev);
}
static void
brcms_c_channel_min_txpower_limits_with_local_constraint(
struct brcms_cm_info *wlc_cm, struct txpwr_limits *txpwr,
u8 local_constraint_qdbm)
{
int j;
/* CCK Rates */
for (j = 0; j < WL_TX_POWER_CCK_NUM; j++)
txpwr->cck[j] = min(txpwr->cck[j], local_constraint_qdbm);
/* 20 MHz Legacy OFDM SISO */
for (j = 0; j < WL_TX_POWER_OFDM_NUM; j++)
txpwr->ofdm[j] = min(txpwr->ofdm[j], local_constraint_qdbm);
/* 20 MHz Legacy OFDM CDD */
for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
txpwr->ofdm_cdd[j] =
min(txpwr->ofdm_cdd[j], local_constraint_qdbm);
/* 40 MHz Legacy OFDM SISO */
for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
txpwr->ofdm_40_siso[j] =
min(txpwr->ofdm_40_siso[j], local_constraint_qdbm);
/* 40 MHz Legacy OFDM CDD */
for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
txpwr->ofdm_40_cdd[j] =
min(txpwr->ofdm_40_cdd[j], local_constraint_qdbm);
/* 20MHz MCS 0-7 SISO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_20_siso[j] =
min(txpwr->mcs_20_siso[j], local_constraint_qdbm);
/* 20MHz MCS 0-7 CDD */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_20_cdd[j] =
min(txpwr->mcs_20_cdd[j], local_constraint_qdbm);
/* 20MHz MCS 0-7 STBC */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_20_stbc[j] =
min(txpwr->mcs_20_stbc[j], local_constraint_qdbm);
/* 20MHz MCS 8-15 MIMO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
txpwr->mcs_20_mimo[j] =
min(txpwr->mcs_20_mimo[j], local_constraint_qdbm);
/* 40MHz MCS 0-7 SISO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_40_siso[j] =
min(txpwr->mcs_40_siso[j], local_constraint_qdbm);
/* 40MHz MCS 0-7 CDD */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_40_cdd[j] =
min(txpwr->mcs_40_cdd[j], local_constraint_qdbm);
/* 40MHz MCS 0-7 STBC */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_40_stbc[j] =
min(txpwr->mcs_40_stbc[j], local_constraint_qdbm);
/* 40MHz MCS 8-15 MIMO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
txpwr->mcs_40_mimo[j] =
min(txpwr->mcs_40_mimo[j], local_constraint_qdbm);
/* 40MHz MCS 32 */
txpwr->mcs32 = min(txpwr->mcs32, local_constraint_qdbm);
}
/* Update the radio state (enable/disable) and tx power targets
* based on a new set of channel/regulatory information
*/
static void brcms_c_channels_commit(struct brcms_cm_info *wlc_cm)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
uint chan;
struct txpwr_limits txpwr;
/* search for the existence of any valid channel */
for (chan = 0; chan < MAXCHANNEL; chan++) {
if (brcms_c_valid_channel20_db(wlc->cmi, chan))
break;
}
if (chan == MAXCHANNEL)
chan = INVCHANNEL;
/*
* based on the channel search above, set or
* clear WL_RADIO_COUNTRY_DISABLE.
*/
if (chan == INVCHANNEL) {
/*
* country/locale with no valid channels, set
* the radio disable bit
*/
mboolset(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
wiphy_err(wlc->wiphy, "wl%d: %s: no valid channel for \"%s\" "
"nbands %d bandlocked %d\n", wlc->pub->unit,
__func__, wlc_cm->country_abbrev, wlc->pub->_nbands,
wlc->bandlocked);
} else if (mboolisset(wlc->pub->radio_disabled,
WL_RADIO_COUNTRY_DISABLE)) {
/*
* country/locale with valid channel, clear
* the radio disable bit
*/
mboolclr(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
}
/*
* Now that the country abbreviation is set, if the radio supports 2G,
* then set channel 14 restrictions based on the new locale.
*/
if (wlc->pub->_nbands > 1 || wlc->band->bandtype == BRCM_BAND_2G)
wlc_phy_chanspec_ch14_widefilter_set(wlc->band->pi,
brcms_c_japan(wlc) ? true :
false);
if (wlc->pub->up && chan != INVCHANNEL) {
brcms_c_channel_reg_limits(wlc_cm, wlc->chanspec, &txpwr);
brcms_c_channel_min_txpower_limits_with_local_constraint(wlc_cm,
&txpwr, BRCMS_TXPWR_MAX);
wlc_phy_txpower_limit_set(wlc->band->pi, &txpwr, wlc->chanspec);
}
}
static int
brcms_c_channels_init(struct brcms_cm_info *wlc_cm,
const struct country_info *country)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
uint i, j;
struct brcms_band *band;
const struct locale_info *li;
struct brcms_chanvec sup_chan;
const struct locale_mimo_info *li_mimo;
band = wlc->band;
for (i = 0; i < wlc->pub->_nbands;
i++, band = wlc->bandstate[OTHERBANDUNIT(wlc)]) {
li = (band->bandtype == BRCM_BAND_5G) ?
brcms_c_get_locale_5g(country->locale_5G) :
brcms_c_get_locale_2g(country->locale_2G);
wlc_cm->bandstate[band->bandunit].locale_flags = li->flags;
li_mimo = (band->bandtype == BRCM_BAND_5G) ?
brcms_c_get_mimo_5g(country->locale_mimo_5G) :
brcms_c_get_mimo_2g(country->locale_mimo_2G);
/* merge the mimo non-mimo locale flags */
wlc_cm->bandstate[band->bandunit].locale_flags |=
li_mimo->flags;
wlc_cm->bandstate[band->bandunit].restricted_channels =
g_table_restricted_chan[li->restricted_channels];
wlc_cm->bandstate[band->bandunit].radar_channels =
g_table_radar_set[li->radar_channels];
/*
* set the channel availability, masking out the channels
* that may not be supported on this phy.
*/
wlc_phy_chanspec_band_validch(band->pi, band->bandtype,
&sup_chan);
brcms_c_locale_get_channels(li,
&wlc_cm->bandstate[band->bandunit].
valid_channels);
for (j = 0; j < sizeof(struct brcms_chanvec); j++)
wlc_cm->bandstate[band->bandunit].valid_channels.
vec[j] &= sup_chan.vec[j];
}
brcms_c_quiet_channels_reset(wlc_cm);
brcms_c_channels_commit(wlc_cm);
return 0;
}
/*
* set the driver's current country and regulatory information
* using a country code as the source. Look up built in country
* information found with the country code.
*/
static void
brcms_c_set_country_common(struct brcms_cm_info *wlc_cm,
const char *country_abbrev,
const char *ccode, uint regrev,
const struct country_info *country)
{
const struct locale_info *locale;
struct brcms_c_info *wlc = wlc_cm->wlc;
char prev_country_abbrev[BRCM_CNTRY_BUF_SZ];
/* save current country state */
wlc_cm->country = country;
memset(&prev_country_abbrev, 0, BRCM_CNTRY_BUF_SZ);
strncpy(prev_country_abbrev, wlc_cm->country_abbrev,
BRCM_CNTRY_BUF_SZ - 1);
strncpy(wlc_cm->country_abbrev, country_abbrev, BRCM_CNTRY_BUF_SZ - 1);
strncpy(wlc_cm->ccode, ccode, BRCM_CNTRY_BUF_SZ - 1);
wlc_cm->regrev = regrev;
if ((wlc->pub->_n_enab & SUPPORT_11N) !=
wlc->protection->nmode_user)
brcms_c_set_nmode(wlc);
brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_2G_INDEX]);
brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_5G_INDEX]);
/* set or restore gmode as required by regulatory */
locale = brcms_c_get_locale_2g(country->locale_2G);
if (locale && (locale->flags & BRCMS_NO_OFDM))
brcms_c_set_gmode(wlc, GMODE_LEGACY_B, false);
else
brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false);
brcms_c_channels_init(wlc_cm, country);
return;
}
static int
brcms_c_set_countrycode_rev(struct brcms_cm_info *wlc_cm,
const char *country_abbrev,
const char *ccode, int regrev)
{
const struct country_info *country;
char mapped_ccode[BRCM_CNTRY_BUF_SZ];
uint mapped_regrev;
/* if regrev is -1, lookup the mapped country code,
* otherwise use the ccode and regrev directly
*/
if (regrev == -1) {
/*
* map the country code to a built-in country
* code, regrev, and country_info
*/
country =
brcms_c_countrycode_map(wlc_cm, ccode, mapped_ccode,
&mapped_regrev);
} else {
/* find the matching built-in country definition */
country = brcms_c_country_lookup_direct(ccode, regrev);
strncpy(mapped_ccode, ccode, BRCM_CNTRY_BUF_SZ);
mapped_regrev = regrev;
}
if (country == NULL)
return -EINVAL;
/* set the driver state for the country */
brcms_c_set_country_common(wlc_cm, country_abbrev, mapped_ccode,
mapped_regrev, country);
return 0;
}
/*
* set the driver's current country and regulatory information using
* a country code as the source. Lookup built in country information
* found with the country code.
*/
static int
brcms_c_set_countrycode(struct brcms_cm_info *wlc_cm, const char *ccode)
{
char country_abbrev[BRCM_CNTRY_BUF_SZ];
strncpy(country_abbrev, ccode, BRCM_CNTRY_BUF_SZ);
return brcms_c_set_countrycode_rev(wlc_cm, country_abbrev, ccode, -1);
}
struct brcms_cm_info *brcms_c_channel_mgr_attach(struct brcms_c_info *wlc)
{
struct brcms_cm_info *wlc_cm;
char country_abbrev[BRCM_CNTRY_BUF_SZ];
const struct country_info *country;
struct brcms_pub *pub = wlc->pub;
char *ccode;
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
wlc_cm = kzalloc(sizeof(struct brcms_cm_info), GFP_ATOMIC);
if (wlc_cm == NULL)
return NULL;
wlc_cm->pub = pub;
wlc_cm->wlc = wlc;
wlc->cmi = wlc_cm;
/* store the country code for passing up as a regulatory hint */
ccode = getvar(wlc->hw->sih, BRCMS_SROM_CCODE);
if (ccode && brcms_c_country_valid(ccode))
strncpy(wlc->pub->srom_ccode, ccode, BRCM_CNTRY_BUF_SZ - 1);
/*
* internal country information which must match
* regulatory constraints in firmware
*/
memset(country_abbrev, 0, BRCM_CNTRY_BUF_SZ);
strncpy(country_abbrev, "X2", sizeof(country_abbrev) - 1);
country = brcms_c_country_lookup(wlc, country_abbrev);
/* save default country for exiting 11d regulatory mode */
strncpy(wlc->country_default, country_abbrev, BRCM_CNTRY_BUF_SZ - 1);
/* initialize autocountry_default to driver default */
strncpy(wlc->autocountry_default, "X2", BRCM_CNTRY_BUF_SZ - 1);
brcms_c_set_countrycode(wlc_cm, country_abbrev);
return wlc_cm;
}
void brcms_c_channel_mgr_detach(struct brcms_cm_info *wlc_cm)
{
kfree(wlc_cm);
}
u8
brcms_c_channel_locale_flags_in_band(struct brcms_cm_info *wlc_cm,
uint bandunit)
{
return wlc_cm->bandstate[bandunit].locale_flags;
}
static bool
brcms_c_quiet_chanspec(struct brcms_cm_info *wlc_cm, u16 chspec)
{
return (wlc_cm->wlc->pub->_n_enab & SUPPORT_11N) &&
CHSPEC_IS40(chspec) ?
(isset(wlc_cm->quiet_channels.vec,
lower_20_sb(CHSPEC_CHANNEL(chspec))) ||
isset(wlc_cm->quiet_channels.vec,
upper_20_sb(CHSPEC_CHANNEL(chspec)))) :
isset(wlc_cm->quiet_channels.vec, CHSPEC_CHANNEL(chspec));
}
void
brcms_c_channel_set_chanspec(struct brcms_cm_info *wlc_cm, u16 chanspec,
u8 local_constraint_qdbm)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
struct txpwr_limits txpwr;
brcms_c_channel_reg_limits(wlc_cm, chanspec, &txpwr);
brcms_c_channel_min_txpower_limits_with_local_constraint(
wlc_cm, &txpwr, local_constraint_qdbm
);
brcms_b_set_chanspec(wlc->hw, chanspec,
(brcms_c_quiet_chanspec(wlc_cm, chanspec) != 0),
&txpwr);
}
void
brcms_c_channel_reg_limits(struct brcms_cm_info *wlc_cm, u16 chanspec,
struct txpwr_limits *txpwr)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
uint i;
uint chan;
int maxpwr;
int delta;
const struct country_info *country;
struct brcms_band *band;
const struct locale_info *li;
int conducted_max = BRCMS_TXPWR_MAX;
int conducted_ofdm_max = BRCMS_TXPWR_MAX;
const struct locale_mimo_info *li_mimo;
int maxpwr20, maxpwr40;
int maxpwr_idx;
uint j;
memset(txpwr, 0, sizeof(struct txpwr_limits));
if (!brcms_c_valid_chanspec_db(wlc_cm, chanspec)) {
country = brcms_c_country_lookup(wlc, wlc->autocountry_default);
if (country == NULL)
return;
} else {
country = wlc_cm->country;
}
chan = CHSPEC_CHANNEL(chanspec);
band = wlc->bandstate[chspec_bandunit(chanspec)];
li = (band->bandtype == BRCM_BAND_5G) ?
brcms_c_get_locale_5g(country->locale_5G) :
brcms_c_get_locale_2g(country->locale_2G);
li_mimo = (band->bandtype == BRCM_BAND_5G) ?
brcms_c_get_mimo_5g(country->locale_mimo_5G) :
brcms_c_get_mimo_2g(country->locale_mimo_2G);
if (li->flags & BRCMS_EIRP) {
delta = band->antgain;
} else {
delta = 0;
if (band->antgain > QDB(6))
delta = band->antgain - QDB(6); /* Excess over 6 dB */
}
if (li == &locale_i) {
conducted_max = QDB(22);
conducted_ofdm_max = QDB(22);
}
/* CCK txpwr limits for 2.4G band */
if (band->bandtype == BRCM_BAND_2G) {
maxpwr = li->maxpwr[CHANNEL_POWER_IDX_2G_CCK(chan)];
maxpwr = maxpwr - delta;
maxpwr = max(maxpwr, 0);
maxpwr = min(maxpwr, conducted_max);
for (i = 0; i < BRCMS_NUM_RATES_CCK; i++)
txpwr->cck[i] = (u8) maxpwr;
}
/* OFDM txpwr limits for 2.4G or 5G bands */
if (band->bandtype == BRCM_BAND_2G)
maxpwr = li->maxpwr[CHANNEL_POWER_IDX_2G_OFDM(chan)];
else
maxpwr = li->maxpwr[CHANNEL_POWER_IDX_5G(chan)];
maxpwr = maxpwr - delta;
maxpwr = max(maxpwr, 0);
maxpwr = min(maxpwr, conducted_ofdm_max);
/* Keep OFDM lmit below CCK limit */
if (band->bandtype == BRCM_BAND_2G)
maxpwr = min_t(int, maxpwr, txpwr->cck[0]);
for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++)
txpwr->ofdm[i] = (u8) maxpwr;
for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++) {
/*
* OFDM 40 MHz SISO has the same power as the corresponding
* MCS0-7 rate unless overriden by the locale specific code.
* We set this value to 0 as a flag (presumably 0 dBm isn't
* a possibility) and then copy the MCS0-7 value to the 40 MHz
* value if it wasn't explicitly set.
*/
txpwr->ofdm_40_siso[i] = 0;
txpwr->ofdm_cdd[i] = (u8) maxpwr;
txpwr->ofdm_40_cdd[i] = 0;
}
/* MIMO/HT specific limits */
if (li_mimo->flags & BRCMS_EIRP) {
delta = band->antgain;
} else {
delta = 0;
if (band->antgain > QDB(6))
delta = band->antgain - QDB(6); /* Excess over 6 dB */
}
if (band->bandtype == BRCM_BAND_2G)
maxpwr_idx = (chan - 1);
else
maxpwr_idx = CHANNEL_POWER_IDX_5G(chan);
maxpwr20 = li_mimo->maxpwr20[maxpwr_idx];
maxpwr40 = li_mimo->maxpwr40[maxpwr_idx];
maxpwr20 = maxpwr20 - delta;
maxpwr20 = max(maxpwr20, 0);
maxpwr40 = maxpwr40 - delta;
maxpwr40 = max(maxpwr40, 0);
/* Fill in the MCS 0-7 (SISO) rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
/*
* 20 MHz has the same power as the corresponding OFDM rate
* unless overriden by the locale specific code.
*/
txpwr->mcs_20_siso[i] = txpwr->ofdm[i];
txpwr->mcs_40_siso[i] = 0;
}
/* Fill in the MCS 0-7 CDD rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
txpwr->mcs_20_cdd[i] = (u8) maxpwr20;
txpwr->mcs_40_cdd[i] = (u8) maxpwr40;
}
/*
* These locales have SISO expressed in the
* table and override CDD later
*/
if (li_mimo == &locale_bn) {
if (li_mimo == &locale_bn) {
maxpwr20 = QDB(16);
maxpwr40 = 0;
if (chan >= 3 && chan <= 11)
maxpwr40 = QDB(16);
}
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
txpwr->mcs_20_siso[i] = (u8) maxpwr20;
txpwr->mcs_40_siso[i] = (u8) maxpwr40;
}
}
/* Fill in the MCS 0-7 STBC rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
txpwr->mcs_20_stbc[i] = 0;
txpwr->mcs_40_stbc[i] = 0;
}
/* Fill in the MCS 8-15 SDM rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_2_STREAM; i++) {
txpwr->mcs_20_mimo[i] = (u8) maxpwr20;
txpwr->mcs_40_mimo[i] = (u8) maxpwr40;
}
/* Fill in MCS32 */
txpwr->mcs32 = (u8) maxpwr40;
for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
if (txpwr->ofdm_40_cdd[i] == 0)
txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
if (i == 0) {
i = i + 1;
if (txpwr->ofdm_40_cdd[i] == 0)
txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
}
}
/*
* Copy the 40 MHZ MCS 0-7 CDD value to the 40 MHZ MCS 0-7 SISO
* value if it wasn't provided explicitly.
*/
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
if (txpwr->mcs_40_siso[i] == 0)
txpwr->mcs_40_siso[i] = txpwr->mcs_40_cdd[i];
}
for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
if (txpwr->ofdm_40_siso[i] == 0)
txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
if (i == 0) {
i = i + 1;
if (txpwr->ofdm_40_siso[i] == 0)
txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
}
}
/*
* Copy the 20 and 40 MHz MCS0-7 CDD values to the corresponding
* STBC values if they weren't provided explicitly.
*/
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
if (txpwr->mcs_20_stbc[i] == 0)
txpwr->mcs_20_stbc[i] = txpwr->mcs_20_cdd[i];
if (txpwr->mcs_40_stbc[i] == 0)
txpwr->mcs_40_stbc[i] = txpwr->mcs_40_cdd[i];
}
return;
}
/*
* Verify the chanspec is using a legal set of parameters, i.e. that the
* chanspec specified a band, bw, ctl_sb and channel and that the
* combination could be legal given any set of circumstances.
* RETURNS: true is the chanspec is malformed, false if it looks good.
*/
static bool brcms_c_chspec_malformed(u16 chanspec)
{
/* must be 2G or 5G band */
if (!CHSPEC_IS5G(chanspec) && !CHSPEC_IS2G(chanspec))
return true;
/* must be 20 or 40 bandwidth */
if (!CHSPEC_IS40(chanspec) && !CHSPEC_IS20(chanspec))
return true;
/* 20MHZ b/w must have no ctl sb, 40 must have a ctl sb */
if (CHSPEC_IS20(chanspec)) {
if (!CHSPEC_SB_NONE(chanspec))
return true;
} else if (!CHSPEC_SB_UPPER(chanspec) && !CHSPEC_SB_LOWER(chanspec)) {
return true;
}
return false;
}
/*
* Validate the chanspec for this locale, for 40MHZ we need to also
* check that the sidebands are valid 20MZH channels in this locale
* and they are also a legal HT combination
*/
static bool
brcms_c_valid_chanspec_ext(struct brcms_cm_info *wlc_cm, u16 chspec,
bool dualband)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
u8 channel = CHSPEC_CHANNEL(chspec);
/* check the chanspec */
if (brcms_c_chspec_malformed(chspec)) {
wiphy_err(wlc->wiphy, "wl%d: malformed chanspec 0x%x\n",
wlc->pub->unit, chspec);
return false;
}
if (CHANNEL_BANDUNIT(wlc_cm->wlc, channel) !=
chspec_bandunit(chspec))
return false;
/* Check a 20Mhz channel */
if (CHSPEC_IS20(chspec)) {
if (dualband)
return brcms_c_valid_channel20_db(wlc_cm->wlc->cmi,
channel);
else
return brcms_c_valid_channel20(wlc_cm->wlc->cmi,
channel);
}
#ifdef SUPPORT_40MHZ
/*
* We know we are now checking a 40MHZ channel, so we should
* only be here for NPHYS
*/
if (BRCMS_ISNPHY(wlc->band) || BRCMS_ISSSLPNPHY(wlc->band)) {
u8 upper_sideband = 0, idx;
u8 num_ch20_entries =
sizeof(chan20_info) / sizeof(struct chan20_info);
if (!VALID_40CHANSPEC_IN_BAND(wlc, chspec_bandunit(chspec)))
return false;
if (dualband) {
if (!brcms_c_valid_channel20_db(wlc->cmi,
lower_20_sb(channel)) ||
!brcms_c_valid_channel20_db(wlc->cmi,
upper_20_sb(channel)))
return false;
} else {
if (!brcms_c_valid_channel20(wlc->cmi,
lower_20_sb(channel)) ||
!brcms_c_valid_channel20(wlc->cmi,
upper_20_sb(channel)))
return false;
}
/* find the lower sideband info in the sideband array */
for (idx = 0; idx < num_ch20_entries; idx++) {
if (chan20_info[idx].sb == lower_20_sb(channel))
upper_sideband = chan20_info[idx].adj_sbs;
}
/* check that the lower sideband allows an upper sideband */
if ((upper_sideband & (CH_UPPER_SB | CH_EWA_VALID)) ==
(CH_UPPER_SB | CH_EWA_VALID))
return true;
return false;
}
#endif /* 40 MHZ */
return false;
}
bool brcms_c_valid_chanspec_db(struct brcms_cm_info *wlc_cm, u16 chspec)
{
return brcms_c_valid_chanspec_ext(wlc_cm, chspec, true);
}