linux/drivers/scsi/blz1230.c
Al Viro b4290a23cf [PATCH] m68k: namespace pollution fix (custom->amiga_custom)
in amigahw.h custom renamed to amiga_custom, in drivers with few instances the
same replacement, in the rest - #define custom amiga_custom in driver itself

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-12 09:09:00 -08:00

352 lines
9.6 KiB
C

/* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller.
*
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
*
* This driver is based on the CyberStorm driver, hence the occasional
* reference to CyberStorm.
*/
/* TODO:
*
* 1) Figure out how to make a cleaner merge with the sparc driver with regard
* to the caches and the Sparc MMU mapping.
* 2) Make as few routines required outside the generic driver. A lot of the
* routines in this file used to be inline!
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/interrupt.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "NCR53C9x.h"
#include <linux/zorro.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include <asm/pgtable.h>
#define MKIV 1
/* The controller registers can be found in the Z2 config area at these
* offsets:
*/
#define BLZ1230_ESP_ADDR 0x8000
#define BLZ1230_DMA_ADDR 0x10000
#define BLZ1230II_ESP_ADDR 0x10000
#define BLZ1230II_DMA_ADDR 0x10021
/* The Blizzard 1230 DMA interface
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Only two things can be programmed in the Blizzard DMA:
* 1) The data direction is controlled by the status of bit 31 (1 = write)
* 2) The source/dest address (word aligned, shifted one right) in bits 30-0
*
* Program DMA by first latching the highest byte of the address/direction
* (i.e. bits 31-24 of the long word constructed as described in steps 1+2
* above). Then write each byte of the address/direction (starting with the
* top byte, working down) to the DMA address register.
*
* Figure out interrupt status by reading the ESP status byte.
*/
struct blz1230_dma_registers {
volatile unsigned char dma_addr; /* DMA address [0x0000] */
unsigned char dmapad2[0x7fff];
volatile unsigned char dma_latch; /* DMA latch [0x8000] */
};
struct blz1230II_dma_registers {
volatile unsigned char dma_addr; /* DMA address [0x0000] */
unsigned char dmapad2[0xf];
volatile unsigned char dma_latch; /* DMA latch [0x0010] */
};
#define BLZ1230_DMA_WRITE 0x80000000
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
static void dma_dump_state(struct NCR_ESP *esp);
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_ints_off(struct NCR_ESP *esp);
static void dma_ints_on(struct NCR_ESP *esp);
static int dma_irq_p(struct NCR_ESP *esp);
static int dma_ports_p(struct NCR_ESP *esp);
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
static volatile unsigned char cmd_buffer[16];
/* This is where all commands are put
* before they are transferred to the ESP chip
* via PIO.
*/
/***************************************************************** Detection */
int __init blz1230_esp_detect(struct scsi_host_template *tpnt)
{
struct NCR_ESP *esp;
struct zorro_dev *z = NULL;
unsigned long address;
struct ESP_regs *eregs;
unsigned long board;
#if MKIV
#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260
#define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR
#define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR
#else
#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060
#define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR
#define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR
#endif
if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) {
board = z->resource.start;
if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR,
sizeof(struct ESP_regs), "NCR53C9x")) {
/* Do some magic to figure out if the blizzard is
* equipped with a SCSI controller
*/
address = ZTWO_VADDR(board);
eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR);
esp = esp_allocate(tpnt, (void *)board+REAL_BLZ1230_ESP_ADDR);
esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7));
udelay(5);
if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7))
goto err_out;
/* Do command transfer with programmed I/O */
esp->do_pio_cmds = 1;
/* Required functions */
esp->dma_bytes_sent = &dma_bytes_sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump_state = &dma_dump_state;
esp->dma_init_read = &dma_init_read;
esp->dma_init_write = &dma_init_write;
esp->dma_ints_off = &dma_ints_off;
esp->dma_ints_on = &dma_ints_on;
esp->dma_irq_p = &dma_irq_p;
esp->dma_ports_p = &dma_ports_p;
esp->dma_setup = &dma_setup;
/* Optional functions */
esp->dma_barrier = 0;
esp->dma_drain = 0;
esp->dma_invalidate = 0;
esp->dma_irq_entry = 0;
esp->dma_irq_exit = 0;
esp->dma_led_on = 0;
esp->dma_led_off = 0;
esp->dma_poll = 0;
esp->dma_reset = 0;
/* SCSI chip speed */
esp->cfreq = 40000000;
/* The DMA registers on the Blizzard are mapped
* relative to the device (i.e. in the same Zorro
* I/O block).
*/
esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR);
/* ESP register base */
esp->eregs = eregs;
/* Set the command buffer */
esp->esp_command = cmd_buffer;
esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
esp->irq = IRQ_AMIGA_PORTS;
esp->slot = board+REAL_BLZ1230_ESP_ADDR;
if (request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ,
"Blizzard 1230 SCSI IV", esp->ehost))
goto err_out;
/* Figure out our scsi ID on the bus */
esp->scsi_id = 7;
/* We don't have a differential SCSI-bus. */
esp->diff = 0;
esp_initialize(esp);
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
esps_running = esps_in_use;
return esps_in_use;
}
}
return 0;
err_out:
scsi_unregister(esp->ehost);
esp_deallocate(esp);
release_mem_region(board+REAL_BLZ1230_ESP_ADDR,
sizeof(struct ESP_regs));
return 0;
}
/************************************************************* DMA Functions */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
{
/* Since the Blizzard DMA is fully dedicated to the ESP chip,
* the number of bytes sent (to the ESP chip) equals the number
* of bytes in the FIFO - there is no buffering in the DMA controller.
* XXXX Do I read this right? It is from host to ESP, right?
*/
return fifo_count;
}
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
/* I don't think there's any limit on the Blizzard DMA. So we use what
* the ESP chip can handle (24 bit).
*/
unsigned long sz = sp->SCp.this_residual;
if(sz > 0x1000000)
sz = 0x1000000;
return sz;
}
static void dma_dump_state(struct NCR_ESP *esp)
{
ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
amiga_custom.intreqr, amiga_custom.intenar));
}
void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
{
#if MKIV
struct blz1230_dma_registers *dregs =
(struct blz1230_dma_registers *) (esp->dregs);
#else
struct blz1230II_dma_registers *dregs =
(struct blz1230II_dma_registers *) (esp->dregs);
#endif
cache_clear(addr, length);
addr >>= 1;
addr &= ~(BLZ1230_DMA_WRITE);
/* First set latch */
dregs->dma_latch = (addr >> 24) & 0xff;
/* Then pump the address to the DMA address register */
#if MKIV
dregs->dma_addr = (addr >> 24) & 0xff;
#endif
dregs->dma_addr = (addr >> 16) & 0xff;
dregs->dma_addr = (addr >> 8) & 0xff;
dregs->dma_addr = (addr ) & 0xff;
}
void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
{
#if MKIV
struct blz1230_dma_registers *dregs =
(struct blz1230_dma_registers *) (esp->dregs);
#else
struct blz1230II_dma_registers *dregs =
(struct blz1230II_dma_registers *) (esp->dregs);
#endif
cache_push(addr, length);
addr >>= 1;
addr |= BLZ1230_DMA_WRITE;
/* First set latch */
dregs->dma_latch = (addr >> 24) & 0xff;
/* Then pump the address to the DMA address register */
#if MKIV
dregs->dma_addr = (addr >> 24) & 0xff;
#endif
dregs->dma_addr = (addr >> 16) & 0xff;
dregs->dma_addr = (addr >> 8) & 0xff;
dregs->dma_addr = (addr ) & 0xff;
}
static void dma_ints_off(struct NCR_ESP *esp)
{
disable_irq(esp->irq);
}
static void dma_ints_on(struct NCR_ESP *esp)
{
enable_irq(esp->irq);
}
static int dma_irq_p(struct NCR_ESP *esp)
{
return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
}
static int dma_ports_p(struct NCR_ESP *esp)
{
return ((amiga_custom.intenar) & IF_PORTS);
}
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
{
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
* so when (write) is true, it actually means READ!
*/
if(write){
dma_init_read(esp, addr, count);
} else {
dma_init_write(esp, addr, count);
}
}
#define HOSTS_C
int blz1230_esp_release(struct Scsi_Host *instance)
{
#ifdef MODULE
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
esp_deallocate((struct NCR_ESP *)instance->hostdata);
esp_release();
release_mem_region(address, sizeof(struct ESP_regs));
free_irq(IRQ_AMIGA_PORTS, esp_intr);
#endif
return 1;
}
static struct scsi_host_template driver_template = {
.proc_name = "esp-blz1230",
.proc_info = esp_proc_info,
.name = "Blizzard1230 SCSI IV",
.detect = blz1230_esp_detect,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.release = blz1230_esp_release,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");