linux/net/vmw_vsock/af_vsock.c
Arseniy Krasnov 0fe1798968 virtio/vsock: send credit update during setting SO_RCVLOWAT
Send credit update message when SO_RCVLOWAT is updated and it is bigger
than number of bytes in rx queue. It is needed, because 'poll()' will
wait until number of bytes in rx queue will be not smaller than
O_RCVLOWAT, so kick sender to send more data. Otherwise mutual hungup
for tx/rx is possible: sender waits for free space and receiver is
waiting data in 'poll()'.

Rename 'set_rcvlowat' callback to 'notify_set_rcvlowat' and set
'sk->sk_rcvlowat' only in one place (i.e. 'vsock_set_rcvlowat'), so the
transport doesn't need to do it.

Fixes: b89d882dc9 ("vsock/virtio: reduce credit update messages")
Signed-off-by: Arseniy Krasnov <avkrasnov@salutedevices.com>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-12-15 10:37:35 +00:00

2573 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* VMware vSockets Driver
*
* Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
*/
/* Implementation notes:
*
* - There are two kinds of sockets: those created by user action (such as
* calling socket(2)) and those created by incoming connection request packets.
*
* - There are two "global" tables, one for bound sockets (sockets that have
* specified an address that they are responsible for) and one for connected
* sockets (sockets that have established a connection with another socket).
* These tables are "global" in that all sockets on the system are placed
* within them. - Note, though, that the bound table contains an extra entry
* for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
* that list. The bound table is used solely for lookup of sockets when packets
* are received and that's not necessary for SOCK_DGRAM sockets since we create
* a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
* sockets out of the bound hash buckets will reduce the chance of collisions
* when looking for SOCK_STREAM sockets and prevents us from having to check the
* socket type in the hash table lookups.
*
* - Sockets created by user action will either be "client" sockets that
* initiate a connection or "server" sockets that listen for connections; we do
* not support simultaneous connects (two "client" sockets connecting).
*
* - "Server" sockets are referred to as listener sockets throughout this
* implementation because they are in the TCP_LISTEN state. When a
* connection request is received (the second kind of socket mentioned above),
* we create a new socket and refer to it as a pending socket. These pending
* sockets are placed on the pending connection list of the listener socket.
* When future packets are received for the address the listener socket is
* bound to, we check if the source of the packet is from one that has an
* existing pending connection. If it does, we process the packet for the
* pending socket. When that socket reaches the connected state, it is removed
* from the listener socket's pending list and enqueued in the listener
* socket's accept queue. Callers of accept(2) will accept connected sockets
* from the listener socket's accept queue. If the socket cannot be accepted
* for some reason then it is marked rejected. Once the connection is
* accepted, it is owned by the user process and the responsibility for cleanup
* falls with that user process.
*
* - It is possible that these pending sockets will never reach the connected
* state; in fact, we may never receive another packet after the connection
* request. Because of this, we must schedule a cleanup function to run in the
* future, after some amount of time passes where a connection should have been
* established. This function ensures that the socket is off all lists so it
* cannot be retrieved, then drops all references to the socket so it is cleaned
* up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
* function will also cleanup rejected sockets, those that reach the connected
* state but leave it before they have been accepted.
*
* - Lock ordering for pending or accept queue sockets is:
*
* lock_sock(listener);
* lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
*
* Using explicit nested locking keeps lockdep happy since normally only one
* lock of a given class may be taken at a time.
*
* - Sockets created by user action will be cleaned up when the user process
* calls close(2), causing our release implementation to be called. Our release
* implementation will perform some cleanup then drop the last reference so our
* sk_destruct implementation is invoked. Our sk_destruct implementation will
* perform additional cleanup that's common for both types of sockets.
*
* - A socket's reference count is what ensures that the structure won't be
* freed. Each entry in a list (such as the "global" bound and connected tables
* and the listener socket's pending list and connected queue) ensures a
* reference. When we defer work until process context and pass a socket as our
* argument, we must ensure the reference count is increased to ensure the
* socket isn't freed before the function is run; the deferred function will
* then drop the reference.
*
* - sk->sk_state uses the TCP state constants because they are widely used by
* other address families and exposed to userspace tools like ss(8):
*
* TCP_CLOSE - unconnected
* TCP_SYN_SENT - connecting
* TCP_ESTABLISHED - connected
* TCP_CLOSING - disconnecting
* TCP_LISTEN - listening
*/
#include <linux/compat.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/cred.h>
#include <linux/errqueue.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/kmod.h>
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/net.h>
#include <linux/poll.h>
#include <linux/random.h>
#include <linux/skbuff.h>
#include <linux/smp.h>
#include <linux/socket.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <net/sock.h>
#include <net/af_vsock.h>
#include <uapi/linux/vm_sockets.h>
static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
static void vsock_sk_destruct(struct sock *sk);
static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
/* Protocol family. */
struct proto vsock_proto = {
.name = "AF_VSOCK",
.owner = THIS_MODULE,
.obj_size = sizeof(struct vsock_sock),
#ifdef CONFIG_BPF_SYSCALL
.psock_update_sk_prot = vsock_bpf_update_proto,
#endif
};
/* The default peer timeout indicates how long we will wait for a peer response
* to a control message.
*/
#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
#define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
/* Transport used for host->guest communication */
static const struct vsock_transport *transport_h2g;
/* Transport used for guest->host communication */
static const struct vsock_transport *transport_g2h;
/* Transport used for DGRAM communication */
static const struct vsock_transport *transport_dgram;
/* Transport used for local communication */
static const struct vsock_transport *transport_local;
static DEFINE_MUTEX(vsock_register_mutex);
/**** UTILS ****/
/* Each bound VSocket is stored in the bind hash table and each connected
* VSocket is stored in the connected hash table.
*
* Unbound sockets are all put on the same list attached to the end of the hash
* table (vsock_unbound_sockets). Bound sockets are added to the hash table in
* the bucket that their local address hashes to (vsock_bound_sockets(addr)
* represents the list that addr hashes to).
*
* Specifically, we initialize the vsock_bind_table array to a size of
* VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
* vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
* vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
* mods with VSOCK_HASH_SIZE to ensure this.
*/
#define MAX_PORT_RETRIES 24
#define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
/* XXX This can probably be implemented in a better way. */
#define VSOCK_CONN_HASH(src, dst) \
(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
#define vsock_connected_sockets(src, dst) \
(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
#define vsock_connected_sockets_vsk(vsk) \
vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
EXPORT_SYMBOL_GPL(vsock_bind_table);
struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
EXPORT_SYMBOL_GPL(vsock_connected_table);
DEFINE_SPINLOCK(vsock_table_lock);
EXPORT_SYMBOL_GPL(vsock_table_lock);
/* Autobind this socket to the local address if necessary. */
static int vsock_auto_bind(struct vsock_sock *vsk)
{
struct sock *sk = sk_vsock(vsk);
struct sockaddr_vm local_addr;
if (vsock_addr_bound(&vsk->local_addr))
return 0;
vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
return __vsock_bind(sk, &local_addr);
}
static void vsock_init_tables(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
INIT_LIST_HEAD(&vsock_bind_table[i]);
for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
INIT_LIST_HEAD(&vsock_connected_table[i]);
}
static void __vsock_insert_bound(struct list_head *list,
struct vsock_sock *vsk)
{
sock_hold(&vsk->sk);
list_add(&vsk->bound_table, list);
}
static void __vsock_insert_connected(struct list_head *list,
struct vsock_sock *vsk)
{
sock_hold(&vsk->sk);
list_add(&vsk->connected_table, list);
}
static void __vsock_remove_bound(struct vsock_sock *vsk)
{
list_del_init(&vsk->bound_table);
sock_put(&vsk->sk);
}
static void __vsock_remove_connected(struct vsock_sock *vsk)
{
list_del_init(&vsk->connected_table);
sock_put(&vsk->sk);
}
static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
{
struct vsock_sock *vsk;
list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
if (vsock_addr_equals_addr(addr, &vsk->local_addr))
return sk_vsock(vsk);
if (addr->svm_port == vsk->local_addr.svm_port &&
(vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
addr->svm_cid == VMADDR_CID_ANY))
return sk_vsock(vsk);
}
return NULL;
}
static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
struct sockaddr_vm *dst)
{
struct vsock_sock *vsk;
list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
connected_table) {
if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
dst->svm_port == vsk->local_addr.svm_port) {
return sk_vsock(vsk);
}
}
return NULL;
}
static void vsock_insert_unbound(struct vsock_sock *vsk)
{
spin_lock_bh(&vsock_table_lock);
__vsock_insert_bound(vsock_unbound_sockets, vsk);
spin_unlock_bh(&vsock_table_lock);
}
void vsock_insert_connected(struct vsock_sock *vsk)
{
struct list_head *list = vsock_connected_sockets(
&vsk->remote_addr, &vsk->local_addr);
spin_lock_bh(&vsock_table_lock);
__vsock_insert_connected(list, vsk);
spin_unlock_bh(&vsock_table_lock);
}
EXPORT_SYMBOL_GPL(vsock_insert_connected);
void vsock_remove_bound(struct vsock_sock *vsk)
{
spin_lock_bh(&vsock_table_lock);
if (__vsock_in_bound_table(vsk))
__vsock_remove_bound(vsk);
spin_unlock_bh(&vsock_table_lock);
}
EXPORT_SYMBOL_GPL(vsock_remove_bound);
void vsock_remove_connected(struct vsock_sock *vsk)
{
spin_lock_bh(&vsock_table_lock);
if (__vsock_in_connected_table(vsk))
__vsock_remove_connected(vsk);
spin_unlock_bh(&vsock_table_lock);
}
EXPORT_SYMBOL_GPL(vsock_remove_connected);
struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
{
struct sock *sk;
spin_lock_bh(&vsock_table_lock);
sk = __vsock_find_bound_socket(addr);
if (sk)
sock_hold(sk);
spin_unlock_bh(&vsock_table_lock);
return sk;
}
EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
struct sockaddr_vm *dst)
{
struct sock *sk;
spin_lock_bh(&vsock_table_lock);
sk = __vsock_find_connected_socket(src, dst);
if (sk)
sock_hold(sk);
spin_unlock_bh(&vsock_table_lock);
return sk;
}
EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
void vsock_remove_sock(struct vsock_sock *vsk)
{
vsock_remove_bound(vsk);
vsock_remove_connected(vsk);
}
EXPORT_SYMBOL_GPL(vsock_remove_sock);
void vsock_for_each_connected_socket(struct vsock_transport *transport,
void (*fn)(struct sock *sk))
{
int i;
spin_lock_bh(&vsock_table_lock);
for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
struct vsock_sock *vsk;
list_for_each_entry(vsk, &vsock_connected_table[i],
connected_table) {
if (vsk->transport != transport)
continue;
fn(sk_vsock(vsk));
}
}
spin_unlock_bh(&vsock_table_lock);
}
EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
void vsock_add_pending(struct sock *listener, struct sock *pending)
{
struct vsock_sock *vlistener;
struct vsock_sock *vpending;
vlistener = vsock_sk(listener);
vpending = vsock_sk(pending);
sock_hold(pending);
sock_hold(listener);
list_add_tail(&vpending->pending_links, &vlistener->pending_links);
}
EXPORT_SYMBOL_GPL(vsock_add_pending);
void vsock_remove_pending(struct sock *listener, struct sock *pending)
{
struct vsock_sock *vpending = vsock_sk(pending);
list_del_init(&vpending->pending_links);
sock_put(listener);
sock_put(pending);
}
EXPORT_SYMBOL_GPL(vsock_remove_pending);
void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
{
struct vsock_sock *vlistener;
struct vsock_sock *vconnected;
vlistener = vsock_sk(listener);
vconnected = vsock_sk(connected);
sock_hold(connected);
sock_hold(listener);
list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
}
EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
static bool vsock_use_local_transport(unsigned int remote_cid)
{
if (!transport_local)
return false;
if (remote_cid == VMADDR_CID_LOCAL)
return true;
if (transport_g2h) {
return remote_cid == transport_g2h->get_local_cid();
} else {
return remote_cid == VMADDR_CID_HOST;
}
}
static void vsock_deassign_transport(struct vsock_sock *vsk)
{
if (!vsk->transport)
return;
vsk->transport->destruct(vsk);
module_put(vsk->transport->module);
vsk->transport = NULL;
}
/* Assign a transport to a socket and call the .init transport callback.
*
* Note: for connection oriented socket this must be called when vsk->remote_addr
* is set (e.g. during the connect() or when a connection request on a listener
* socket is received).
* The vsk->remote_addr is used to decide which transport to use:
* - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
* g2h is not loaded, will use local transport;
* - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
* includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
* - remote CID > VMADDR_CID_HOST will use host->guest transport;
*/
int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
{
const struct vsock_transport *new_transport;
struct sock *sk = sk_vsock(vsk);
unsigned int remote_cid = vsk->remote_addr.svm_cid;
__u8 remote_flags;
int ret;
/* If the packet is coming with the source and destination CIDs higher
* than VMADDR_CID_HOST, then a vsock channel where all the packets are
* forwarded to the host should be established. Then the host will
* need to forward the packets to the guest.
*
* The flag is set on the (listen) receive path (psk is not NULL). On
* the connect path the flag can be set by the user space application.
*/
if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
remote_flags = vsk->remote_addr.svm_flags;
switch (sk->sk_type) {
case SOCK_DGRAM:
new_transport = transport_dgram;
break;
case SOCK_STREAM:
case SOCK_SEQPACKET:
if (vsock_use_local_transport(remote_cid))
new_transport = transport_local;
else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
(remote_flags & VMADDR_FLAG_TO_HOST))
new_transport = transport_g2h;
else
new_transport = transport_h2g;
break;
default:
return -ESOCKTNOSUPPORT;
}
if (vsk->transport) {
if (vsk->transport == new_transport)
return 0;
/* transport->release() must be called with sock lock acquired.
* This path can only be taken during vsock_connect(), where we
* have already held the sock lock. In the other cases, this
* function is called on a new socket which is not assigned to
* any transport.
*/
vsk->transport->release(vsk);
vsock_deassign_transport(vsk);
}
/* We increase the module refcnt to prevent the transport unloading
* while there are open sockets assigned to it.
*/
if (!new_transport || !try_module_get(new_transport->module))
return -ENODEV;
if (sk->sk_type == SOCK_SEQPACKET) {
if (!new_transport->seqpacket_allow ||
!new_transport->seqpacket_allow(remote_cid)) {
module_put(new_transport->module);
return -ESOCKTNOSUPPORT;
}
}
ret = new_transport->init(vsk, psk);
if (ret) {
module_put(new_transport->module);
return ret;
}
vsk->transport = new_transport;
return 0;
}
EXPORT_SYMBOL_GPL(vsock_assign_transport);
bool vsock_find_cid(unsigned int cid)
{
if (transport_g2h && cid == transport_g2h->get_local_cid())
return true;
if (transport_h2g && cid == VMADDR_CID_HOST)
return true;
if (transport_local && cid == VMADDR_CID_LOCAL)
return true;
return false;
}
EXPORT_SYMBOL_GPL(vsock_find_cid);
static struct sock *vsock_dequeue_accept(struct sock *listener)
{
struct vsock_sock *vlistener;
struct vsock_sock *vconnected;
vlistener = vsock_sk(listener);
if (list_empty(&vlistener->accept_queue))
return NULL;
vconnected = list_entry(vlistener->accept_queue.next,
struct vsock_sock, accept_queue);
list_del_init(&vconnected->accept_queue);
sock_put(listener);
/* The caller will need a reference on the connected socket so we let
* it call sock_put().
*/
return sk_vsock(vconnected);
}
static bool vsock_is_accept_queue_empty(struct sock *sk)
{
struct vsock_sock *vsk = vsock_sk(sk);
return list_empty(&vsk->accept_queue);
}
static bool vsock_is_pending(struct sock *sk)
{
struct vsock_sock *vsk = vsock_sk(sk);
return !list_empty(&vsk->pending_links);
}
static int vsock_send_shutdown(struct sock *sk, int mode)
{
struct vsock_sock *vsk = vsock_sk(sk);
if (!vsk->transport)
return -ENODEV;
return vsk->transport->shutdown(vsk, mode);
}
static void vsock_pending_work(struct work_struct *work)
{
struct sock *sk;
struct sock *listener;
struct vsock_sock *vsk;
bool cleanup;
vsk = container_of(work, struct vsock_sock, pending_work.work);
sk = sk_vsock(vsk);
listener = vsk->listener;
cleanup = true;
lock_sock(listener);
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
if (vsock_is_pending(sk)) {
vsock_remove_pending(listener, sk);
sk_acceptq_removed(listener);
} else if (!vsk->rejected) {
/* We are not on the pending list and accept() did not reject
* us, so we must have been accepted by our user process. We
* just need to drop our references to the sockets and be on
* our way.
*/
cleanup = false;
goto out;
}
/* We need to remove ourself from the global connected sockets list so
* incoming packets can't find this socket, and to reduce the reference
* count.
*/
vsock_remove_connected(vsk);
sk->sk_state = TCP_CLOSE;
out:
release_sock(sk);
release_sock(listener);
if (cleanup)
sock_put(sk);
sock_put(sk);
sock_put(listener);
}
/**** SOCKET OPERATIONS ****/
static int __vsock_bind_connectible(struct vsock_sock *vsk,
struct sockaddr_vm *addr)
{
static u32 port;
struct sockaddr_vm new_addr;
if (!port)
port = get_random_u32_above(LAST_RESERVED_PORT);
vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
if (addr->svm_port == VMADDR_PORT_ANY) {
bool found = false;
unsigned int i;
for (i = 0; i < MAX_PORT_RETRIES; i++) {
if (port <= LAST_RESERVED_PORT)
port = LAST_RESERVED_PORT + 1;
new_addr.svm_port = port++;
if (!__vsock_find_bound_socket(&new_addr)) {
found = true;
break;
}
}
if (!found)
return -EADDRNOTAVAIL;
} else {
/* If port is in reserved range, ensure caller
* has necessary privileges.
*/
if (addr->svm_port <= LAST_RESERVED_PORT &&
!capable(CAP_NET_BIND_SERVICE)) {
return -EACCES;
}
if (__vsock_find_bound_socket(&new_addr))
return -EADDRINUSE;
}
vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
/* Remove connection oriented sockets from the unbound list and add them
* to the hash table for easy lookup by its address. The unbound list
* is simply an extra entry at the end of the hash table, a trick used
* by AF_UNIX.
*/
__vsock_remove_bound(vsk);
__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
return 0;
}
static int __vsock_bind_dgram(struct vsock_sock *vsk,
struct sockaddr_vm *addr)
{
return vsk->transport->dgram_bind(vsk, addr);
}
static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
{
struct vsock_sock *vsk = vsock_sk(sk);
int retval;
/* First ensure this socket isn't already bound. */
if (vsock_addr_bound(&vsk->local_addr))
return -EINVAL;
/* Now bind to the provided address or select appropriate values if
* none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
* like AF_INET prevents binding to a non-local IP address (in most
* cases), we only allow binding to a local CID.
*/
if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
return -EADDRNOTAVAIL;
switch (sk->sk_socket->type) {
case SOCK_STREAM:
case SOCK_SEQPACKET:
spin_lock_bh(&vsock_table_lock);
retval = __vsock_bind_connectible(vsk, addr);
spin_unlock_bh(&vsock_table_lock);
break;
case SOCK_DGRAM:
retval = __vsock_bind_dgram(vsk, addr);
break;
default:
retval = -EINVAL;
break;
}
return retval;
}
static void vsock_connect_timeout(struct work_struct *work);
static struct sock *__vsock_create(struct net *net,
struct socket *sock,
struct sock *parent,
gfp_t priority,
unsigned short type,
int kern)
{
struct sock *sk;
struct vsock_sock *psk;
struct vsock_sock *vsk;
sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
if (!sk)
return NULL;
sock_init_data(sock, sk);
/* sk->sk_type is normally set in sock_init_data, but only if sock is
* non-NULL. We make sure that our sockets always have a type by
* setting it here if needed.
*/
if (!sock)
sk->sk_type = type;
vsk = vsock_sk(sk);
vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
sk->sk_destruct = vsock_sk_destruct;
sk->sk_backlog_rcv = vsock_queue_rcv_skb;
sock_reset_flag(sk, SOCK_DONE);
INIT_LIST_HEAD(&vsk->bound_table);
INIT_LIST_HEAD(&vsk->connected_table);
vsk->listener = NULL;
INIT_LIST_HEAD(&vsk->pending_links);
INIT_LIST_HEAD(&vsk->accept_queue);
vsk->rejected = false;
vsk->sent_request = false;
vsk->ignore_connecting_rst = false;
vsk->peer_shutdown = 0;
INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
psk = parent ? vsock_sk(parent) : NULL;
if (parent) {
vsk->trusted = psk->trusted;
vsk->owner = get_cred(psk->owner);
vsk->connect_timeout = psk->connect_timeout;
vsk->buffer_size = psk->buffer_size;
vsk->buffer_min_size = psk->buffer_min_size;
vsk->buffer_max_size = psk->buffer_max_size;
security_sk_clone(parent, sk);
} else {
vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
vsk->owner = get_current_cred();
vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
}
return sk;
}
static bool sock_type_connectible(u16 type)
{
return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
}
static void __vsock_release(struct sock *sk, int level)
{
if (sk) {
struct sock *pending;
struct vsock_sock *vsk;
vsk = vsock_sk(sk);
pending = NULL; /* Compiler warning. */
/* When "level" is SINGLE_DEPTH_NESTING, use the nested
* version to avoid the warning "possible recursive locking
* detected". When "level" is 0, lock_sock_nested(sk, level)
* is the same as lock_sock(sk).
*/
lock_sock_nested(sk, level);
if (vsk->transport)
vsk->transport->release(vsk);
else if (sock_type_connectible(sk->sk_type))
vsock_remove_sock(vsk);
sock_orphan(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
skb_queue_purge(&sk->sk_receive_queue);
/* Clean up any sockets that never were accepted. */
while ((pending = vsock_dequeue_accept(sk)) != NULL) {
__vsock_release(pending, SINGLE_DEPTH_NESTING);
sock_put(pending);
}
release_sock(sk);
sock_put(sk);
}
}
static void vsock_sk_destruct(struct sock *sk)
{
struct vsock_sock *vsk = vsock_sk(sk);
vsock_deassign_transport(vsk);
/* When clearing these addresses, there's no need to set the family and
* possibly register the address family with the kernel.
*/
vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
put_cred(vsk->owner);
}
static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
int err;
err = sock_queue_rcv_skb(sk, skb);
if (err)
kfree_skb(skb);
return err;
}
struct sock *vsock_create_connected(struct sock *parent)
{
return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
parent->sk_type, 0);
}
EXPORT_SYMBOL_GPL(vsock_create_connected);
s64 vsock_stream_has_data(struct vsock_sock *vsk)
{
return vsk->transport->stream_has_data(vsk);
}
EXPORT_SYMBOL_GPL(vsock_stream_has_data);
s64 vsock_connectible_has_data(struct vsock_sock *vsk)
{
struct sock *sk = sk_vsock(vsk);
if (sk->sk_type == SOCK_SEQPACKET)
return vsk->transport->seqpacket_has_data(vsk);
else
return vsock_stream_has_data(vsk);
}
EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
s64 vsock_stream_has_space(struct vsock_sock *vsk)
{
return vsk->transport->stream_has_space(vsk);
}
EXPORT_SYMBOL_GPL(vsock_stream_has_space);
void vsock_data_ready(struct sock *sk)
{
struct vsock_sock *vsk = vsock_sk(sk);
if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
sock_flag(sk, SOCK_DONE))
sk->sk_data_ready(sk);
}
EXPORT_SYMBOL_GPL(vsock_data_ready);
static int vsock_release(struct socket *sock)
{
__vsock_release(sock->sk, 0);
sock->sk = NULL;
sock->state = SS_FREE;
return 0;
}
static int
vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
{
int err;
struct sock *sk;
struct sockaddr_vm *vm_addr;
sk = sock->sk;
if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
return -EINVAL;
lock_sock(sk);
err = __vsock_bind(sk, vm_addr);
release_sock(sk);
return err;
}
static int vsock_getname(struct socket *sock,
struct sockaddr *addr, int peer)
{
int err;
struct sock *sk;
struct vsock_sock *vsk;
struct sockaddr_vm *vm_addr;
sk = sock->sk;
vsk = vsock_sk(sk);
err = 0;
lock_sock(sk);
if (peer) {
if (sock->state != SS_CONNECTED) {
err = -ENOTCONN;
goto out;
}
vm_addr = &vsk->remote_addr;
} else {
vm_addr = &vsk->local_addr;
}
if (!vm_addr) {
err = -EINVAL;
goto out;
}
/* sys_getsockname() and sys_getpeername() pass us a
* MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
* that macro is defined in socket.c instead of .h, so we hardcode its
* value here.
*/
BUILD_BUG_ON(sizeof(*vm_addr) > 128);
memcpy(addr, vm_addr, sizeof(*vm_addr));
err = sizeof(*vm_addr);
out:
release_sock(sk);
return err;
}
static int vsock_shutdown(struct socket *sock, int mode)
{
int err;
struct sock *sk;
/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
* RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
* here like the other address families do. Note also that the
* increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
* which is what we want.
*/
mode++;
if ((mode & ~SHUTDOWN_MASK) || !mode)
return -EINVAL;
/* If this is a connection oriented socket and it is not connected then
* bail out immediately. If it is a DGRAM socket then we must first
* kick the socket so that it wakes up from any sleeping calls, for
* example recv(), and then afterwards return the error.
*/
sk = sock->sk;
lock_sock(sk);
if (sock->state == SS_UNCONNECTED) {
err = -ENOTCONN;
if (sock_type_connectible(sk->sk_type))
goto out;
} else {
sock->state = SS_DISCONNECTING;
err = 0;
}
/* Receive and send shutdowns are treated alike. */
mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
if (mode) {
sk->sk_shutdown |= mode;
sk->sk_state_change(sk);
if (sock_type_connectible(sk->sk_type)) {
sock_reset_flag(sk, SOCK_DONE);
vsock_send_shutdown(sk, mode);
}
}
out:
release_sock(sk);
return err;
}
static __poll_t vsock_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
struct sock *sk;
__poll_t mask;
struct vsock_sock *vsk;
sk = sock->sk;
vsk = vsock_sk(sk);
poll_wait(file, sk_sleep(sk), wait);
mask = 0;
if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
/* Signify that there has been an error on this socket. */
mask |= EPOLLERR;
/* INET sockets treat local write shutdown and peer write shutdown as a
* case of EPOLLHUP set.
*/
if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
((sk->sk_shutdown & SEND_SHUTDOWN) &&
(vsk->peer_shutdown & SEND_SHUTDOWN))) {
mask |= EPOLLHUP;
}
if (sk->sk_shutdown & RCV_SHUTDOWN ||
vsk->peer_shutdown & SEND_SHUTDOWN) {
mask |= EPOLLRDHUP;
}
if (sock->type == SOCK_DGRAM) {
/* For datagram sockets we can read if there is something in
* the queue and write as long as the socket isn't shutdown for
* sending.
*/
if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
(sk->sk_shutdown & RCV_SHUTDOWN)) {
mask |= EPOLLIN | EPOLLRDNORM;
}
if (!(sk->sk_shutdown & SEND_SHUTDOWN))
mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
} else if (sock_type_connectible(sk->sk_type)) {
const struct vsock_transport *transport;
lock_sock(sk);
transport = vsk->transport;
/* Listening sockets that have connections in their accept
* queue can be read.
*/
if (sk->sk_state == TCP_LISTEN
&& !vsock_is_accept_queue_empty(sk))
mask |= EPOLLIN | EPOLLRDNORM;
/* If there is something in the queue then we can read. */
if (transport && transport->stream_is_active(vsk) &&
!(sk->sk_shutdown & RCV_SHUTDOWN)) {
bool data_ready_now = false;
int target = sock_rcvlowat(sk, 0, INT_MAX);
int ret = transport->notify_poll_in(
vsk, target, &data_ready_now);
if (ret < 0) {
mask |= EPOLLERR;
} else {
if (data_ready_now)
mask |= EPOLLIN | EPOLLRDNORM;
}
}
/* Sockets whose connections have been closed, reset, or
* terminated should also be considered read, and we check the
* shutdown flag for that.
*/
if (sk->sk_shutdown & RCV_SHUTDOWN ||
vsk->peer_shutdown & SEND_SHUTDOWN) {
mask |= EPOLLIN | EPOLLRDNORM;
}
/* Connected sockets that can produce data can be written. */
if (transport && sk->sk_state == TCP_ESTABLISHED) {
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
bool space_avail_now = false;
int ret = transport->notify_poll_out(
vsk, 1, &space_avail_now);
if (ret < 0) {
mask |= EPOLLERR;
} else {
if (space_avail_now)
/* Remove EPOLLWRBAND since INET
* sockets are not setting it.
*/
mask |= EPOLLOUT | EPOLLWRNORM;
}
}
}
/* Simulate INET socket poll behaviors, which sets
* EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
* but local send is not shutdown.
*/
if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
if (!(sk->sk_shutdown & SEND_SHUTDOWN))
mask |= EPOLLOUT | EPOLLWRNORM;
}
release_sock(sk);
}
return mask;
}
static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
{
struct vsock_sock *vsk = vsock_sk(sk);
return vsk->transport->read_skb(vsk, read_actor);
}
static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
size_t len)
{
int err;
struct sock *sk;
struct vsock_sock *vsk;
struct sockaddr_vm *remote_addr;
const struct vsock_transport *transport;
if (msg->msg_flags & MSG_OOB)
return -EOPNOTSUPP;
/* For now, MSG_DONTWAIT is always assumed... */
err = 0;
sk = sock->sk;
vsk = vsock_sk(sk);
lock_sock(sk);
transport = vsk->transport;
err = vsock_auto_bind(vsk);
if (err)
goto out;
/* If the provided message contains an address, use that. Otherwise
* fall back on the socket's remote handle (if it has been connected).
*/
if (msg->msg_name &&
vsock_addr_cast(msg->msg_name, msg->msg_namelen,
&remote_addr) == 0) {
/* Ensure this address is of the right type and is a valid
* destination.
*/
if (remote_addr->svm_cid == VMADDR_CID_ANY)
remote_addr->svm_cid = transport->get_local_cid();
if (!vsock_addr_bound(remote_addr)) {
err = -EINVAL;
goto out;
}
} else if (sock->state == SS_CONNECTED) {
remote_addr = &vsk->remote_addr;
if (remote_addr->svm_cid == VMADDR_CID_ANY)
remote_addr->svm_cid = transport->get_local_cid();
/* XXX Should connect() or this function ensure remote_addr is
* bound?
*/
if (!vsock_addr_bound(&vsk->remote_addr)) {
err = -EINVAL;
goto out;
}
} else {
err = -EINVAL;
goto out;
}
if (!transport->dgram_allow(remote_addr->svm_cid,
remote_addr->svm_port)) {
err = -EINVAL;
goto out;
}
err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
out:
release_sock(sk);
return err;
}
static int vsock_dgram_connect(struct socket *sock,
struct sockaddr *addr, int addr_len, int flags)
{
int err;
struct sock *sk;
struct vsock_sock *vsk;
struct sockaddr_vm *remote_addr;
sk = sock->sk;
vsk = vsock_sk(sk);
err = vsock_addr_cast(addr, addr_len, &remote_addr);
if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
lock_sock(sk);
vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
VMADDR_PORT_ANY);
sock->state = SS_UNCONNECTED;
release_sock(sk);
return 0;
} else if (err != 0)
return -EINVAL;
lock_sock(sk);
err = vsock_auto_bind(vsk);
if (err)
goto out;
if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
remote_addr->svm_port)) {
err = -EINVAL;
goto out;
}
memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
sock->state = SS_CONNECTED;
/* sock map disallows redirection of non-TCP sockets with sk_state !=
* TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
* TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
*
* This doesn't seem to be abnormal state for datagram sockets, as the
* same approach can be see in other datagram socket types as well
* (such as unix sockets).
*/
sk->sk_state = TCP_ESTABLISHED;
out:
release_sock(sk);
return err;
}
int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
size_t len, int flags)
{
#ifdef CONFIG_BPF_SYSCALL
const struct proto *prot;
#endif
struct vsock_sock *vsk;
struct sock *sk;
sk = sock->sk;
vsk = vsock_sk(sk);
#ifdef CONFIG_BPF_SYSCALL
prot = READ_ONCE(sk->sk_prot);
if (prot != &vsock_proto)
return prot->recvmsg(sk, msg, len, flags, NULL);
#endif
return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
}
EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
static const struct proto_ops vsock_dgram_ops = {
.family = PF_VSOCK,
.owner = THIS_MODULE,
.release = vsock_release,
.bind = vsock_bind,
.connect = vsock_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = vsock_getname,
.poll = vsock_poll,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = vsock_shutdown,
.sendmsg = vsock_dgram_sendmsg,
.recvmsg = vsock_dgram_recvmsg,
.mmap = sock_no_mmap,
.read_skb = vsock_read_skb,
};
static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
{
const struct vsock_transport *transport = vsk->transport;
if (!transport || !transport->cancel_pkt)
return -EOPNOTSUPP;
return transport->cancel_pkt(vsk);
}
static void vsock_connect_timeout(struct work_struct *work)
{
struct sock *sk;
struct vsock_sock *vsk;
vsk = container_of(work, struct vsock_sock, connect_work.work);
sk = sk_vsock(vsk);
lock_sock(sk);
if (sk->sk_state == TCP_SYN_SENT &&
(sk->sk_shutdown != SHUTDOWN_MASK)) {
sk->sk_state = TCP_CLOSE;
sk->sk_socket->state = SS_UNCONNECTED;
sk->sk_err = ETIMEDOUT;
sk_error_report(sk);
vsock_transport_cancel_pkt(vsk);
}
release_sock(sk);
sock_put(sk);
}
static int vsock_connect(struct socket *sock, struct sockaddr *addr,
int addr_len, int flags)
{
int err;
struct sock *sk;
struct vsock_sock *vsk;
const struct vsock_transport *transport;
struct sockaddr_vm *remote_addr;
long timeout;
DEFINE_WAIT(wait);
err = 0;
sk = sock->sk;
vsk = vsock_sk(sk);
lock_sock(sk);
/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
switch (sock->state) {
case SS_CONNECTED:
err = -EISCONN;
goto out;
case SS_DISCONNECTING:
err = -EINVAL;
goto out;
case SS_CONNECTING:
/* This continues on so we can move sock into the SS_CONNECTED
* state once the connection has completed (at which point err
* will be set to zero also). Otherwise, we will either wait
* for the connection or return -EALREADY should this be a
* non-blocking call.
*/
err = -EALREADY;
if (flags & O_NONBLOCK)
goto out;
break;
default:
if ((sk->sk_state == TCP_LISTEN) ||
vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
err = -EINVAL;
goto out;
}
/* Set the remote address that we are connecting to. */
memcpy(&vsk->remote_addr, remote_addr,
sizeof(vsk->remote_addr));
err = vsock_assign_transport(vsk, NULL);
if (err)
goto out;
transport = vsk->transport;
/* The hypervisor and well-known contexts do not have socket
* endpoints.
*/
if (!transport ||
!transport->stream_allow(remote_addr->svm_cid,
remote_addr->svm_port)) {
err = -ENETUNREACH;
goto out;
}
if (vsock_msgzerocopy_allow(transport)) {
set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
/* If this option was set before 'connect()',
* when transport was unknown, check that this
* feature is supported here.
*/
err = -EOPNOTSUPP;
goto out;
}
err = vsock_auto_bind(vsk);
if (err)
goto out;
sk->sk_state = TCP_SYN_SENT;
err = transport->connect(vsk);
if (err < 0)
goto out;
/* Mark sock as connecting and set the error code to in
* progress in case this is a non-blocking connect.
*/
sock->state = SS_CONNECTING;
err = -EINPROGRESS;
}
/* The receive path will handle all communication until we are able to
* enter the connected state. Here we wait for the connection to be
* completed or a notification of an error.
*/
timeout = vsk->connect_timeout;
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
if (flags & O_NONBLOCK) {
/* If we're not going to block, we schedule a timeout
* function to generate a timeout on the connection
* attempt, in case the peer doesn't respond in a
* timely manner. We hold on to the socket until the
* timeout fires.
*/
sock_hold(sk);
/* If the timeout function is already scheduled,
* reschedule it, then ungrab the socket refcount to
* keep it balanced.
*/
if (mod_delayed_work(system_wq, &vsk->connect_work,
timeout))
sock_put(sk);
/* Skip ahead to preserve error code set above. */
goto out_wait;
}
release_sock(sk);
timeout = schedule_timeout(timeout);
lock_sock(sk);
if (signal_pending(current)) {
err = sock_intr_errno(timeout);
sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
sock->state = SS_UNCONNECTED;
vsock_transport_cancel_pkt(vsk);
vsock_remove_connected(vsk);
goto out_wait;
} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
err = -ETIMEDOUT;
sk->sk_state = TCP_CLOSE;
sock->state = SS_UNCONNECTED;
vsock_transport_cancel_pkt(vsk);
goto out_wait;
}
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
}
if (sk->sk_err) {
err = -sk->sk_err;
sk->sk_state = TCP_CLOSE;
sock->state = SS_UNCONNECTED;
} else {
err = 0;
}
out_wait:
finish_wait(sk_sleep(sk), &wait);
out:
release_sock(sk);
return err;
}
static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
bool kern)
{
struct sock *listener;
int err;
struct sock *connected;
struct vsock_sock *vconnected;
long timeout;
DEFINE_WAIT(wait);
err = 0;
listener = sock->sk;
lock_sock(listener);
if (!sock_type_connectible(sock->type)) {
err = -EOPNOTSUPP;
goto out;
}
if (listener->sk_state != TCP_LISTEN) {
err = -EINVAL;
goto out;
}
/* Wait for children sockets to appear; these are the new sockets
* created upon connection establishment.
*/
timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
while ((connected = vsock_dequeue_accept(listener)) == NULL &&
listener->sk_err == 0) {
release_sock(listener);
timeout = schedule_timeout(timeout);
finish_wait(sk_sleep(listener), &wait);
lock_sock(listener);
if (signal_pending(current)) {
err = sock_intr_errno(timeout);
goto out;
} else if (timeout == 0) {
err = -EAGAIN;
goto out;
}
prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
}
finish_wait(sk_sleep(listener), &wait);
if (listener->sk_err)
err = -listener->sk_err;
if (connected) {
sk_acceptq_removed(listener);
lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
vconnected = vsock_sk(connected);
/* If the listener socket has received an error, then we should
* reject this socket and return. Note that we simply mark the
* socket rejected, drop our reference, and let the cleanup
* function handle the cleanup; the fact that we found it in
* the listener's accept queue guarantees that the cleanup
* function hasn't run yet.
*/
if (err) {
vconnected->rejected = true;
} else {
newsock->state = SS_CONNECTED;
sock_graft(connected, newsock);
if (vsock_msgzerocopy_allow(vconnected->transport))
set_bit(SOCK_SUPPORT_ZC,
&connected->sk_socket->flags);
}
release_sock(connected);
sock_put(connected);
}
out:
release_sock(listener);
return err;
}
static int vsock_listen(struct socket *sock, int backlog)
{
int err;
struct sock *sk;
struct vsock_sock *vsk;
sk = sock->sk;
lock_sock(sk);
if (!sock_type_connectible(sk->sk_type)) {
err = -EOPNOTSUPP;
goto out;
}
if (sock->state != SS_UNCONNECTED) {
err = -EINVAL;
goto out;
}
vsk = vsock_sk(sk);
if (!vsock_addr_bound(&vsk->local_addr)) {
err = -EINVAL;
goto out;
}
sk->sk_max_ack_backlog = backlog;
sk->sk_state = TCP_LISTEN;
err = 0;
out:
release_sock(sk);
return err;
}
static void vsock_update_buffer_size(struct vsock_sock *vsk,
const struct vsock_transport *transport,
u64 val)
{
if (val > vsk->buffer_max_size)
val = vsk->buffer_max_size;
if (val < vsk->buffer_min_size)
val = vsk->buffer_min_size;
if (val != vsk->buffer_size &&
transport && transport->notify_buffer_size)
transport->notify_buffer_size(vsk, &val);
vsk->buffer_size = val;
}
static int vsock_connectible_setsockopt(struct socket *sock,
int level,
int optname,
sockptr_t optval,
unsigned int optlen)
{
int err;
struct sock *sk;
struct vsock_sock *vsk;
const struct vsock_transport *transport;
u64 val;
if (level != AF_VSOCK && level != SOL_SOCKET)
return -ENOPROTOOPT;
#define COPY_IN(_v) \
do { \
if (optlen < sizeof(_v)) { \
err = -EINVAL; \
goto exit; \
} \
if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
err = -EFAULT; \
goto exit; \
} \
} while (0)
err = 0;
sk = sock->sk;
vsk = vsock_sk(sk);
lock_sock(sk);
transport = vsk->transport;
if (level == SOL_SOCKET) {
int zerocopy;
if (optname != SO_ZEROCOPY) {
release_sock(sk);
return sock_setsockopt(sock, level, optname, optval, optlen);
}
/* Use 'int' type here, because variable to
* set this option usually has this type.
*/
COPY_IN(zerocopy);
if (zerocopy < 0 || zerocopy > 1) {
err = -EINVAL;
goto exit;
}
if (transport && !vsock_msgzerocopy_allow(transport)) {
err = -EOPNOTSUPP;
goto exit;
}
sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
goto exit;
}
switch (optname) {
case SO_VM_SOCKETS_BUFFER_SIZE:
COPY_IN(val);
vsock_update_buffer_size(vsk, transport, val);
break;
case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
COPY_IN(val);
vsk->buffer_max_size = val;
vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
break;
case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
COPY_IN(val);
vsk->buffer_min_size = val;
vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
break;
case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
struct __kernel_sock_timeval tv;
err = sock_copy_user_timeval(&tv, optval, optlen,
optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
if (err)
break;
if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
vsk->connect_timeout = tv.tv_sec * HZ +
DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
if (vsk->connect_timeout == 0)
vsk->connect_timeout =
VSOCK_DEFAULT_CONNECT_TIMEOUT;
} else {
err = -ERANGE;
}
break;
}
default:
err = -ENOPROTOOPT;
break;
}
#undef COPY_IN
exit:
release_sock(sk);
return err;
}
static int vsock_connectible_getsockopt(struct socket *sock,
int level, int optname,
char __user *optval,
int __user *optlen)
{
struct sock *sk = sock->sk;
struct vsock_sock *vsk = vsock_sk(sk);
union {
u64 val64;
struct old_timeval32 tm32;
struct __kernel_old_timeval tm;
struct __kernel_sock_timeval stm;
} v;
int lv = sizeof(v.val64);
int len;
if (level != AF_VSOCK)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
memset(&v, 0, sizeof(v));
switch (optname) {
case SO_VM_SOCKETS_BUFFER_SIZE:
v.val64 = vsk->buffer_size;
break;
case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
v.val64 = vsk->buffer_max_size;
break;
case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
v.val64 = vsk->buffer_min_size;
break;
case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
lv = sock_get_timeout(vsk->connect_timeout, &v,
optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
break;
default:
return -ENOPROTOOPT;
}
if (len < lv)
return -EINVAL;
if (len > lv)
len = lv;
if (copy_to_user(optval, &v, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
size_t len)
{
struct sock *sk;
struct vsock_sock *vsk;
const struct vsock_transport *transport;
ssize_t total_written;
long timeout;
int err;
struct vsock_transport_send_notify_data send_data;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
sk = sock->sk;
vsk = vsock_sk(sk);
total_written = 0;
err = 0;
if (msg->msg_flags & MSG_OOB)
return -EOPNOTSUPP;
lock_sock(sk);
transport = vsk->transport;
/* Callers should not provide a destination with connection oriented
* sockets.
*/
if (msg->msg_namelen) {
err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
goto out;
}
/* Send data only if both sides are not shutdown in the direction. */
if (sk->sk_shutdown & SEND_SHUTDOWN ||
vsk->peer_shutdown & RCV_SHUTDOWN) {
err = -EPIPE;
goto out;
}
if (!transport || sk->sk_state != TCP_ESTABLISHED ||
!vsock_addr_bound(&vsk->local_addr)) {
err = -ENOTCONN;
goto out;
}
if (!vsock_addr_bound(&vsk->remote_addr)) {
err = -EDESTADDRREQ;
goto out;
}
if (msg->msg_flags & MSG_ZEROCOPY &&
!vsock_msgzerocopy_allow(transport)) {
err = -EOPNOTSUPP;
goto out;
}
/* Wait for room in the produce queue to enqueue our user's data. */
timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
err = transport->notify_send_init(vsk, &send_data);
if (err < 0)
goto out;
while (total_written < len) {
ssize_t written;
add_wait_queue(sk_sleep(sk), &wait);
while (vsock_stream_has_space(vsk) == 0 &&
sk->sk_err == 0 &&
!(sk->sk_shutdown & SEND_SHUTDOWN) &&
!(vsk->peer_shutdown & RCV_SHUTDOWN)) {
/* Don't wait for non-blocking sockets. */
if (timeout == 0) {
err = -EAGAIN;
remove_wait_queue(sk_sleep(sk), &wait);
goto out_err;
}
err = transport->notify_send_pre_block(vsk, &send_data);
if (err < 0) {
remove_wait_queue(sk_sleep(sk), &wait);
goto out_err;
}
release_sock(sk);
timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
lock_sock(sk);
if (signal_pending(current)) {
err = sock_intr_errno(timeout);
remove_wait_queue(sk_sleep(sk), &wait);
goto out_err;
} else if (timeout == 0) {
err = -EAGAIN;
remove_wait_queue(sk_sleep(sk), &wait);
goto out_err;
}
}
remove_wait_queue(sk_sleep(sk), &wait);
/* These checks occur both as part of and after the loop
* conditional since we need to check before and after
* sleeping.
*/
if (sk->sk_err) {
err = -sk->sk_err;
goto out_err;
} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
(vsk->peer_shutdown & RCV_SHUTDOWN)) {
err = -EPIPE;
goto out_err;
}
err = transport->notify_send_pre_enqueue(vsk, &send_data);
if (err < 0)
goto out_err;
/* Note that enqueue will only write as many bytes as are free
* in the produce queue, so we don't need to ensure len is
* smaller than the queue size. It is the caller's
* responsibility to check how many bytes we were able to send.
*/
if (sk->sk_type == SOCK_SEQPACKET) {
written = transport->seqpacket_enqueue(vsk,
msg, len - total_written);
} else {
written = transport->stream_enqueue(vsk,
msg, len - total_written);
}
if (written < 0) {
err = written;
goto out_err;
}
total_written += written;
err = transport->notify_send_post_enqueue(
vsk, written, &send_data);
if (err < 0)
goto out_err;
}
out_err:
if (total_written > 0) {
/* Return number of written bytes only if:
* 1) SOCK_STREAM socket.
* 2) SOCK_SEQPACKET socket when whole buffer is sent.
*/
if (sk->sk_type == SOCK_STREAM || total_written == len)
err = total_written;
}
out:
if (sk->sk_type == SOCK_STREAM)
err = sk_stream_error(sk, msg->msg_flags, err);
release_sock(sk);
return err;
}
static int vsock_connectible_wait_data(struct sock *sk,
struct wait_queue_entry *wait,
long timeout,
struct vsock_transport_recv_notify_data *recv_data,
size_t target)
{
const struct vsock_transport *transport;
struct vsock_sock *vsk;
s64 data;
int err;
vsk = vsock_sk(sk);
err = 0;
transport = vsk->transport;
while (1) {
prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
data = vsock_connectible_has_data(vsk);
if (data != 0)
break;
if (sk->sk_err != 0 ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
(vsk->peer_shutdown & SEND_SHUTDOWN)) {
break;
}
/* Don't wait for non-blocking sockets. */
if (timeout == 0) {
err = -EAGAIN;
break;
}
if (recv_data) {
err = transport->notify_recv_pre_block(vsk, target, recv_data);
if (err < 0)
break;
}
release_sock(sk);
timeout = schedule_timeout(timeout);
lock_sock(sk);
if (signal_pending(current)) {
err = sock_intr_errno(timeout);
break;
} else if (timeout == 0) {
err = -EAGAIN;
break;
}
}
finish_wait(sk_sleep(sk), wait);
if (err)
return err;
/* Internal transport error when checking for available
* data. XXX This should be changed to a connection
* reset in a later change.
*/
if (data < 0)
return -ENOMEM;
return data;
}
static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
size_t len, int flags)
{
struct vsock_transport_recv_notify_data recv_data;
const struct vsock_transport *transport;
struct vsock_sock *vsk;
ssize_t copied;
size_t target;
long timeout;
int err;
DEFINE_WAIT(wait);
vsk = vsock_sk(sk);
transport = vsk->transport;
/* We must not copy less than target bytes into the user's buffer
* before returning successfully, so we wait for the consume queue to
* have that much data to consume before dequeueing. Note that this
* makes it impossible to handle cases where target is greater than the
* queue size.
*/
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
if (target >= transport->stream_rcvhiwat(vsk)) {
err = -ENOMEM;
goto out;
}
timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
copied = 0;
err = transport->notify_recv_init(vsk, target, &recv_data);
if (err < 0)
goto out;
while (1) {
ssize_t read;
err = vsock_connectible_wait_data(sk, &wait, timeout,
&recv_data, target);
if (err <= 0)
break;
err = transport->notify_recv_pre_dequeue(vsk, target,
&recv_data);
if (err < 0)
break;
read = transport->stream_dequeue(vsk, msg, len - copied, flags);
if (read < 0) {
err = read;
break;
}
copied += read;
err = transport->notify_recv_post_dequeue(vsk, target, read,
!(flags & MSG_PEEK), &recv_data);
if (err < 0)
goto out;
if (read >= target || flags & MSG_PEEK)
break;
target -= read;
}
if (sk->sk_err)
err = -sk->sk_err;
else if (sk->sk_shutdown & RCV_SHUTDOWN)
err = 0;
if (copied > 0)
err = copied;
out:
return err;
}
static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
size_t len, int flags)
{
const struct vsock_transport *transport;
struct vsock_sock *vsk;
ssize_t msg_len;
long timeout;
int err = 0;
DEFINE_WAIT(wait);
vsk = vsock_sk(sk);
transport = vsk->transport;
timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
if (err <= 0)
goto out;
msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
if (msg_len < 0) {
err = msg_len;
goto out;
}
if (sk->sk_err) {
err = -sk->sk_err;
} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
err = 0;
} else {
/* User sets MSG_TRUNC, so return real length of
* packet.
*/
if (flags & MSG_TRUNC)
err = msg_len;
else
err = len - msg_data_left(msg);
/* Always set MSG_TRUNC if real length of packet is
* bigger than user's buffer.
*/
if (msg_len > len)
msg->msg_flags |= MSG_TRUNC;
}
out:
return err;
}
int
vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
int flags)
{
struct sock *sk;
struct vsock_sock *vsk;
const struct vsock_transport *transport;
#ifdef CONFIG_BPF_SYSCALL
const struct proto *prot;
#endif
int err;
sk = sock->sk;
if (unlikely(flags & MSG_ERRQUEUE))
return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
vsk = vsock_sk(sk);
err = 0;
lock_sock(sk);
transport = vsk->transport;
if (!transport || sk->sk_state != TCP_ESTABLISHED) {
/* Recvmsg is supposed to return 0 if a peer performs an
* orderly shutdown. Differentiate between that case and when a
* peer has not connected or a local shutdown occurred with the
* SOCK_DONE flag.
*/
if (sock_flag(sk, SOCK_DONE))
err = 0;
else
err = -ENOTCONN;
goto out;
}
if (flags & MSG_OOB) {
err = -EOPNOTSUPP;
goto out;
}
/* We don't check peer_shutdown flag here since peer may actually shut
* down, but there can be data in the queue that a local socket can
* receive.
*/
if (sk->sk_shutdown & RCV_SHUTDOWN) {
err = 0;
goto out;
}
/* It is valid on Linux to pass in a zero-length receive buffer. This
* is not an error. We may as well bail out now.
*/
if (!len) {
err = 0;
goto out;
}
#ifdef CONFIG_BPF_SYSCALL
prot = READ_ONCE(sk->sk_prot);
if (prot != &vsock_proto) {
release_sock(sk);
return prot->recvmsg(sk, msg, len, flags, NULL);
}
#endif
if (sk->sk_type == SOCK_STREAM)
err = __vsock_stream_recvmsg(sk, msg, len, flags);
else
err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
out:
release_sock(sk);
return err;
}
EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
static int vsock_set_rcvlowat(struct sock *sk, int val)
{
const struct vsock_transport *transport;
struct vsock_sock *vsk;
vsk = vsock_sk(sk);
if (val > vsk->buffer_size)
return -EINVAL;
transport = vsk->transport;
if (transport && transport->notify_set_rcvlowat) {
int err;
err = transport->notify_set_rcvlowat(vsk, val);
if (err)
return err;
}
WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
return 0;
}
static const struct proto_ops vsock_stream_ops = {
.family = PF_VSOCK,
.owner = THIS_MODULE,
.release = vsock_release,
.bind = vsock_bind,
.connect = vsock_connect,
.socketpair = sock_no_socketpair,
.accept = vsock_accept,
.getname = vsock_getname,
.poll = vsock_poll,
.ioctl = sock_no_ioctl,
.listen = vsock_listen,
.shutdown = vsock_shutdown,
.setsockopt = vsock_connectible_setsockopt,
.getsockopt = vsock_connectible_getsockopt,
.sendmsg = vsock_connectible_sendmsg,
.recvmsg = vsock_connectible_recvmsg,
.mmap = sock_no_mmap,
.set_rcvlowat = vsock_set_rcvlowat,
.read_skb = vsock_read_skb,
};
static const struct proto_ops vsock_seqpacket_ops = {
.family = PF_VSOCK,
.owner = THIS_MODULE,
.release = vsock_release,
.bind = vsock_bind,
.connect = vsock_connect,
.socketpair = sock_no_socketpair,
.accept = vsock_accept,
.getname = vsock_getname,
.poll = vsock_poll,
.ioctl = sock_no_ioctl,
.listen = vsock_listen,
.shutdown = vsock_shutdown,
.setsockopt = vsock_connectible_setsockopt,
.getsockopt = vsock_connectible_getsockopt,
.sendmsg = vsock_connectible_sendmsg,
.recvmsg = vsock_connectible_recvmsg,
.mmap = sock_no_mmap,
.read_skb = vsock_read_skb,
};
static int vsock_create(struct net *net, struct socket *sock,
int protocol, int kern)
{
struct vsock_sock *vsk;
struct sock *sk;
int ret;
if (!sock)
return -EINVAL;
if (protocol && protocol != PF_VSOCK)
return -EPROTONOSUPPORT;
switch (sock->type) {
case SOCK_DGRAM:
sock->ops = &vsock_dgram_ops;
break;
case SOCK_STREAM:
sock->ops = &vsock_stream_ops;
break;
case SOCK_SEQPACKET:
sock->ops = &vsock_seqpacket_ops;
break;
default:
return -ESOCKTNOSUPPORT;
}
sock->state = SS_UNCONNECTED;
sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
if (!sk)
return -ENOMEM;
vsk = vsock_sk(sk);
if (sock->type == SOCK_DGRAM) {
ret = vsock_assign_transport(vsk, NULL);
if (ret < 0) {
sock_put(sk);
return ret;
}
}
/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
* proto_ops, so there is no handler for custom logic.
*/
if (sock_type_connectible(sock->type))
set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
vsock_insert_unbound(vsk);
return 0;
}
static const struct net_proto_family vsock_family_ops = {
.family = AF_VSOCK,
.create = vsock_create,
.owner = THIS_MODULE,
};
static long vsock_dev_do_ioctl(struct file *filp,
unsigned int cmd, void __user *ptr)
{
u32 __user *p = ptr;
u32 cid = VMADDR_CID_ANY;
int retval = 0;
switch (cmd) {
case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
/* To be compatible with the VMCI behavior, we prioritize the
* guest CID instead of well-know host CID (VMADDR_CID_HOST).
*/
if (transport_g2h)
cid = transport_g2h->get_local_cid();
else if (transport_h2g)
cid = transport_h2g->get_local_cid();
if (put_user(cid, p) != 0)
retval = -EFAULT;
break;
default:
retval = -ENOIOCTLCMD;
}
return retval;
}
static long vsock_dev_ioctl(struct file *filp,
unsigned int cmd, unsigned long arg)
{
return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
}
#ifdef CONFIG_COMPAT
static long vsock_dev_compat_ioctl(struct file *filp,
unsigned int cmd, unsigned long arg)
{
return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
}
#endif
static const struct file_operations vsock_device_ops = {
.owner = THIS_MODULE,
.unlocked_ioctl = vsock_dev_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = vsock_dev_compat_ioctl,
#endif
.open = nonseekable_open,
};
static struct miscdevice vsock_device = {
.name = "vsock",
.fops = &vsock_device_ops,
};
static int __init vsock_init(void)
{
int err = 0;
vsock_init_tables();
vsock_proto.owner = THIS_MODULE;
vsock_device.minor = MISC_DYNAMIC_MINOR;
err = misc_register(&vsock_device);
if (err) {
pr_err("Failed to register misc device\n");
goto err_reset_transport;
}
err = proto_register(&vsock_proto, 1); /* we want our slab */
if (err) {
pr_err("Cannot register vsock protocol\n");
goto err_deregister_misc;
}
err = sock_register(&vsock_family_ops);
if (err) {
pr_err("could not register af_vsock (%d) address family: %d\n",
AF_VSOCK, err);
goto err_unregister_proto;
}
vsock_bpf_build_proto();
return 0;
err_unregister_proto:
proto_unregister(&vsock_proto);
err_deregister_misc:
misc_deregister(&vsock_device);
err_reset_transport:
return err;
}
static void __exit vsock_exit(void)
{
misc_deregister(&vsock_device);
sock_unregister(AF_VSOCK);
proto_unregister(&vsock_proto);
}
const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
{
return vsk->transport;
}
EXPORT_SYMBOL_GPL(vsock_core_get_transport);
int vsock_core_register(const struct vsock_transport *t, int features)
{
const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
int err = mutex_lock_interruptible(&vsock_register_mutex);
if (err)
return err;
t_h2g = transport_h2g;
t_g2h = transport_g2h;
t_dgram = transport_dgram;
t_local = transport_local;
if (features & VSOCK_TRANSPORT_F_H2G) {
if (t_h2g) {
err = -EBUSY;
goto err_busy;
}
t_h2g = t;
}
if (features & VSOCK_TRANSPORT_F_G2H) {
if (t_g2h) {
err = -EBUSY;
goto err_busy;
}
t_g2h = t;
}
if (features & VSOCK_TRANSPORT_F_DGRAM) {
if (t_dgram) {
err = -EBUSY;
goto err_busy;
}
t_dgram = t;
}
if (features & VSOCK_TRANSPORT_F_LOCAL) {
if (t_local) {
err = -EBUSY;
goto err_busy;
}
t_local = t;
}
transport_h2g = t_h2g;
transport_g2h = t_g2h;
transport_dgram = t_dgram;
transport_local = t_local;
err_busy:
mutex_unlock(&vsock_register_mutex);
return err;
}
EXPORT_SYMBOL_GPL(vsock_core_register);
void vsock_core_unregister(const struct vsock_transport *t)
{
mutex_lock(&vsock_register_mutex);
if (transport_h2g == t)
transport_h2g = NULL;
if (transport_g2h == t)
transport_g2h = NULL;
if (transport_dgram == t)
transport_dgram = NULL;
if (transport_local == t)
transport_local = NULL;
mutex_unlock(&vsock_register_mutex);
}
EXPORT_SYMBOL_GPL(vsock_core_unregister);
module_init(vsock_init);
module_exit(vsock_exit);
MODULE_AUTHOR("VMware, Inc.");
MODULE_DESCRIPTION("VMware Virtual Socket Family");
MODULE_VERSION("1.0.2.0-k");
MODULE_LICENSE("GPL v2");