mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
d47f9717e5
The original formula was inaccurate:
dd->async_depth = max(1UL, 3 * q->nr_requests / 4);
For write requests, when we assign a tags from sched_tags,
data->shallow_depth will be passed to sbitmap_find_bit,
see the following code:
nr = sbitmap_find_bit_in_word(&sb->map[index],
min_t (unsigned int,
__map_depth(sb, index),
depth),
alloc_hint, wrap);
The smaller of data->shallow_depth and __map_depth(sb, index)
will be used as the maximum range when allocating bits.
For a mmc device (one hw queue, deadline I/O scheduler):
q->nr_requests = sched_tags = 128, so according to the previous
calculation method, dd->async_depth = data->shallow_depth = 96,
and the platform is 64bits with 8 cpus, sched_tags.bitmap_tags.sb.shift=5,
sb.maps[]=32/32/32/32, 32 is smaller than 96, whether it is a read or
a write I/O, tags can be allocated to the maximum range each time,
which has not throttling effect.
In addition, refer to the methods of bfg/kyber I/O scheduler,
limit ratiois are calculated base on sched_tags.bitmap_tags.sb.shift.
This patch can throttle write requests really.
Fixes: 07757588e5
("block/mq-deadline: Reserve 25% of scheduler tags for synchronous requests")
Signed-off-by: Zhiguo Niu <zhiguo.niu@unisoc.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/1691061162-22898-1-git-send-email-zhiguo.niu@unisoc.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
1290 lines
35 KiB
C
1290 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
|
|
* for the blk-mq scheduling framework
|
|
*
|
|
* Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/sbitmap.h>
|
|
|
|
#include <trace/events/block.h>
|
|
|
|
#include "elevator.h"
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-debugfs.h"
|
|
#include "blk-mq-sched.h"
|
|
|
|
/*
|
|
* See Documentation/block/deadline-iosched.rst
|
|
*/
|
|
static const int read_expire = HZ / 2; /* max time before a read is submitted. */
|
|
static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
|
|
/*
|
|
* Time after which to dispatch lower priority requests even if higher
|
|
* priority requests are pending.
|
|
*/
|
|
static const int prio_aging_expire = 10 * HZ;
|
|
static const int writes_starved = 2; /* max times reads can starve a write */
|
|
static const int fifo_batch = 16; /* # of sequential requests treated as one
|
|
by the above parameters. For throughput. */
|
|
|
|
enum dd_data_dir {
|
|
DD_READ = READ,
|
|
DD_WRITE = WRITE,
|
|
};
|
|
|
|
enum { DD_DIR_COUNT = 2 };
|
|
|
|
enum dd_prio {
|
|
DD_RT_PRIO = 0,
|
|
DD_BE_PRIO = 1,
|
|
DD_IDLE_PRIO = 2,
|
|
DD_PRIO_MAX = 2,
|
|
};
|
|
|
|
enum { DD_PRIO_COUNT = 3 };
|
|
|
|
/*
|
|
* I/O statistics per I/O priority. It is fine if these counters overflow.
|
|
* What matters is that these counters are at least as wide as
|
|
* log2(max_outstanding_requests).
|
|
*/
|
|
struct io_stats_per_prio {
|
|
uint32_t inserted;
|
|
uint32_t merged;
|
|
uint32_t dispatched;
|
|
atomic_t completed;
|
|
};
|
|
|
|
/*
|
|
* Deadline scheduler data per I/O priority (enum dd_prio). Requests are
|
|
* present on both sort_list[] and fifo_list[].
|
|
*/
|
|
struct dd_per_prio {
|
|
struct list_head dispatch;
|
|
struct rb_root sort_list[DD_DIR_COUNT];
|
|
struct list_head fifo_list[DD_DIR_COUNT];
|
|
/* Position of the most recently dispatched request. */
|
|
sector_t latest_pos[DD_DIR_COUNT];
|
|
struct io_stats_per_prio stats;
|
|
};
|
|
|
|
struct deadline_data {
|
|
/*
|
|
* run time data
|
|
*/
|
|
|
|
struct dd_per_prio per_prio[DD_PRIO_COUNT];
|
|
|
|
/* Data direction of latest dispatched request. */
|
|
enum dd_data_dir last_dir;
|
|
unsigned int batching; /* number of sequential requests made */
|
|
unsigned int starved; /* times reads have starved writes */
|
|
|
|
/*
|
|
* settings that change how the i/o scheduler behaves
|
|
*/
|
|
int fifo_expire[DD_DIR_COUNT];
|
|
int fifo_batch;
|
|
int writes_starved;
|
|
int front_merges;
|
|
u32 async_depth;
|
|
int prio_aging_expire;
|
|
|
|
spinlock_t lock;
|
|
spinlock_t zone_lock;
|
|
};
|
|
|
|
/* Maps an I/O priority class to a deadline scheduler priority. */
|
|
static const enum dd_prio ioprio_class_to_prio[] = {
|
|
[IOPRIO_CLASS_NONE] = DD_BE_PRIO,
|
|
[IOPRIO_CLASS_RT] = DD_RT_PRIO,
|
|
[IOPRIO_CLASS_BE] = DD_BE_PRIO,
|
|
[IOPRIO_CLASS_IDLE] = DD_IDLE_PRIO,
|
|
};
|
|
|
|
static inline struct rb_root *
|
|
deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
|
|
{
|
|
return &per_prio->sort_list[rq_data_dir(rq)];
|
|
}
|
|
|
|
/*
|
|
* Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
|
|
* request.
|
|
*/
|
|
static u8 dd_rq_ioclass(struct request *rq)
|
|
{
|
|
return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
|
|
}
|
|
|
|
/*
|
|
* get the request before `rq' in sector-sorted order
|
|
*/
|
|
static inline struct request *
|
|
deadline_earlier_request(struct request *rq)
|
|
{
|
|
struct rb_node *node = rb_prev(&rq->rb_node);
|
|
|
|
if (node)
|
|
return rb_entry_rq(node);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* get the request after `rq' in sector-sorted order
|
|
*/
|
|
static inline struct request *
|
|
deadline_latter_request(struct request *rq)
|
|
{
|
|
struct rb_node *node = rb_next(&rq->rb_node);
|
|
|
|
if (node)
|
|
return rb_entry_rq(node);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Return the first request for which blk_rq_pos() >= @pos. For zoned devices,
|
|
* return the first request after the start of the zone containing @pos.
|
|
*/
|
|
static inline struct request *deadline_from_pos(struct dd_per_prio *per_prio,
|
|
enum dd_data_dir data_dir, sector_t pos)
|
|
{
|
|
struct rb_node *node = per_prio->sort_list[data_dir].rb_node;
|
|
struct request *rq, *res = NULL;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
rq = rb_entry_rq(node);
|
|
/*
|
|
* A zoned write may have been requeued with a starting position that
|
|
* is below that of the most recently dispatched request. Hence, for
|
|
* zoned writes, start searching from the start of a zone.
|
|
*/
|
|
if (blk_rq_is_seq_zoned_write(rq))
|
|
pos = round_down(pos, rq->q->limits.chunk_sectors);
|
|
|
|
while (node) {
|
|
rq = rb_entry_rq(node);
|
|
if (blk_rq_pos(rq) >= pos) {
|
|
res = rq;
|
|
node = node->rb_left;
|
|
} else {
|
|
node = node->rb_right;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
|
|
{
|
|
struct rb_root *root = deadline_rb_root(per_prio, rq);
|
|
|
|
elv_rb_add(root, rq);
|
|
}
|
|
|
|
static inline void
|
|
deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
|
|
{
|
|
elv_rb_del(deadline_rb_root(per_prio, rq), rq);
|
|
}
|
|
|
|
/*
|
|
* remove rq from rbtree and fifo.
|
|
*/
|
|
static void deadline_remove_request(struct request_queue *q,
|
|
struct dd_per_prio *per_prio,
|
|
struct request *rq)
|
|
{
|
|
list_del_init(&rq->queuelist);
|
|
|
|
/*
|
|
* We might not be on the rbtree, if we are doing an insert merge
|
|
*/
|
|
if (!RB_EMPTY_NODE(&rq->rb_node))
|
|
deadline_del_rq_rb(per_prio, rq);
|
|
|
|
elv_rqhash_del(q, rq);
|
|
if (q->last_merge == rq)
|
|
q->last_merge = NULL;
|
|
}
|
|
|
|
static void dd_request_merged(struct request_queue *q, struct request *req,
|
|
enum elv_merge type)
|
|
{
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
const u8 ioprio_class = dd_rq_ioclass(req);
|
|
const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio];
|
|
|
|
/*
|
|
* if the merge was a front merge, we need to reposition request
|
|
*/
|
|
if (type == ELEVATOR_FRONT_MERGE) {
|
|
elv_rb_del(deadline_rb_root(per_prio, req), req);
|
|
deadline_add_rq_rb(per_prio, req);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Callback function that is invoked after @next has been merged into @req.
|
|
*/
|
|
static void dd_merged_requests(struct request_queue *q, struct request *req,
|
|
struct request *next)
|
|
{
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
const u8 ioprio_class = dd_rq_ioclass(next);
|
|
const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
|
|
|
|
lockdep_assert_held(&dd->lock);
|
|
|
|
dd->per_prio[prio].stats.merged++;
|
|
|
|
/*
|
|
* if next expires before rq, assign its expire time to rq
|
|
* and move into next position (next will be deleted) in fifo
|
|
*/
|
|
if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
|
|
if (time_before((unsigned long)next->fifo_time,
|
|
(unsigned long)req->fifo_time)) {
|
|
list_move(&req->queuelist, &next->queuelist);
|
|
req->fifo_time = next->fifo_time;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* kill knowledge of next, this one is a goner
|
|
*/
|
|
deadline_remove_request(q, &dd->per_prio[prio], next);
|
|
}
|
|
|
|
/*
|
|
* move an entry to dispatch queue
|
|
*/
|
|
static void
|
|
deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
|
|
struct request *rq)
|
|
{
|
|
/*
|
|
* take it off the sort and fifo list
|
|
*/
|
|
deadline_remove_request(rq->q, per_prio, rq);
|
|
}
|
|
|
|
/* Number of requests queued for a given priority level. */
|
|
static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
|
|
{
|
|
const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
|
|
|
|
lockdep_assert_held(&dd->lock);
|
|
|
|
return stats->inserted - atomic_read(&stats->completed);
|
|
}
|
|
|
|
/*
|
|
* deadline_check_fifo returns true if and only if there are expired requests
|
|
* in the FIFO list. Requires !list_empty(&dd->fifo_list[data_dir]).
|
|
*/
|
|
static inline bool deadline_check_fifo(struct dd_per_prio *per_prio,
|
|
enum dd_data_dir data_dir)
|
|
{
|
|
struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
|
|
|
|
return time_is_before_eq_jiffies((unsigned long)rq->fifo_time);
|
|
}
|
|
|
|
/*
|
|
* Check if rq has a sequential request preceding it.
|
|
*/
|
|
static bool deadline_is_seq_write(struct deadline_data *dd, struct request *rq)
|
|
{
|
|
struct request *prev = deadline_earlier_request(rq);
|
|
|
|
if (!prev)
|
|
return false;
|
|
|
|
return blk_rq_pos(prev) + blk_rq_sectors(prev) == blk_rq_pos(rq);
|
|
}
|
|
|
|
/*
|
|
* Skip all write requests that are sequential from @rq, even if we cross
|
|
* a zone boundary.
|
|
*/
|
|
static struct request *deadline_skip_seq_writes(struct deadline_data *dd,
|
|
struct request *rq)
|
|
{
|
|
sector_t pos = blk_rq_pos(rq);
|
|
|
|
do {
|
|
pos += blk_rq_sectors(rq);
|
|
rq = deadline_latter_request(rq);
|
|
} while (rq && blk_rq_pos(rq) == pos);
|
|
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* For the specified data direction, return the next request to
|
|
* dispatch using arrival ordered lists.
|
|
*/
|
|
static struct request *
|
|
deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
|
|
enum dd_data_dir data_dir)
|
|
{
|
|
struct request *rq, *rb_rq, *next;
|
|
unsigned long flags;
|
|
|
|
if (list_empty(&per_prio->fifo_list[data_dir]))
|
|
return NULL;
|
|
|
|
rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
|
|
if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
|
|
return rq;
|
|
|
|
/*
|
|
* Look for a write request that can be dispatched, that is one with
|
|
* an unlocked target zone. For some HDDs, breaking a sequential
|
|
* write stream can lead to lower throughput, so make sure to preserve
|
|
* sequential write streams, even if that stream crosses into the next
|
|
* zones and these zones are unlocked.
|
|
*/
|
|
spin_lock_irqsave(&dd->zone_lock, flags);
|
|
list_for_each_entry_safe(rq, next, &per_prio->fifo_list[DD_WRITE],
|
|
queuelist) {
|
|
/* Check whether a prior request exists for the same zone. */
|
|
rb_rq = deadline_from_pos(per_prio, data_dir, blk_rq_pos(rq));
|
|
if (rb_rq && blk_rq_pos(rb_rq) < blk_rq_pos(rq))
|
|
rq = rb_rq;
|
|
if (blk_req_can_dispatch_to_zone(rq) &&
|
|
(blk_queue_nonrot(rq->q) ||
|
|
!deadline_is_seq_write(dd, rq)))
|
|
goto out;
|
|
}
|
|
rq = NULL;
|
|
out:
|
|
spin_unlock_irqrestore(&dd->zone_lock, flags);
|
|
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* For the specified data direction, return the next request to
|
|
* dispatch using sector position sorted lists.
|
|
*/
|
|
static struct request *
|
|
deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
|
|
enum dd_data_dir data_dir)
|
|
{
|
|
struct request *rq;
|
|
unsigned long flags;
|
|
|
|
rq = deadline_from_pos(per_prio, data_dir,
|
|
per_prio->latest_pos[data_dir]);
|
|
if (!rq)
|
|
return NULL;
|
|
|
|
if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
|
|
return rq;
|
|
|
|
/*
|
|
* Look for a write request that can be dispatched, that is one with
|
|
* an unlocked target zone. For some HDDs, breaking a sequential
|
|
* write stream can lead to lower throughput, so make sure to preserve
|
|
* sequential write streams, even if that stream crosses into the next
|
|
* zones and these zones are unlocked.
|
|
*/
|
|
spin_lock_irqsave(&dd->zone_lock, flags);
|
|
while (rq) {
|
|
if (blk_req_can_dispatch_to_zone(rq))
|
|
break;
|
|
if (blk_queue_nonrot(rq->q))
|
|
rq = deadline_latter_request(rq);
|
|
else
|
|
rq = deadline_skip_seq_writes(dd, rq);
|
|
}
|
|
spin_unlock_irqrestore(&dd->zone_lock, flags);
|
|
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* Returns true if and only if @rq started after @latest_start where
|
|
* @latest_start is in jiffies.
|
|
*/
|
|
static bool started_after(struct deadline_data *dd, struct request *rq,
|
|
unsigned long latest_start)
|
|
{
|
|
unsigned long start_time = (unsigned long)rq->fifo_time;
|
|
|
|
start_time -= dd->fifo_expire[rq_data_dir(rq)];
|
|
|
|
return time_after(start_time, latest_start);
|
|
}
|
|
|
|
/*
|
|
* deadline_dispatch_requests selects the best request according to
|
|
* read/write expire, fifo_batch, etc and with a start time <= @latest_start.
|
|
*/
|
|
static struct request *__dd_dispatch_request(struct deadline_data *dd,
|
|
struct dd_per_prio *per_prio,
|
|
unsigned long latest_start)
|
|
{
|
|
struct request *rq, *next_rq;
|
|
enum dd_data_dir data_dir;
|
|
enum dd_prio prio;
|
|
u8 ioprio_class;
|
|
|
|
lockdep_assert_held(&dd->lock);
|
|
|
|
if (!list_empty(&per_prio->dispatch)) {
|
|
rq = list_first_entry(&per_prio->dispatch, struct request,
|
|
queuelist);
|
|
if (started_after(dd, rq, latest_start))
|
|
return NULL;
|
|
list_del_init(&rq->queuelist);
|
|
data_dir = rq_data_dir(rq);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* batches are currently reads XOR writes
|
|
*/
|
|
rq = deadline_next_request(dd, per_prio, dd->last_dir);
|
|
if (rq && dd->batching < dd->fifo_batch) {
|
|
/* we have a next request and are still entitled to batch */
|
|
data_dir = rq_data_dir(rq);
|
|
goto dispatch_request;
|
|
}
|
|
|
|
/*
|
|
* at this point we are not running a batch. select the appropriate
|
|
* data direction (read / write)
|
|
*/
|
|
|
|
if (!list_empty(&per_prio->fifo_list[DD_READ])) {
|
|
BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));
|
|
|
|
if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
|
|
(dd->starved++ >= dd->writes_starved))
|
|
goto dispatch_writes;
|
|
|
|
data_dir = DD_READ;
|
|
|
|
goto dispatch_find_request;
|
|
}
|
|
|
|
/*
|
|
* there are either no reads or writes have been starved
|
|
*/
|
|
|
|
if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
|
|
dispatch_writes:
|
|
BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));
|
|
|
|
dd->starved = 0;
|
|
|
|
data_dir = DD_WRITE;
|
|
|
|
goto dispatch_find_request;
|
|
}
|
|
|
|
return NULL;
|
|
|
|
dispatch_find_request:
|
|
/*
|
|
* we are not running a batch, find best request for selected data_dir
|
|
*/
|
|
next_rq = deadline_next_request(dd, per_prio, data_dir);
|
|
if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
|
|
/*
|
|
* A deadline has expired, the last request was in the other
|
|
* direction, or we have run out of higher-sectored requests.
|
|
* Start again from the request with the earliest expiry time.
|
|
*/
|
|
rq = deadline_fifo_request(dd, per_prio, data_dir);
|
|
} else {
|
|
/*
|
|
* The last req was the same dir and we have a next request in
|
|
* sort order. No expired requests so continue on from here.
|
|
*/
|
|
rq = next_rq;
|
|
}
|
|
|
|
/*
|
|
* For a zoned block device, if we only have writes queued and none of
|
|
* them can be dispatched, rq will be NULL.
|
|
*/
|
|
if (!rq)
|
|
return NULL;
|
|
|
|
dd->last_dir = data_dir;
|
|
dd->batching = 0;
|
|
|
|
dispatch_request:
|
|
if (started_after(dd, rq, latest_start))
|
|
return NULL;
|
|
|
|
/*
|
|
* rq is the selected appropriate request.
|
|
*/
|
|
dd->batching++;
|
|
deadline_move_request(dd, per_prio, rq);
|
|
done:
|
|
ioprio_class = dd_rq_ioclass(rq);
|
|
prio = ioprio_class_to_prio[ioprio_class];
|
|
dd->per_prio[prio].latest_pos[data_dir] = blk_rq_pos(rq);
|
|
dd->per_prio[prio].stats.dispatched++;
|
|
/*
|
|
* If the request needs its target zone locked, do it.
|
|
*/
|
|
blk_req_zone_write_lock(rq);
|
|
rq->rq_flags |= RQF_STARTED;
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* Check whether there are any requests with priority other than DD_RT_PRIO
|
|
* that were inserted more than prio_aging_expire jiffies ago.
|
|
*/
|
|
static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd,
|
|
unsigned long now)
|
|
{
|
|
struct request *rq;
|
|
enum dd_prio prio;
|
|
int prio_cnt;
|
|
|
|
lockdep_assert_held(&dd->lock);
|
|
|
|
prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) +
|
|
!!dd_queued(dd, DD_IDLE_PRIO);
|
|
if (prio_cnt < 2)
|
|
return NULL;
|
|
|
|
for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
|
|
rq = __dd_dispatch_request(dd, &dd->per_prio[prio],
|
|
now - dd->prio_aging_expire);
|
|
if (rq)
|
|
return rq;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
|
|
*
|
|
* One confusing aspect here is that we get called for a specific
|
|
* hardware queue, but we may return a request that is for a
|
|
* different hardware queue. This is because mq-deadline has shared
|
|
* state for all hardware queues, in terms of sorting, FIFOs, etc.
|
|
*/
|
|
static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct deadline_data *dd = hctx->queue->elevator->elevator_data;
|
|
const unsigned long now = jiffies;
|
|
struct request *rq;
|
|
enum dd_prio prio;
|
|
|
|
spin_lock(&dd->lock);
|
|
rq = dd_dispatch_prio_aged_requests(dd, now);
|
|
if (rq)
|
|
goto unlock;
|
|
|
|
/*
|
|
* Next, dispatch requests in priority order. Ignore lower priority
|
|
* requests if any higher priority requests are pending.
|
|
*/
|
|
for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
|
|
rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now);
|
|
if (rq || dd_queued(dd, prio))
|
|
break;
|
|
}
|
|
|
|
unlock:
|
|
spin_unlock(&dd->lock);
|
|
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* Called by __blk_mq_alloc_request(). The shallow_depth value set by this
|
|
* function is used by __blk_mq_get_tag().
|
|
*/
|
|
static void dd_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
|
|
{
|
|
struct deadline_data *dd = data->q->elevator->elevator_data;
|
|
|
|
/* Do not throttle synchronous reads. */
|
|
if (op_is_sync(opf) && !op_is_write(opf))
|
|
return;
|
|
|
|
/*
|
|
* Throttle asynchronous requests and writes such that these requests
|
|
* do not block the allocation of synchronous requests.
|
|
*/
|
|
data->shallow_depth = dd->async_depth;
|
|
}
|
|
|
|
/* Called by blk_mq_update_nr_requests(). */
|
|
static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
struct blk_mq_tags *tags = hctx->sched_tags;
|
|
unsigned int shift = tags->bitmap_tags.sb.shift;
|
|
|
|
dd->async_depth = max(1U, 3 * (1U << shift) / 4);
|
|
|
|
sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth);
|
|
}
|
|
|
|
/* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
|
|
static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
|
|
{
|
|
dd_depth_updated(hctx);
|
|
return 0;
|
|
}
|
|
|
|
static void dd_exit_sched(struct elevator_queue *e)
|
|
{
|
|
struct deadline_data *dd = e->elevator_data;
|
|
enum dd_prio prio;
|
|
|
|
for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio];
|
|
const struct io_stats_per_prio *stats = &per_prio->stats;
|
|
uint32_t queued;
|
|
|
|
WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
|
|
WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));
|
|
|
|
spin_lock(&dd->lock);
|
|
queued = dd_queued(dd, prio);
|
|
spin_unlock(&dd->lock);
|
|
|
|
WARN_ONCE(queued != 0,
|
|
"statistics for priority %d: i %u m %u d %u c %u\n",
|
|
prio, stats->inserted, stats->merged,
|
|
stats->dispatched, atomic_read(&stats->completed));
|
|
}
|
|
|
|
kfree(dd);
|
|
}
|
|
|
|
/*
|
|
* initialize elevator private data (deadline_data).
|
|
*/
|
|
static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
|
|
{
|
|
struct deadline_data *dd;
|
|
struct elevator_queue *eq;
|
|
enum dd_prio prio;
|
|
int ret = -ENOMEM;
|
|
|
|
eq = elevator_alloc(q, e);
|
|
if (!eq)
|
|
return ret;
|
|
|
|
dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
|
|
if (!dd)
|
|
goto put_eq;
|
|
|
|
eq->elevator_data = dd;
|
|
|
|
for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio];
|
|
|
|
INIT_LIST_HEAD(&per_prio->dispatch);
|
|
INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
|
|
INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
|
|
per_prio->sort_list[DD_READ] = RB_ROOT;
|
|
per_prio->sort_list[DD_WRITE] = RB_ROOT;
|
|
}
|
|
dd->fifo_expire[DD_READ] = read_expire;
|
|
dd->fifo_expire[DD_WRITE] = write_expire;
|
|
dd->writes_starved = writes_starved;
|
|
dd->front_merges = 1;
|
|
dd->last_dir = DD_WRITE;
|
|
dd->fifo_batch = fifo_batch;
|
|
dd->prio_aging_expire = prio_aging_expire;
|
|
spin_lock_init(&dd->lock);
|
|
spin_lock_init(&dd->zone_lock);
|
|
|
|
/* We dispatch from request queue wide instead of hw queue */
|
|
blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
|
|
|
|
q->elevator = eq;
|
|
return 0;
|
|
|
|
put_eq:
|
|
kobject_put(&eq->kobj);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Try to merge @bio into an existing request. If @bio has been merged into
|
|
* an existing request, store the pointer to that request into *@rq.
|
|
*/
|
|
static int dd_request_merge(struct request_queue *q, struct request **rq,
|
|
struct bio *bio)
|
|
{
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
|
|
const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio];
|
|
sector_t sector = bio_end_sector(bio);
|
|
struct request *__rq;
|
|
|
|
if (!dd->front_merges)
|
|
return ELEVATOR_NO_MERGE;
|
|
|
|
__rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
|
|
if (__rq) {
|
|
BUG_ON(sector != blk_rq_pos(__rq));
|
|
|
|
if (elv_bio_merge_ok(__rq, bio)) {
|
|
*rq = __rq;
|
|
if (blk_discard_mergable(__rq))
|
|
return ELEVATOR_DISCARD_MERGE;
|
|
return ELEVATOR_FRONT_MERGE;
|
|
}
|
|
}
|
|
|
|
return ELEVATOR_NO_MERGE;
|
|
}
|
|
|
|
/*
|
|
* Attempt to merge a bio into an existing request. This function is called
|
|
* before @bio is associated with a request.
|
|
*/
|
|
static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int nr_segs)
|
|
{
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
struct request *free = NULL;
|
|
bool ret;
|
|
|
|
spin_lock(&dd->lock);
|
|
ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
|
|
spin_unlock(&dd->lock);
|
|
|
|
if (free)
|
|
blk_mq_free_request(free);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* add rq to rbtree and fifo
|
|
*/
|
|
static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
|
|
blk_insert_t flags, struct list_head *free)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
const enum dd_data_dir data_dir = rq_data_dir(rq);
|
|
u16 ioprio = req_get_ioprio(rq);
|
|
u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
|
|
struct dd_per_prio *per_prio;
|
|
enum dd_prio prio;
|
|
|
|
lockdep_assert_held(&dd->lock);
|
|
|
|
/*
|
|
* This may be a requeue of a write request that has locked its
|
|
* target zone. If it is the case, this releases the zone lock.
|
|
*/
|
|
blk_req_zone_write_unlock(rq);
|
|
|
|
prio = ioprio_class_to_prio[ioprio_class];
|
|
per_prio = &dd->per_prio[prio];
|
|
if (!rq->elv.priv[0]) {
|
|
per_prio->stats.inserted++;
|
|
rq->elv.priv[0] = (void *)(uintptr_t)1;
|
|
}
|
|
|
|
if (blk_mq_sched_try_insert_merge(q, rq, free))
|
|
return;
|
|
|
|
trace_block_rq_insert(rq);
|
|
|
|
if (flags & BLK_MQ_INSERT_AT_HEAD) {
|
|
list_add(&rq->queuelist, &per_prio->dispatch);
|
|
rq->fifo_time = jiffies;
|
|
} else {
|
|
struct list_head *insert_before;
|
|
|
|
deadline_add_rq_rb(per_prio, rq);
|
|
|
|
if (rq_mergeable(rq)) {
|
|
elv_rqhash_add(q, rq);
|
|
if (!q->last_merge)
|
|
q->last_merge = rq;
|
|
}
|
|
|
|
/*
|
|
* set expire time and add to fifo list
|
|
*/
|
|
rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
|
|
insert_before = &per_prio->fifo_list[data_dir];
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
/*
|
|
* Insert zoned writes such that requests are sorted by
|
|
* position per zone.
|
|
*/
|
|
if (blk_rq_is_seq_zoned_write(rq)) {
|
|
struct request *rq2 = deadline_latter_request(rq);
|
|
|
|
if (rq2 && blk_rq_zone_no(rq2) == blk_rq_zone_no(rq))
|
|
insert_before = &rq2->queuelist;
|
|
}
|
|
#endif
|
|
list_add_tail(&rq->queuelist, insert_before);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called from blk_mq_insert_request() or blk_mq_dispatch_plug_list().
|
|
*/
|
|
static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
|
|
struct list_head *list,
|
|
blk_insert_t flags)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
LIST_HEAD(free);
|
|
|
|
spin_lock(&dd->lock);
|
|
while (!list_empty(list)) {
|
|
struct request *rq;
|
|
|
|
rq = list_first_entry(list, struct request, queuelist);
|
|
list_del_init(&rq->queuelist);
|
|
dd_insert_request(hctx, rq, flags, &free);
|
|
}
|
|
spin_unlock(&dd->lock);
|
|
|
|
blk_mq_free_requests(&free);
|
|
}
|
|
|
|
/* Callback from inside blk_mq_rq_ctx_init(). */
|
|
static void dd_prepare_request(struct request *rq)
|
|
{
|
|
rq->elv.priv[0] = NULL;
|
|
}
|
|
|
|
static bool dd_has_write_work(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct deadline_data *dd = hctx->queue->elevator->elevator_data;
|
|
enum dd_prio p;
|
|
|
|
for (p = 0; p <= DD_PRIO_MAX; p++)
|
|
if (!list_empty_careful(&dd->per_prio[p].fifo_list[DD_WRITE]))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Callback from inside blk_mq_free_request().
|
|
*
|
|
* For zoned block devices, write unlock the target zone of
|
|
* completed write requests. Do this while holding the zone lock
|
|
* spinlock so that the zone is never unlocked while deadline_fifo_request()
|
|
* or deadline_next_request() are executing. This function is called for
|
|
* all requests, whether or not these requests complete successfully.
|
|
*
|
|
* For a zoned block device, __dd_dispatch_request() may have stopped
|
|
* dispatching requests if all the queued requests are write requests directed
|
|
* at zones that are already locked due to on-going write requests. To ensure
|
|
* write request dispatch progress in this case, mark the queue as needing a
|
|
* restart to ensure that the queue is run again after completion of the
|
|
* request and zones being unlocked.
|
|
*/
|
|
static void dd_finish_request(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
const u8 ioprio_class = dd_rq_ioclass(rq);
|
|
const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio];
|
|
|
|
/*
|
|
* The block layer core may call dd_finish_request() without having
|
|
* called dd_insert_requests(). Skip requests that bypassed I/O
|
|
* scheduling. See also blk_mq_request_bypass_insert().
|
|
*/
|
|
if (!rq->elv.priv[0])
|
|
return;
|
|
|
|
atomic_inc(&per_prio->stats.completed);
|
|
|
|
if (blk_queue_is_zoned(q)) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dd->zone_lock, flags);
|
|
blk_req_zone_write_unlock(rq);
|
|
spin_unlock_irqrestore(&dd->zone_lock, flags);
|
|
|
|
if (dd_has_write_work(rq->mq_hctx))
|
|
blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
|
|
}
|
|
}
|
|
|
|
static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
|
|
{
|
|
return !list_empty_careful(&per_prio->dispatch) ||
|
|
!list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
|
|
!list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
|
|
}
|
|
|
|
static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct deadline_data *dd = hctx->queue->elevator->elevator_data;
|
|
enum dd_prio prio;
|
|
|
|
for (prio = 0; prio <= DD_PRIO_MAX; prio++)
|
|
if (dd_has_work_for_prio(&dd->per_prio[prio]))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* sysfs parts below
|
|
*/
|
|
#define SHOW_INT(__FUNC, __VAR) \
|
|
static ssize_t __FUNC(struct elevator_queue *e, char *page) \
|
|
{ \
|
|
struct deadline_data *dd = e->elevator_data; \
|
|
\
|
|
return sysfs_emit(page, "%d\n", __VAR); \
|
|
}
|
|
#define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
|
|
SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
|
|
SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
|
|
SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire);
|
|
SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
|
|
SHOW_INT(deadline_front_merges_show, dd->front_merges);
|
|
SHOW_INT(deadline_async_depth_show, dd->async_depth);
|
|
SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
|
|
#undef SHOW_INT
|
|
#undef SHOW_JIFFIES
|
|
|
|
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
|
|
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
|
|
{ \
|
|
struct deadline_data *dd = e->elevator_data; \
|
|
int __data, __ret; \
|
|
\
|
|
__ret = kstrtoint(page, 0, &__data); \
|
|
if (__ret < 0) \
|
|
return __ret; \
|
|
if (__data < (MIN)) \
|
|
__data = (MIN); \
|
|
else if (__data > (MAX)) \
|
|
__data = (MAX); \
|
|
*(__PTR) = __CONV(__data); \
|
|
return count; \
|
|
}
|
|
#define STORE_INT(__FUNC, __PTR, MIN, MAX) \
|
|
STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
|
|
#define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX) \
|
|
STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
|
|
STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
|
|
STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
|
|
STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX);
|
|
STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
|
|
STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
|
|
STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX);
|
|
STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
|
|
#undef STORE_FUNCTION
|
|
#undef STORE_INT
|
|
#undef STORE_JIFFIES
|
|
|
|
#define DD_ATTR(name) \
|
|
__ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)
|
|
|
|
static struct elv_fs_entry deadline_attrs[] = {
|
|
DD_ATTR(read_expire),
|
|
DD_ATTR(write_expire),
|
|
DD_ATTR(writes_starved),
|
|
DD_ATTR(front_merges),
|
|
DD_ATTR(async_depth),
|
|
DD_ATTR(fifo_batch),
|
|
DD_ATTR(prio_aging_expire),
|
|
__ATTR_NULL
|
|
};
|
|
|
|
#ifdef CONFIG_BLK_DEBUG_FS
|
|
#define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name) \
|
|
static void *deadline_##name##_fifo_start(struct seq_file *m, \
|
|
loff_t *pos) \
|
|
__acquires(&dd->lock) \
|
|
{ \
|
|
struct request_queue *q = m->private; \
|
|
struct deadline_data *dd = q->elevator->elevator_data; \
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
|
|
\
|
|
spin_lock(&dd->lock); \
|
|
return seq_list_start(&per_prio->fifo_list[data_dir], *pos); \
|
|
} \
|
|
\
|
|
static void *deadline_##name##_fifo_next(struct seq_file *m, void *v, \
|
|
loff_t *pos) \
|
|
{ \
|
|
struct request_queue *q = m->private; \
|
|
struct deadline_data *dd = q->elevator->elevator_data; \
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
|
|
\
|
|
return seq_list_next(v, &per_prio->fifo_list[data_dir], pos); \
|
|
} \
|
|
\
|
|
static void deadline_##name##_fifo_stop(struct seq_file *m, void *v) \
|
|
__releases(&dd->lock) \
|
|
{ \
|
|
struct request_queue *q = m->private; \
|
|
struct deadline_data *dd = q->elevator->elevator_data; \
|
|
\
|
|
spin_unlock(&dd->lock); \
|
|
} \
|
|
\
|
|
static const struct seq_operations deadline_##name##_fifo_seq_ops = { \
|
|
.start = deadline_##name##_fifo_start, \
|
|
.next = deadline_##name##_fifo_next, \
|
|
.stop = deadline_##name##_fifo_stop, \
|
|
.show = blk_mq_debugfs_rq_show, \
|
|
}; \
|
|
\
|
|
static int deadline_##name##_next_rq_show(void *data, \
|
|
struct seq_file *m) \
|
|
{ \
|
|
struct request_queue *q = data; \
|
|
struct deadline_data *dd = q->elevator->elevator_data; \
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
|
|
struct request *rq; \
|
|
\
|
|
rq = deadline_from_pos(per_prio, data_dir, \
|
|
per_prio->latest_pos[data_dir]); \
|
|
if (rq) \
|
|
__blk_mq_debugfs_rq_show(m, rq); \
|
|
return 0; \
|
|
}
|
|
|
|
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
|
|
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
|
|
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
|
|
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
|
|
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
|
|
DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
|
|
#undef DEADLINE_DEBUGFS_DDIR_ATTRS
|
|
|
|
static int deadline_batching_show(void *data, struct seq_file *m)
|
|
{
|
|
struct request_queue *q = data;
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
|
|
seq_printf(m, "%u\n", dd->batching);
|
|
return 0;
|
|
}
|
|
|
|
static int deadline_starved_show(void *data, struct seq_file *m)
|
|
{
|
|
struct request_queue *q = data;
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
|
|
seq_printf(m, "%u\n", dd->starved);
|
|
return 0;
|
|
}
|
|
|
|
static int dd_async_depth_show(void *data, struct seq_file *m)
|
|
{
|
|
struct request_queue *q = data;
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
|
|
seq_printf(m, "%u\n", dd->async_depth);
|
|
return 0;
|
|
}
|
|
|
|
static int dd_queued_show(void *data, struct seq_file *m)
|
|
{
|
|
struct request_queue *q = data;
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
u32 rt, be, idle;
|
|
|
|
spin_lock(&dd->lock);
|
|
rt = dd_queued(dd, DD_RT_PRIO);
|
|
be = dd_queued(dd, DD_BE_PRIO);
|
|
idle = dd_queued(dd, DD_IDLE_PRIO);
|
|
spin_unlock(&dd->lock);
|
|
|
|
seq_printf(m, "%u %u %u\n", rt, be, idle);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Number of requests owned by the block driver for a given priority. */
|
|
static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
|
|
{
|
|
const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
|
|
|
|
lockdep_assert_held(&dd->lock);
|
|
|
|
return stats->dispatched + stats->merged -
|
|
atomic_read(&stats->completed);
|
|
}
|
|
|
|
static int dd_owned_by_driver_show(void *data, struct seq_file *m)
|
|
{
|
|
struct request_queue *q = data;
|
|
struct deadline_data *dd = q->elevator->elevator_data;
|
|
u32 rt, be, idle;
|
|
|
|
spin_lock(&dd->lock);
|
|
rt = dd_owned_by_driver(dd, DD_RT_PRIO);
|
|
be = dd_owned_by_driver(dd, DD_BE_PRIO);
|
|
idle = dd_owned_by_driver(dd, DD_IDLE_PRIO);
|
|
spin_unlock(&dd->lock);
|
|
|
|
seq_printf(m, "%u %u %u\n", rt, be, idle);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define DEADLINE_DISPATCH_ATTR(prio) \
|
|
static void *deadline_dispatch##prio##_start(struct seq_file *m, \
|
|
loff_t *pos) \
|
|
__acquires(&dd->lock) \
|
|
{ \
|
|
struct request_queue *q = m->private; \
|
|
struct deadline_data *dd = q->elevator->elevator_data; \
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
|
|
\
|
|
spin_lock(&dd->lock); \
|
|
return seq_list_start(&per_prio->dispatch, *pos); \
|
|
} \
|
|
\
|
|
static void *deadline_dispatch##prio##_next(struct seq_file *m, \
|
|
void *v, loff_t *pos) \
|
|
{ \
|
|
struct request_queue *q = m->private; \
|
|
struct deadline_data *dd = q->elevator->elevator_data; \
|
|
struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
|
|
\
|
|
return seq_list_next(v, &per_prio->dispatch, pos); \
|
|
} \
|
|
\
|
|
static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v) \
|
|
__releases(&dd->lock) \
|
|
{ \
|
|
struct request_queue *q = m->private; \
|
|
struct deadline_data *dd = q->elevator->elevator_data; \
|
|
\
|
|
spin_unlock(&dd->lock); \
|
|
} \
|
|
\
|
|
static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
|
|
.start = deadline_dispatch##prio##_start, \
|
|
.next = deadline_dispatch##prio##_next, \
|
|
.stop = deadline_dispatch##prio##_stop, \
|
|
.show = blk_mq_debugfs_rq_show, \
|
|
}
|
|
|
|
DEADLINE_DISPATCH_ATTR(0);
|
|
DEADLINE_DISPATCH_ATTR(1);
|
|
DEADLINE_DISPATCH_ATTR(2);
|
|
#undef DEADLINE_DISPATCH_ATTR
|
|
|
|
#define DEADLINE_QUEUE_DDIR_ATTRS(name) \
|
|
{#name "_fifo_list", 0400, \
|
|
.seq_ops = &deadline_##name##_fifo_seq_ops}
|
|
#define DEADLINE_NEXT_RQ_ATTR(name) \
|
|
{#name "_next_rq", 0400, deadline_##name##_next_rq_show}
|
|
static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
|
|
DEADLINE_QUEUE_DDIR_ATTRS(read0),
|
|
DEADLINE_QUEUE_DDIR_ATTRS(write0),
|
|
DEADLINE_QUEUE_DDIR_ATTRS(read1),
|
|
DEADLINE_QUEUE_DDIR_ATTRS(write1),
|
|
DEADLINE_QUEUE_DDIR_ATTRS(read2),
|
|
DEADLINE_QUEUE_DDIR_ATTRS(write2),
|
|
DEADLINE_NEXT_RQ_ATTR(read0),
|
|
DEADLINE_NEXT_RQ_ATTR(write0),
|
|
DEADLINE_NEXT_RQ_ATTR(read1),
|
|
DEADLINE_NEXT_RQ_ATTR(write1),
|
|
DEADLINE_NEXT_RQ_ATTR(read2),
|
|
DEADLINE_NEXT_RQ_ATTR(write2),
|
|
{"batching", 0400, deadline_batching_show},
|
|
{"starved", 0400, deadline_starved_show},
|
|
{"async_depth", 0400, dd_async_depth_show},
|
|
{"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
|
|
{"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
|
|
{"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
|
|
{"owned_by_driver", 0400, dd_owned_by_driver_show},
|
|
{"queued", 0400, dd_queued_show},
|
|
{},
|
|
};
|
|
#undef DEADLINE_QUEUE_DDIR_ATTRS
|
|
#endif
|
|
|
|
static struct elevator_type mq_deadline = {
|
|
.ops = {
|
|
.depth_updated = dd_depth_updated,
|
|
.limit_depth = dd_limit_depth,
|
|
.insert_requests = dd_insert_requests,
|
|
.dispatch_request = dd_dispatch_request,
|
|
.prepare_request = dd_prepare_request,
|
|
.finish_request = dd_finish_request,
|
|
.next_request = elv_rb_latter_request,
|
|
.former_request = elv_rb_former_request,
|
|
.bio_merge = dd_bio_merge,
|
|
.request_merge = dd_request_merge,
|
|
.requests_merged = dd_merged_requests,
|
|
.request_merged = dd_request_merged,
|
|
.has_work = dd_has_work,
|
|
.init_sched = dd_init_sched,
|
|
.exit_sched = dd_exit_sched,
|
|
.init_hctx = dd_init_hctx,
|
|
},
|
|
|
|
#ifdef CONFIG_BLK_DEBUG_FS
|
|
.queue_debugfs_attrs = deadline_queue_debugfs_attrs,
|
|
#endif
|
|
.elevator_attrs = deadline_attrs,
|
|
.elevator_name = "mq-deadline",
|
|
.elevator_alias = "deadline",
|
|
.elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
|
|
.elevator_owner = THIS_MODULE,
|
|
};
|
|
MODULE_ALIAS("mq-deadline-iosched");
|
|
|
|
static int __init deadline_init(void)
|
|
{
|
|
return elv_register(&mq_deadline);
|
|
}
|
|
|
|
static void __exit deadline_exit(void)
|
|
{
|
|
elv_unregister(&mq_deadline);
|
|
}
|
|
|
|
module_init(deadline_init);
|
|
module_exit(deadline_exit);
|
|
|
|
MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("MQ deadline IO scheduler");
|