linux/drivers/iio/afe/iio-rescale.c
Liam Beguin 03e7d21ee1 iio: afe: rescale: add temperature transducers
A temperature transducer is a device that converts a thermal quantity
into any other physical quantity. This patch adds support for
temperature to voltage (like the LTC2997) and temperature to current
(like the AD590) linear transducers.
In both cases these are assumed to be connected to a voltage ADC.

Signed-off-by: Liam Beguin <liambeguin@gmail.com>
Reviewed-by: Peter Rosin <peda@axentia.se>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Link: https://lore.kernel.org/r/20220213025739.2561834-9-liambeguin@gmail.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2022-02-28 10:22:24 +00:00

600 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* IIO rescale driver
*
* Copyright (C) 2018 Axentia Technologies AB
* Copyright (C) 2022 Liam Beguin <liambeguin@gmail.com>
*
* Author: Peter Rosin <peda@axentia.se>
*/
#include <linux/err.h>
#include <linux/gcd.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/iio/afe/rescale.h>
#include <linux/iio/consumer.h>
#include <linux/iio/iio.h>
int rescale_process_scale(struct rescale *rescale, int scale_type,
int *val, int *val2)
{
s64 tmp;
int _val, _val2;
s32 rem, rem2;
u32 mult;
u32 neg;
switch (scale_type) {
case IIO_VAL_INT:
*val *= rescale->numerator;
if (rescale->denominator == 1)
return scale_type;
*val2 = rescale->denominator;
return IIO_VAL_FRACTIONAL;
case IIO_VAL_FRACTIONAL:
/*
* When the product of both scales doesn't overflow, avoid
* potential accuracy loss (for in kernel consumers) by
* keeping a fractional representation.
*/
if (!check_mul_overflow(*val, rescale->numerator, &_val) &&
!check_mul_overflow(*val2, rescale->denominator, &_val2)) {
*val = _val;
*val2 = _val2;
return IIO_VAL_FRACTIONAL;
}
fallthrough;
case IIO_VAL_FRACTIONAL_LOG2:
tmp = (s64)*val * 1000000000LL;
tmp = div_s64(tmp, rescale->denominator);
tmp *= rescale->numerator;
tmp = div_s64_rem(tmp, 1000000000LL, &rem);
*val = tmp;
if (!rem)
return scale_type;
if (scale_type == IIO_VAL_FRACTIONAL)
tmp = *val2;
else
tmp = ULL(1) << *val2;
rem2 = *val % (int)tmp;
*val = *val / (int)tmp;
*val2 = rem / (int)tmp;
if (rem2)
*val2 += div_s64((s64)rem2 * 1000000000LL, tmp);
return IIO_VAL_INT_PLUS_NANO;
case IIO_VAL_INT_PLUS_NANO:
case IIO_VAL_INT_PLUS_MICRO:
mult = scale_type == IIO_VAL_INT_PLUS_NANO ? 1000000000L : 1000000L;
/*
* For IIO_VAL_INT_PLUS_{MICRO,NANO} scale types if either *val
* OR *val2 is negative the schan scale is negative, i.e.
* *val = 1 and *val2 = -0.5 yields -1.5 not -0.5.
*/
neg = *val < 0 || *val2 < 0;
tmp = (s64)abs(*val) * abs(rescale->numerator);
*val = div_s64_rem(tmp, abs(rescale->denominator), &rem);
tmp = (s64)rem * mult + (s64)abs(*val2) * abs(rescale->numerator);
tmp = div_s64(tmp, abs(rescale->denominator));
*val += div_s64_rem(tmp, mult, val2);
/*
* If only one of the rescaler elements or the schan scale is
* negative, the combined scale is negative.
*/
if (neg ^ ((rescale->numerator < 0) ^ (rescale->denominator < 0))) {
if (*val)
*val = -*val;
else
*val2 = -*val2;
}
return scale_type;
default:
return -EOPNOTSUPP;
}
}
int rescale_process_offset(struct rescale *rescale, int scale_type,
int scale, int scale2, int schan_off,
int *val, int *val2)
{
s64 tmp, tmp2;
switch (scale_type) {
case IIO_VAL_FRACTIONAL:
tmp = (s64)rescale->offset * scale2;
*val = div_s64(tmp, scale) + schan_off;
return IIO_VAL_INT;
case IIO_VAL_INT:
*val = div_s64(rescale->offset, scale) + schan_off;
return IIO_VAL_INT;
case IIO_VAL_FRACTIONAL_LOG2:
tmp = (s64)rescale->offset * (1 << scale2);
*val = div_s64(tmp, scale) + schan_off;
return IIO_VAL_INT;
case IIO_VAL_INT_PLUS_NANO:
tmp = (s64)rescale->offset * 1000000000LL;
tmp2 = ((s64)scale * 1000000000LL) + scale2;
*val = div64_s64(tmp, tmp2) + schan_off;
return IIO_VAL_INT;
case IIO_VAL_INT_PLUS_MICRO:
tmp = (s64)rescale->offset * 1000000LL;
tmp2 = ((s64)scale * 1000000LL) + scale2;
*val = div64_s64(tmp, tmp2) + schan_off;
return IIO_VAL_INT;
default:
return -EOPNOTSUPP;
}
}
static int rescale_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct rescale *rescale = iio_priv(indio_dev);
int scale, scale2;
int schan_off = 0;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (rescale->chan_processed)
/*
* When only processed channels are supported, we
* read the processed data and scale it by 1/1
* augmented with whatever the rescaler has calculated.
*/
return iio_read_channel_processed(rescale->source, val);
else
return iio_read_channel_raw(rescale->source, val);
case IIO_CHAN_INFO_SCALE:
if (rescale->chan_processed) {
/*
* Processed channels are scaled 1-to-1
*/
*val = 1;
*val2 = 1;
ret = IIO_VAL_FRACTIONAL;
} else {
ret = iio_read_channel_scale(rescale->source, val, val2);
}
return rescale_process_scale(rescale, ret, val, val2);
case IIO_CHAN_INFO_OFFSET:
/*
* Processed channels are scaled 1-to-1 and source offset is
* already taken into account.
*
* In other cases, real world measurement are expressed as:
*
* schan_scale * (raw + schan_offset)
*
* Given that the rescaler parameters are applied recursively:
*
* rescaler_scale * (schan_scale * (raw + schan_offset) +
* rescaler_offset)
*
* Or,
*
* (rescaler_scale * schan_scale) * (raw +
* (schan_offset + rescaler_offset / schan_scale)
*
* Thus, reusing the original expression the parameters exposed
* to userspace are:
*
* scale = schan_scale * rescaler_scale
* offset = schan_offset + rescaler_offset / schan_scale
*/
if (rescale->chan_processed) {
*val = rescale->offset;
return IIO_VAL_INT;
}
if (iio_channel_has_info(rescale->source->channel,
IIO_CHAN_INFO_OFFSET)) {
ret = iio_read_channel_offset(rescale->source,
&schan_off, NULL);
if (ret != IIO_VAL_INT)
return ret < 0 ? ret : -EOPNOTSUPP;
}
ret = iio_read_channel_scale(rescale->source, &scale, &scale2);
return rescale_process_offset(rescale, ret, scale, scale2,
schan_off, val, val2);
default:
return -EINVAL;
}
}
static int rescale_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct rescale *rescale = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
*type = IIO_VAL_INT;
return iio_read_avail_channel_raw(rescale->source,
vals, length);
default:
return -EINVAL;
}
}
static const struct iio_info rescale_info = {
.read_raw = rescale_read_raw,
.read_avail = rescale_read_avail,
};
static ssize_t rescale_read_ext_info(struct iio_dev *indio_dev,
uintptr_t private,
struct iio_chan_spec const *chan,
char *buf)
{
struct rescale *rescale = iio_priv(indio_dev);
return iio_read_channel_ext_info(rescale->source,
rescale->ext_info[private].name,
buf);
}
static ssize_t rescale_write_ext_info(struct iio_dev *indio_dev,
uintptr_t private,
struct iio_chan_spec const *chan,
const char *buf, size_t len)
{
struct rescale *rescale = iio_priv(indio_dev);
return iio_write_channel_ext_info(rescale->source,
rescale->ext_info[private].name,
buf, len);
}
static int rescale_configure_channel(struct device *dev,
struct rescale *rescale)
{
struct iio_chan_spec *chan = &rescale->chan;
struct iio_chan_spec const *schan = rescale->source->channel;
chan->indexed = 1;
chan->output = schan->output;
chan->ext_info = rescale->ext_info;
chan->type = rescale->cfg->type;
if (iio_channel_has_info(schan, IIO_CHAN_INFO_RAW) ||
iio_channel_has_info(schan, IIO_CHAN_INFO_SCALE)) {
dev_info(dev, "using raw+scale source channel\n");
} else if (iio_channel_has_info(schan, IIO_CHAN_INFO_PROCESSED)) {
dev_info(dev, "using processed channel\n");
rescale->chan_processed = true;
} else {
dev_err(dev, "source channel is not supported\n");
return -EINVAL;
}
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE);
if (rescale->offset)
chan->info_mask_separate |= BIT(IIO_CHAN_INFO_OFFSET);
/*
* Using .read_avail() is fringe to begin with and makes no sense
* whatsoever for processed channels, so we make sure that this cannot
* be called on a processed channel.
*/
if (iio_channel_has_available(schan, IIO_CHAN_INFO_RAW) &&
!rescale->chan_processed)
chan->info_mask_separate_available |= BIT(IIO_CHAN_INFO_RAW);
return 0;
}
static int rescale_current_sense_amplifier_props(struct device *dev,
struct rescale *rescale)
{
u32 sense;
u32 gain_mult = 1;
u32 gain_div = 1;
u32 factor;
int ret;
ret = device_property_read_u32(dev, "sense-resistor-micro-ohms",
&sense);
if (ret) {
dev_err(dev, "failed to read the sense resistance: %d\n", ret);
return ret;
}
device_property_read_u32(dev, "sense-gain-mult", &gain_mult);
device_property_read_u32(dev, "sense-gain-div", &gain_div);
/*
* Calculate the scaling factor, 1 / (gain * sense), or
* gain_div / (gain_mult * sense), while trying to keep the
* numerator/denominator from overflowing.
*/
factor = gcd(sense, 1000000);
rescale->numerator = 1000000 / factor;
rescale->denominator = sense / factor;
factor = gcd(rescale->numerator, gain_mult);
rescale->numerator /= factor;
rescale->denominator *= gain_mult / factor;
factor = gcd(rescale->denominator, gain_div);
rescale->numerator *= gain_div / factor;
rescale->denominator /= factor;
return 0;
}
static int rescale_current_sense_shunt_props(struct device *dev,
struct rescale *rescale)
{
u32 shunt;
u32 factor;
int ret;
ret = device_property_read_u32(dev, "shunt-resistor-micro-ohms",
&shunt);
if (ret) {
dev_err(dev, "failed to read the shunt resistance: %d\n", ret);
return ret;
}
factor = gcd(shunt, 1000000);
rescale->numerator = 1000000 / factor;
rescale->denominator = shunt / factor;
return 0;
}
static int rescale_voltage_divider_props(struct device *dev,
struct rescale *rescale)
{
int ret;
u32 factor;
ret = device_property_read_u32(dev, "output-ohms",
&rescale->denominator);
if (ret) {
dev_err(dev, "failed to read output-ohms: %d\n", ret);
return ret;
}
ret = device_property_read_u32(dev, "full-ohms",
&rescale->numerator);
if (ret) {
dev_err(dev, "failed to read full-ohms: %d\n", ret);
return ret;
}
factor = gcd(rescale->numerator, rescale->denominator);
rescale->numerator /= factor;
rescale->denominator /= factor;
return 0;
}
static int rescale_temp_sense_rtd_props(struct device *dev,
struct rescale *rescale)
{
u32 factor;
u32 alpha;
u32 iexc;
u32 tmp;
int ret;
u32 r0;
ret = device_property_read_u32(dev, "excitation-current-microamp",
&iexc);
if (ret) {
dev_err(dev, "failed to read excitation-current-microamp: %d\n",
ret);
return ret;
}
ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
if (ret) {
dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n",
ret);
return ret;
}
ret = device_property_read_u32(dev, "r-naught-ohms", &r0);
if (ret) {
dev_err(dev, "failed to read r-naught-ohms: %d\n", ret);
return ret;
}
tmp = r0 * iexc * alpha / 1000000;
factor = gcd(tmp, 1000000);
rescale->numerator = 1000000 / factor;
rescale->denominator = tmp / factor;
rescale->offset = -1 * ((r0 * iexc) / 1000);
return 0;
}
static int rescale_temp_transducer_props(struct device *dev,
struct rescale *rescale)
{
s32 offset = 0;
s32 sense = 1;
s32 alpha;
int ret;
device_property_read_u32(dev, "sense-offset-millicelsius", &offset);
device_property_read_u32(dev, "sense-resistor-ohms", &sense);
ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
if (ret) {
dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n", ret);
return ret;
}
rescale->numerator = 1000000;
rescale->denominator = alpha * sense;
rescale->offset = div_s64((s64)offset * rescale->denominator,
rescale->numerator);
return 0;
}
enum rescale_variant {
CURRENT_SENSE_AMPLIFIER,
CURRENT_SENSE_SHUNT,
VOLTAGE_DIVIDER,
TEMP_SENSE_RTD,
TEMP_TRANSDUCER,
};
static const struct rescale_cfg rescale_cfg[] = {
[CURRENT_SENSE_AMPLIFIER] = {
.type = IIO_CURRENT,
.props = rescale_current_sense_amplifier_props,
},
[CURRENT_SENSE_SHUNT] = {
.type = IIO_CURRENT,
.props = rescale_current_sense_shunt_props,
},
[VOLTAGE_DIVIDER] = {
.type = IIO_VOLTAGE,
.props = rescale_voltage_divider_props,
},
[TEMP_SENSE_RTD] = {
.type = IIO_TEMP,
.props = rescale_temp_sense_rtd_props,
},
[TEMP_TRANSDUCER] = {
.type = IIO_TEMP,
.props = rescale_temp_transducer_props,
},
};
static const struct of_device_id rescale_match[] = {
{ .compatible = "current-sense-amplifier",
.data = &rescale_cfg[CURRENT_SENSE_AMPLIFIER], },
{ .compatible = "current-sense-shunt",
.data = &rescale_cfg[CURRENT_SENSE_SHUNT], },
{ .compatible = "voltage-divider",
.data = &rescale_cfg[VOLTAGE_DIVIDER], },
{ .compatible = "temperature-sense-rtd",
.data = &rescale_cfg[TEMP_SENSE_RTD], },
{ .compatible = "temperature-transducer",
.data = &rescale_cfg[TEMP_TRANSDUCER], },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rescale_match);
static int rescale_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct iio_dev *indio_dev;
struct iio_channel *source;
struct rescale *rescale;
int sizeof_ext_info;
int sizeof_priv;
int i;
int ret;
source = devm_iio_channel_get(dev, NULL);
if (IS_ERR(source))
return dev_err_probe(dev, PTR_ERR(source),
"failed to get source channel\n");
sizeof_ext_info = iio_get_channel_ext_info_count(source);
if (sizeof_ext_info) {
sizeof_ext_info += 1; /* one extra entry for the sentinel */
sizeof_ext_info *= sizeof(*rescale->ext_info);
}
sizeof_priv = sizeof(*rescale) + sizeof_ext_info;
indio_dev = devm_iio_device_alloc(dev, sizeof_priv);
if (!indio_dev)
return -ENOMEM;
rescale = iio_priv(indio_dev);
rescale->cfg = of_device_get_match_data(dev);
rescale->numerator = 1;
rescale->denominator = 1;
rescale->offset = 0;
ret = rescale->cfg->props(dev, rescale);
if (ret)
return ret;
if (!rescale->numerator || !rescale->denominator) {
dev_err(dev, "invalid scaling factor.\n");
return -EINVAL;
}
platform_set_drvdata(pdev, indio_dev);
rescale->source = source;
indio_dev->name = dev_name(dev);
indio_dev->info = &rescale_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = &rescale->chan;
indio_dev->num_channels = 1;
if (sizeof_ext_info) {
rescale->ext_info = devm_kmemdup(dev,
source->channel->ext_info,
sizeof_ext_info, GFP_KERNEL);
if (!rescale->ext_info)
return -ENOMEM;
for (i = 0; rescale->ext_info[i].name; ++i) {
struct iio_chan_spec_ext_info *ext_info =
&rescale->ext_info[i];
if (source->channel->ext_info[i].read)
ext_info->read = rescale_read_ext_info;
if (source->channel->ext_info[i].write)
ext_info->write = rescale_write_ext_info;
ext_info->private = i;
}
}
ret = rescale_configure_channel(dev, rescale);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
static struct platform_driver rescale_driver = {
.probe = rescale_probe,
.driver = {
.name = "iio-rescale",
.of_match_table = rescale_match,
},
};
module_platform_driver(rescale_driver);
MODULE_DESCRIPTION("IIO rescale driver");
MODULE_AUTHOR("Peter Rosin <peda@axentia.se>");
MODULE_LICENSE("GPL v2");