linux/drivers/base/power/main.c
Rafael J. Wysocki 2aa36604e8 PM: sleep: Avoid calling put_device() under dpm_list_mtx
It is generally unsafe to call put_device() with dpm_list_mtx held,
because the given device's release routine may carry out an action
depending on that lock which then may deadlock, so modify the
system-wide suspend and resume of devices to always drop dpm_list_mtx
before calling put_device() (and adjust white space somewhat while
at it).

For instance, this prevents the following splat from showing up in
the kernel log after a system resume in certain configurations:

[ 3290.969514] ======================================================
[ 3290.969517] WARNING: possible circular locking dependency detected
[ 3290.969519] 5.15.0+ #2420 Tainted: G S
[ 3290.969523] ------------------------------------------------------
[ 3290.969525] systemd-sleep/4553 is trying to acquire lock:
[ 3290.969529] ffff888117ab1138 ((wq_completion)hci0#2){+.+.}-{0:0}, at: flush_workqueue+0x87/0x4a0
[ 3290.969554]
               but task is already holding lock:
[ 3290.969556] ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0
[ 3290.969571]
               which lock already depends on the new lock.

[ 3290.969573]
               the existing dependency chain (in reverse order) is:
[ 3290.969575]
               -> #3 (dpm_list_mtx){+.+.}-{3:3}:
[ 3290.969583]        __mutex_lock+0x9d/0xa30
[ 3290.969591]        device_pm_add+0x2e/0xe0
[ 3290.969597]        device_add+0x4d5/0x8f0
[ 3290.969605]        hci_conn_add_sysfs+0x43/0xb0 [bluetooth]
[ 3290.969689]        hci_conn_complete_evt.isra.71+0x124/0x750 [bluetooth]
[ 3290.969747]        hci_event_packet+0xd6c/0x28a0 [bluetooth]
[ 3290.969798]        hci_rx_work+0x213/0x640 [bluetooth]
[ 3290.969842]        process_one_work+0x2aa/0x650
[ 3290.969851]        worker_thread+0x39/0x400
[ 3290.969859]        kthread+0x142/0x170
[ 3290.969865]        ret_from_fork+0x22/0x30
[ 3290.969872]
               -> #2 (&hdev->lock){+.+.}-{3:3}:
[ 3290.969881]        __mutex_lock+0x9d/0xa30
[ 3290.969887]        hci_event_packet+0xba/0x28a0 [bluetooth]
[ 3290.969935]        hci_rx_work+0x213/0x640 [bluetooth]
[ 3290.969978]        process_one_work+0x2aa/0x650
[ 3290.969985]        worker_thread+0x39/0x400
[ 3290.969993]        kthread+0x142/0x170
[ 3290.969999]        ret_from_fork+0x22/0x30
[ 3290.970004]
               -> #1 ((work_completion)(&hdev->rx_work)){+.+.}-{0:0}:
[ 3290.970013]        process_one_work+0x27d/0x650
[ 3290.970020]        worker_thread+0x39/0x400
[ 3290.970028]        kthread+0x142/0x170
[ 3290.970033]        ret_from_fork+0x22/0x30
[ 3290.970038]
               -> #0 ((wq_completion)hci0#2){+.+.}-{0:0}:
[ 3290.970047]        __lock_acquire+0x15cb/0x1b50
[ 3290.970054]        lock_acquire+0x26c/0x300
[ 3290.970059]        flush_workqueue+0xae/0x4a0
[ 3290.970066]        drain_workqueue+0xa1/0x130
[ 3290.970073]        destroy_workqueue+0x34/0x1f0
[ 3290.970081]        hci_release_dev+0x49/0x180 [bluetooth]
[ 3290.970130]        bt_host_release+0x1d/0x30 [bluetooth]
[ 3290.970195]        device_release+0x33/0x90
[ 3290.970201]        kobject_release+0x63/0x160
[ 3290.970211]        dpm_resume+0x164/0x3e0
[ 3290.970215]        dpm_resume_end+0xd/0x20
[ 3290.970220]        suspend_devices_and_enter+0x1a4/0xba0
[ 3290.970229]        pm_suspend+0x26b/0x310
[ 3290.970236]        state_store+0x42/0x90
[ 3290.970243]        kernfs_fop_write_iter+0x135/0x1b0
[ 3290.970251]        new_sync_write+0x125/0x1c0
[ 3290.970257]        vfs_write+0x360/0x3c0
[ 3290.970263]        ksys_write+0xa7/0xe0
[ 3290.970269]        do_syscall_64+0x3a/0x80
[ 3290.970276]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3290.970284]
               other info that might help us debug this:

[ 3290.970285] Chain exists of:
                 (wq_completion)hci0#2 --> &hdev->lock --> dpm_list_mtx

[ 3290.970297]  Possible unsafe locking scenario:

[ 3290.970299]        CPU0                    CPU1
[ 3290.970300]        ----                    ----
[ 3290.970302]   lock(dpm_list_mtx);
[ 3290.970306]                                lock(&hdev->lock);
[ 3290.970310]                                lock(dpm_list_mtx);
[ 3290.970314]   lock((wq_completion)hci0#2);
[ 3290.970319]
                *** DEADLOCK ***

[ 3290.970321] 7 locks held by systemd-sleep/4553:
[ 3290.970325]  #0: ffff888103bcd448 (sb_writers#4){.+.+}-{0:0}, at: ksys_write+0xa7/0xe0
[ 3290.970341]  #1: ffff888115a14488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x103/0x1b0
[ 3290.970355]  #2: ffff888100f719e0 (kn->active#233){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x10c/0x1b0
[ 3290.970369]  #3: ffffffff82661048 (autosleep_lock){+.+.}-{3:3}, at: state_store+0x12/0x90
[ 3290.970384]  #4: ffffffff82658ac8 (system_transition_mutex){+.+.}-{3:3}, at: pm_suspend+0x9f/0x310
[ 3290.970399]  #5: ffffffff827f2a48 (acpi_scan_lock){+.+.}-{3:3}, at: acpi_suspend_begin+0x4c/0x80
[ 3290.970416]  #6: ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0
[ 3290.970428]
               stack backtrace:
[ 3290.970431] CPU: 3 PID: 4553 Comm: systemd-sleep Tainted: G S                5.15.0+ #2420
[ 3290.970438] Hardware name: Dell Inc. XPS 13 9380/0RYJWW, BIOS 1.5.0 06/03/2019
[ 3290.970441] Call Trace:
[ 3290.970446]  dump_stack_lvl+0x44/0x57
[ 3290.970454]  check_noncircular+0x105/0x120
[ 3290.970468]  ? __lock_acquire+0x15cb/0x1b50
[ 3290.970474]  __lock_acquire+0x15cb/0x1b50
[ 3290.970487]  lock_acquire+0x26c/0x300
[ 3290.970493]  ? flush_workqueue+0x87/0x4a0
[ 3290.970503]  ? __raw_spin_lock_init+0x3b/0x60
[ 3290.970510]  ? lockdep_init_map_type+0x58/0x240
[ 3290.970519]  flush_workqueue+0xae/0x4a0
[ 3290.970526]  ? flush_workqueue+0x87/0x4a0
[ 3290.970544]  ? drain_workqueue+0xa1/0x130
[ 3290.970552]  drain_workqueue+0xa1/0x130
[ 3290.970561]  destroy_workqueue+0x34/0x1f0
[ 3290.970572]  hci_release_dev+0x49/0x180 [bluetooth]
[ 3290.970624]  bt_host_release+0x1d/0x30 [bluetooth]
[ 3290.970687]  device_release+0x33/0x90
[ 3290.970695]  kobject_release+0x63/0x160
[ 3290.970705]  dpm_resume+0x164/0x3e0
[ 3290.970710]  ? dpm_resume_early+0x251/0x3b0
[ 3290.970718]  dpm_resume_end+0xd/0x20
[ 3290.970723]  suspend_devices_and_enter+0x1a4/0xba0
[ 3290.970737]  pm_suspend+0x26b/0x310
[ 3290.970746]  state_store+0x42/0x90
[ 3290.970755]  kernfs_fop_write_iter+0x135/0x1b0
[ 3290.970764]  new_sync_write+0x125/0x1c0
[ 3290.970777]  vfs_write+0x360/0x3c0
[ 3290.970785]  ksys_write+0xa7/0xe0
[ 3290.970794]  do_syscall_64+0x3a/0x80
[ 3290.970803]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3290.970811] RIP: 0033:0x7f41b1328164
[ 3290.970819] Code: 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 80 00 00 00 00 8b 05 4a d2 2c 00 48 63 ff 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 55 53 48 89 d5 48 89 f3 48 83
[ 3290.970824] RSP: 002b:00007ffe6ae21b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 3290.970831] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f41b1328164
[ 3290.970836] RDX: 0000000000000004 RSI: 000055965e651070 RDI: 0000000000000004
[ 3290.970839] RBP: 000055965e651070 R08: 000055965e64f390 R09: 00007f41b1e3d1c0
[ 3290.970843] R10: 000000000000000a R11: 0000000000000246 R12: 0000000000000004
[ 3290.970846] R13: 0000000000000001 R14: 000055965e64f2b0 R15: 0000000000000004

Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-11-05 16:10:11 +01:00

2038 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* drivers/base/power/main.c - Where the driver meets power management.
*
* Copyright (c) 2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
*
* The driver model core calls device_pm_add() when a device is registered.
* This will initialize the embedded device_pm_info object in the device
* and add it to the list of power-controlled devices. sysfs entries for
* controlling device power management will also be added.
*
* A separate list is used for keeping track of power info, because the power
* domain dependencies may differ from the ancestral dependencies that the
* subsystem list maintains.
*/
#define pr_fmt(fmt) "PM: " fmt
#define dev_fmt pr_fmt
#include <linux/device.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/pm-trace.h>
#include <linux/pm_wakeirq.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/async.h>
#include <linux/suspend.h>
#include <trace/events/power.h>
#include <linux/cpufreq.h>
#include <linux/devfreq.h>
#include <linux/timer.h>
#include "../base.h"
#include "power.h"
typedef int (*pm_callback_t)(struct device *);
#define list_for_each_entry_rcu_locked(pos, head, member) \
list_for_each_entry_rcu(pos, head, member, \
device_links_read_lock_held())
/*
* The entries in the dpm_list list are in a depth first order, simply
* because children are guaranteed to be discovered after parents, and
* are inserted at the back of the list on discovery.
*
* Since device_pm_add() may be called with a device lock held,
* we must never try to acquire a device lock while holding
* dpm_list_mutex.
*/
LIST_HEAD(dpm_list);
static LIST_HEAD(dpm_prepared_list);
static LIST_HEAD(dpm_suspended_list);
static LIST_HEAD(dpm_late_early_list);
static LIST_HEAD(dpm_noirq_list);
struct suspend_stats suspend_stats;
static DEFINE_MUTEX(dpm_list_mtx);
static pm_message_t pm_transition;
static int async_error;
static const char *pm_verb(int event)
{
switch (event) {
case PM_EVENT_SUSPEND:
return "suspend";
case PM_EVENT_RESUME:
return "resume";
case PM_EVENT_FREEZE:
return "freeze";
case PM_EVENT_QUIESCE:
return "quiesce";
case PM_EVENT_HIBERNATE:
return "hibernate";
case PM_EVENT_THAW:
return "thaw";
case PM_EVENT_RESTORE:
return "restore";
case PM_EVENT_RECOVER:
return "recover";
default:
return "(unknown PM event)";
}
}
/**
* device_pm_sleep_init - Initialize system suspend-related device fields.
* @dev: Device object being initialized.
*/
void device_pm_sleep_init(struct device *dev)
{
dev->power.is_prepared = false;
dev->power.is_suspended = false;
dev->power.is_noirq_suspended = false;
dev->power.is_late_suspended = false;
init_completion(&dev->power.completion);
complete_all(&dev->power.completion);
dev->power.wakeup = NULL;
INIT_LIST_HEAD(&dev->power.entry);
}
/**
* device_pm_lock - Lock the list of active devices used by the PM core.
*/
void device_pm_lock(void)
{
mutex_lock(&dpm_list_mtx);
}
/**
* device_pm_unlock - Unlock the list of active devices used by the PM core.
*/
void device_pm_unlock(void)
{
mutex_unlock(&dpm_list_mtx);
}
/**
* device_pm_add - Add a device to the PM core's list of active devices.
* @dev: Device to add to the list.
*/
void device_pm_add(struct device *dev)
{
/* Skip PM setup/initialization. */
if (device_pm_not_required(dev))
return;
pr_debug("Adding info for %s:%s\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
device_pm_check_callbacks(dev);
mutex_lock(&dpm_list_mtx);
if (dev->parent && dev->parent->power.is_prepared)
dev_warn(dev, "parent %s should not be sleeping\n",
dev_name(dev->parent));
list_add_tail(&dev->power.entry, &dpm_list);
dev->power.in_dpm_list = true;
mutex_unlock(&dpm_list_mtx);
}
/**
* device_pm_remove - Remove a device from the PM core's list of active devices.
* @dev: Device to be removed from the list.
*/
void device_pm_remove(struct device *dev)
{
if (device_pm_not_required(dev))
return;
pr_debug("Removing info for %s:%s\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
complete_all(&dev->power.completion);
mutex_lock(&dpm_list_mtx);
list_del_init(&dev->power.entry);
dev->power.in_dpm_list = false;
mutex_unlock(&dpm_list_mtx);
device_wakeup_disable(dev);
pm_runtime_remove(dev);
device_pm_check_callbacks(dev);
}
/**
* device_pm_move_before - Move device in the PM core's list of active devices.
* @deva: Device to move in dpm_list.
* @devb: Device @deva should come before.
*/
void device_pm_move_before(struct device *deva, struct device *devb)
{
pr_debug("Moving %s:%s before %s:%s\n",
deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
/* Delete deva from dpm_list and reinsert before devb. */
list_move_tail(&deva->power.entry, &devb->power.entry);
}
/**
* device_pm_move_after - Move device in the PM core's list of active devices.
* @deva: Device to move in dpm_list.
* @devb: Device @deva should come after.
*/
void device_pm_move_after(struct device *deva, struct device *devb)
{
pr_debug("Moving %s:%s after %s:%s\n",
deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
/* Delete deva from dpm_list and reinsert after devb. */
list_move(&deva->power.entry, &devb->power.entry);
}
/**
* device_pm_move_last - Move device to end of the PM core's list of devices.
* @dev: Device to move in dpm_list.
*/
void device_pm_move_last(struct device *dev)
{
pr_debug("Moving %s:%s to end of list\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
list_move_tail(&dev->power.entry, &dpm_list);
}
static ktime_t initcall_debug_start(struct device *dev, void *cb)
{
if (!pm_print_times_enabled)
return 0;
dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
task_pid_nr(current),
dev->parent ? dev_name(dev->parent) : "none");
return ktime_get();
}
static void initcall_debug_report(struct device *dev, ktime_t calltime,
void *cb, int error)
{
ktime_t rettime;
if (!pm_print_times_enabled)
return;
rettime = ktime_get();
dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
(unsigned long long)ktime_us_delta(rettime, calltime));
}
/**
* dpm_wait - Wait for a PM operation to complete.
* @dev: Device to wait for.
* @async: If unset, wait only if the device's power.async_suspend flag is set.
*/
static void dpm_wait(struct device *dev, bool async)
{
if (!dev)
return;
if (async || (pm_async_enabled && dev->power.async_suspend))
wait_for_completion(&dev->power.completion);
}
static int dpm_wait_fn(struct device *dev, void *async_ptr)
{
dpm_wait(dev, *((bool *)async_ptr));
return 0;
}
static void dpm_wait_for_children(struct device *dev, bool async)
{
device_for_each_child(dev, &async, dpm_wait_fn);
}
static void dpm_wait_for_suppliers(struct device *dev, bool async)
{
struct device_link *link;
int idx;
idx = device_links_read_lock();
/*
* If the supplier goes away right after we've checked the link to it,
* we'll wait for its completion to change the state, but that's fine,
* because the only things that will block as a result are the SRCU
* callbacks freeing the link objects for the links in the list we're
* walking.
*/
list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
if (READ_ONCE(link->status) != DL_STATE_DORMANT)
dpm_wait(link->supplier, async);
device_links_read_unlock(idx);
}
static bool dpm_wait_for_superior(struct device *dev, bool async)
{
struct device *parent;
/*
* If the device is resumed asynchronously and the parent's callback
* deletes both the device and the parent itself, the parent object may
* be freed while this function is running, so avoid that by reference
* counting the parent once more unless the device has been deleted
* already (in which case return right away).
*/
mutex_lock(&dpm_list_mtx);
if (!device_pm_initialized(dev)) {
mutex_unlock(&dpm_list_mtx);
return false;
}
parent = get_device(dev->parent);
mutex_unlock(&dpm_list_mtx);
dpm_wait(parent, async);
put_device(parent);
dpm_wait_for_suppliers(dev, async);
/*
* If the parent's callback has deleted the device, attempting to resume
* it would be invalid, so avoid doing that then.
*/
return device_pm_initialized(dev);
}
static void dpm_wait_for_consumers(struct device *dev, bool async)
{
struct device_link *link;
int idx;
idx = device_links_read_lock();
/*
* The status of a device link can only be changed from "dormant" by a
* probe, but that cannot happen during system suspend/resume. In
* theory it can change to "dormant" at that time, but then it is
* reasonable to wait for the target device anyway (eg. if it goes
* away, it's better to wait for it to go away completely and then
* continue instead of trying to continue in parallel with its
* unregistration).
*/
list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
if (READ_ONCE(link->status) != DL_STATE_DORMANT)
dpm_wait(link->consumer, async);
device_links_read_unlock(idx);
}
static void dpm_wait_for_subordinate(struct device *dev, bool async)
{
dpm_wait_for_children(dev, async);
dpm_wait_for_consumers(dev, async);
}
/**
* pm_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*/
static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend;
case PM_EVENT_RESUME:
return ops->resume;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze;
case PM_EVENT_HIBERNATE:
return ops->poweroff;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw;
case PM_EVENT_RESTORE:
return ops->restore;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
/**
* pm_late_early_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend_late;
case PM_EVENT_RESUME:
return ops->resume_early;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze_late;
case PM_EVENT_HIBERNATE:
return ops->poweroff_late;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw_early;
case PM_EVENT_RESTORE:
return ops->restore_early;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
/**
* pm_noirq_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend_noirq;
case PM_EVENT_RESUME:
return ops->resume_noirq;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze_noirq;
case PM_EVENT_HIBERNATE:
return ops->poweroff_noirq;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw_noirq;
case PM_EVENT_RESTORE:
return ops->restore_noirq;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
{
dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
", may wakeup" : "", dev->power.driver_flags);
}
static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
int error)
{
dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
error);
}
static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
const char *info)
{
ktime_t calltime;
u64 usecs64;
int usecs;
calltime = ktime_get();
usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
do_div(usecs64, NSEC_PER_USEC);
usecs = usecs64;
if (usecs == 0)
usecs = 1;
pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
info ?: "", info ? " " : "", pm_verb(state.event),
error ? "aborted" : "complete",
usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
}
static int dpm_run_callback(pm_callback_t cb, struct device *dev,
pm_message_t state, const char *info)
{
ktime_t calltime;
int error;
if (!cb)
return 0;
calltime = initcall_debug_start(dev, cb);
pm_dev_dbg(dev, state, info);
trace_device_pm_callback_start(dev, info, state.event);
error = cb(dev);
trace_device_pm_callback_end(dev, error);
suspend_report_result(cb, error);
initcall_debug_report(dev, calltime, cb, error);
return error;
}
#ifdef CONFIG_DPM_WATCHDOG
struct dpm_watchdog {
struct device *dev;
struct task_struct *tsk;
struct timer_list timer;
};
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
struct dpm_watchdog wd
/**
* dpm_watchdog_handler - Driver suspend / resume watchdog handler.
* @t: The timer that PM watchdog depends on.
*
* Called when a driver has timed out suspending or resuming.
* There's not much we can do here to recover so panic() to
* capture a crash-dump in pstore.
*/
static void dpm_watchdog_handler(struct timer_list *t)
{
struct dpm_watchdog *wd = from_timer(wd, t, timer);
dev_emerg(wd->dev, "**** DPM device timeout ****\n");
show_stack(wd->tsk, NULL, KERN_EMERG);
panic("%s %s: unrecoverable failure\n",
dev_driver_string(wd->dev), dev_name(wd->dev));
}
/**
* dpm_watchdog_set - Enable pm watchdog for given device.
* @wd: Watchdog. Must be allocated on the stack.
* @dev: Device to handle.
*/
static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
{
struct timer_list *timer = &wd->timer;
wd->dev = dev;
wd->tsk = current;
timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
/* use same timeout value for both suspend and resume */
timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
add_timer(timer);
}
/**
* dpm_watchdog_clear - Disable suspend/resume watchdog.
* @wd: Watchdog to disable.
*/
static void dpm_watchdog_clear(struct dpm_watchdog *wd)
{
struct timer_list *timer = &wd->timer;
del_timer_sync(timer);
destroy_timer_on_stack(timer);
}
#else
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
#define dpm_watchdog_set(x, y)
#define dpm_watchdog_clear(x)
#endif
/*------------------------- Resume routines -------------------------*/
/**
* dev_pm_skip_resume - System-wide device resume optimization check.
* @dev: Target device.
*
* Return:
* - %false if the transition under way is RESTORE.
* - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
* - The logical negation of %power.must_resume otherwise (that is, when the
* transition under way is RESUME).
*/
bool dev_pm_skip_resume(struct device *dev)
{
if (pm_transition.event == PM_EVENT_RESTORE)
return false;
if (pm_transition.event == PM_EVENT_THAW)
return dev_pm_skip_suspend(dev);
return !dev->power.must_resume;
}
/**
* device_resume_noirq - Execute a "noirq resume" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
const char *info = NULL;
bool skip_resume;
int error = 0;
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore || dev->power.direct_complete)
goto Out;
if (!dev->power.is_noirq_suspended)
goto Out;
if (!dpm_wait_for_superior(dev, async))
goto Out;
skip_resume = dev_pm_skip_resume(dev);
/*
* If the driver callback is skipped below or by the middle layer
* callback and device_resume_early() also skips the driver callback for
* this device later, it needs to appear as "suspended" to PM-runtime,
* so change its status accordingly.
*
* Otherwise, the device is going to be resumed, so set its PM-runtime
* status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
* to avoid confusing drivers that don't use it.
*/
if (skip_resume)
pm_runtime_set_suspended(dev);
else if (dev_pm_skip_suspend(dev))
pm_runtime_set_active(dev);
if (dev->pm_domain) {
info = "noirq power domain ";
callback = pm_noirq_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "noirq type ";
callback = pm_noirq_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "noirq class ";
callback = pm_noirq_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "noirq bus ";
callback = pm_noirq_op(dev->bus->pm, state);
}
if (callback)
goto Run;
if (skip_resume)
goto Skip;
if (dev->driver && dev->driver->pm) {
info = "noirq driver ";
callback = pm_noirq_op(dev->driver->pm, state);
}
Run:
error = dpm_run_callback(callback, dev, state, info);
Skip:
dev->power.is_noirq_suspended = false;
Out:
complete_all(&dev->power.completion);
TRACE_RESUME(error);
return error;
}
static bool is_async(struct device *dev)
{
return dev->power.async_suspend && pm_async_enabled
&& !pm_trace_is_enabled();
}
static bool dpm_async_fn(struct device *dev, async_func_t func)
{
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule_dev(func, dev);
return true;
}
return false;
}
static void async_resume_noirq(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume_noirq(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
static void dpm_noirq_resume_devices(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
/*
* Advanced the async threads upfront,
* in case the starting of async threads is
* delayed by non-async resuming devices.
*/
list_for_each_entry(dev, &dpm_noirq_list, power.entry)
dpm_async_fn(dev, async_resume_noirq);
while (!list_empty(&dpm_noirq_list)) {
dev = to_device(dpm_noirq_list.next);
get_device(dev);
list_move_tail(&dev->power.entry, &dpm_late_early_list);
mutex_unlock(&dpm_list_mtx);
if (!is_async(dev)) {
int error;
error = device_resume_noirq(dev, state, false);
if (error) {
suspend_stats.failed_resume_noirq++;
dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, " noirq", error);
}
}
put_device(dev);
mutex_lock(&dpm_list_mtx);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, 0, "noirq");
trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
}
/**
* dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
* @state: PM transition of the system being carried out.
*
* Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
* allow device drivers' interrupt handlers to be called.
*/
void dpm_resume_noirq(pm_message_t state)
{
dpm_noirq_resume_devices(state);
resume_device_irqs();
device_wakeup_disarm_wake_irqs();
}
/**
* device_resume_early - Execute an "early resume" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static int device_resume_early(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
const char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore || dev->power.direct_complete)
goto Out;
if (!dev->power.is_late_suspended)
goto Out;
if (!dpm_wait_for_superior(dev, async))
goto Out;
if (dev->pm_domain) {
info = "early power domain ";
callback = pm_late_early_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "early type ";
callback = pm_late_early_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "early class ";
callback = pm_late_early_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "early bus ";
callback = pm_late_early_op(dev->bus->pm, state);
}
if (callback)
goto Run;
if (dev_pm_skip_resume(dev))
goto Skip;
if (dev->driver && dev->driver->pm) {
info = "early driver ";
callback = pm_late_early_op(dev->driver->pm, state);
}
Run:
error = dpm_run_callback(callback, dev, state, info);
Skip:
dev->power.is_late_suspended = false;
Out:
TRACE_RESUME(error);
pm_runtime_enable(dev);
complete_all(&dev->power.completion);
return error;
}
static void async_resume_early(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume_early(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
/**
* dpm_resume_early - Execute "early resume" callbacks for all devices.
* @state: PM transition of the system being carried out.
*/
void dpm_resume_early(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
/*
* Advanced the async threads upfront,
* in case the starting of async threads is
* delayed by non-async resuming devices.
*/
list_for_each_entry(dev, &dpm_late_early_list, power.entry)
dpm_async_fn(dev, async_resume_early);
while (!list_empty(&dpm_late_early_list)) {
dev = to_device(dpm_late_early_list.next);
get_device(dev);
list_move_tail(&dev->power.entry, &dpm_suspended_list);
mutex_unlock(&dpm_list_mtx);
if (!is_async(dev)) {
int error;
error = device_resume_early(dev, state, false);
if (error) {
suspend_stats.failed_resume_early++;
dpm_save_failed_step(SUSPEND_RESUME_EARLY);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, " early", error);
}
}
put_device(dev);
mutex_lock(&dpm_list_mtx);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, 0, "early");
trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
}
/**
* dpm_resume_start - Execute "noirq" and "early" device callbacks.
* @state: PM transition of the system being carried out.
*/
void dpm_resume_start(pm_message_t state)
{
dpm_resume_noirq(state);
dpm_resume_early(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_start);
/**
* device_resume - Execute "resume" callbacks for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*/
static int device_resume(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
const char *info = NULL;
int error = 0;
DECLARE_DPM_WATCHDOG_ON_STACK(wd);
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore)
goto Complete;
if (dev->power.direct_complete) {
/* Match the pm_runtime_disable() in __device_suspend(). */
pm_runtime_enable(dev);
goto Complete;
}
if (!dpm_wait_for_superior(dev, async))
goto Complete;
dpm_watchdog_set(&wd, dev);
device_lock(dev);
/*
* This is a fib. But we'll allow new children to be added below
* a resumed device, even if the device hasn't been completed yet.
*/
dev->power.is_prepared = false;
if (!dev->power.is_suspended)
goto Unlock;
if (dev->pm_domain) {
info = "power domain ";
callback = pm_op(&dev->pm_domain->ops, state);
goto Driver;
}
if (dev->type && dev->type->pm) {
info = "type ";
callback = pm_op(dev->type->pm, state);
goto Driver;
}
if (dev->class && dev->class->pm) {
info = "class ";
callback = pm_op(dev->class->pm, state);
goto Driver;
}
if (dev->bus) {
if (dev->bus->pm) {
info = "bus ";
callback = pm_op(dev->bus->pm, state);
} else if (dev->bus->resume) {
info = "legacy bus ";
callback = dev->bus->resume;
goto End;
}
}
Driver:
if (!callback && dev->driver && dev->driver->pm) {
info = "driver ";
callback = pm_op(dev->driver->pm, state);
}
End:
error = dpm_run_callback(callback, dev, state, info);
dev->power.is_suspended = false;
Unlock:
device_unlock(dev);
dpm_watchdog_clear(&wd);
Complete:
complete_all(&dev->power.completion);
TRACE_RESUME(error);
return error;
}
static void async_resume(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
/**
* dpm_resume - Execute "resume" callbacks for non-sysdev devices.
* @state: PM transition of the system being carried out.
*
* Execute the appropriate "resume" callback for all devices whose status
* indicates that they are suspended.
*/
void dpm_resume(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume"), state.event, true);
might_sleep();
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
list_for_each_entry(dev, &dpm_suspended_list, power.entry)
dpm_async_fn(dev, async_resume);
while (!list_empty(&dpm_suspended_list)) {
dev = to_device(dpm_suspended_list.next);
get_device(dev);
if (!is_async(dev)) {
int error;
mutex_unlock(&dpm_list_mtx);
error = device_resume(dev, state, false);
if (error) {
suspend_stats.failed_resume++;
dpm_save_failed_step(SUSPEND_RESUME);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, "", error);
}
mutex_lock(&dpm_list_mtx);
}
if (!list_empty(&dev->power.entry))
list_move_tail(&dev->power.entry, &dpm_prepared_list);
mutex_unlock(&dpm_list_mtx);
put_device(dev);
mutex_lock(&dpm_list_mtx);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, 0, NULL);
cpufreq_resume();
devfreq_resume();
trace_suspend_resume(TPS("dpm_resume"), state.event, false);
}
/**
* device_complete - Complete a PM transition for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
*/
static void device_complete(struct device *dev, pm_message_t state)
{
void (*callback)(struct device *) = NULL;
const char *info = NULL;
if (dev->power.syscore)
goto out;
device_lock(dev);
if (dev->pm_domain) {
info = "completing power domain ";
callback = dev->pm_domain->ops.complete;
} else if (dev->type && dev->type->pm) {
info = "completing type ";
callback = dev->type->pm->complete;
} else if (dev->class && dev->class->pm) {
info = "completing class ";
callback = dev->class->pm->complete;
} else if (dev->bus && dev->bus->pm) {
info = "completing bus ";
callback = dev->bus->pm->complete;
}
if (!callback && dev->driver && dev->driver->pm) {
info = "completing driver ";
callback = dev->driver->pm->complete;
}
if (callback) {
pm_dev_dbg(dev, state, info);
callback(dev);
}
device_unlock(dev);
out:
pm_runtime_put(dev);
}
/**
* dpm_complete - Complete a PM transition for all non-sysdev devices.
* @state: PM transition of the system being carried out.
*
* Execute the ->complete() callbacks for all devices whose PM status is not
* DPM_ON (this allows new devices to be registered).
*/
void dpm_complete(pm_message_t state)
{
struct list_head list;
trace_suspend_resume(TPS("dpm_complete"), state.event, true);
might_sleep();
INIT_LIST_HEAD(&list);
mutex_lock(&dpm_list_mtx);
while (!list_empty(&dpm_prepared_list)) {
struct device *dev = to_device(dpm_prepared_list.prev);
get_device(dev);
dev->power.is_prepared = false;
list_move(&dev->power.entry, &list);
mutex_unlock(&dpm_list_mtx);
trace_device_pm_callback_start(dev, "", state.event);
device_complete(dev, state);
trace_device_pm_callback_end(dev, 0);
put_device(dev);
mutex_lock(&dpm_list_mtx);
}
list_splice(&list, &dpm_list);
mutex_unlock(&dpm_list_mtx);
/* Allow device probing and trigger re-probing of deferred devices */
device_unblock_probing();
trace_suspend_resume(TPS("dpm_complete"), state.event, false);
}
/**
* dpm_resume_end - Execute "resume" callbacks and complete system transition.
* @state: PM transition of the system being carried out.
*
* Execute "resume" callbacks for all devices and complete the PM transition of
* the system.
*/
void dpm_resume_end(pm_message_t state)
{
dpm_resume(state);
dpm_complete(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_end);
/*------------------------- Suspend routines -------------------------*/
/**
* resume_event - Return a "resume" message for given "suspend" sleep state.
* @sleep_state: PM message representing a sleep state.
*
* Return a PM message representing the resume event corresponding to given
* sleep state.
*/
static pm_message_t resume_event(pm_message_t sleep_state)
{
switch (sleep_state.event) {
case PM_EVENT_SUSPEND:
return PMSG_RESUME;
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return PMSG_RECOVER;
case PM_EVENT_HIBERNATE:
return PMSG_RESTORE;
}
return PMSG_ON;
}
static void dpm_superior_set_must_resume(struct device *dev)
{
struct device_link *link;
int idx;
if (dev->parent)
dev->parent->power.must_resume = true;
idx = device_links_read_lock();
list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
link->supplier->power.must_resume = true;
device_links_read_unlock(idx);
}
/**
* __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
const char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
dpm_wait_for_subordinate(dev, async);
if (async_error)
goto Complete;
if (dev->power.syscore || dev->power.direct_complete)
goto Complete;
if (dev->pm_domain) {
info = "noirq power domain ";
callback = pm_noirq_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "noirq type ";
callback = pm_noirq_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "noirq class ";
callback = pm_noirq_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "noirq bus ";
callback = pm_noirq_op(dev->bus->pm, state);
}
if (callback)
goto Run;
if (dev_pm_skip_suspend(dev))
goto Skip;
if (dev->driver && dev->driver->pm) {
info = "noirq driver ";
callback = pm_noirq_op(dev->driver->pm, state);
}
Run:
error = dpm_run_callback(callback, dev, state, info);
if (error) {
async_error = error;
goto Complete;
}
Skip:
dev->power.is_noirq_suspended = true;
/*
* Skipping the resume of devices that were in use right before the
* system suspend (as indicated by their PM-runtime usage counters)
* would be suboptimal. Also resume them if doing that is not allowed
* to be skipped.
*/
if (atomic_read(&dev->power.usage_count) > 1 ||
!(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
dev->power.may_skip_resume))
dev->power.must_resume = true;
if (dev->power.must_resume)
dpm_superior_set_must_resume(dev);
Complete:
complete_all(&dev->power.completion);
TRACE_SUSPEND(error);
return error;
}
static void async_suspend_noirq(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend_noirq(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend_noirq(struct device *dev)
{
if (dpm_async_fn(dev, async_suspend_noirq))
return 0;
return __device_suspend_noirq(dev, pm_transition, false);
}
static int dpm_noirq_suspend_devices(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_late_early_list)) {
struct device *dev = to_device(dpm_late_early_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend_noirq(dev);
mutex_lock(&dpm_list_mtx);
if (error) {
pm_dev_err(dev, state, " noirq", error);
dpm_save_failed_dev(dev_name(dev));
} else if (!list_empty(&dev->power.entry)) {
list_move(&dev->power.entry, &dpm_noirq_list);
}
mutex_unlock(&dpm_list_mtx);
put_device(dev);
mutex_lock(&dpm_list_mtx);
if (error || async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend_noirq++;
dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
}
dpm_show_time(starttime, state, error, "noirq");
trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
return error;
}
/**
* dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
* @state: PM transition of the system being carried out.
*
* Prevent device drivers' interrupt handlers from being called and invoke
* "noirq" suspend callbacks for all non-sysdev devices.
*/
int dpm_suspend_noirq(pm_message_t state)
{
int ret;
device_wakeup_arm_wake_irqs();
suspend_device_irqs();
ret = dpm_noirq_suspend_devices(state);
if (ret)
dpm_resume_noirq(resume_event(state));
return ret;
}
static void dpm_propagate_wakeup_to_parent(struct device *dev)
{
struct device *parent = dev->parent;
if (!parent)
return;
spin_lock_irq(&parent->power.lock);
if (device_wakeup_path(dev) && !parent->power.ignore_children)
parent->power.wakeup_path = true;
spin_unlock_irq(&parent->power.lock);
}
/**
* __device_suspend_late - Execute a "late suspend" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
const char *info = NULL;
int error = 0;
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
__pm_runtime_disable(dev, false);
dpm_wait_for_subordinate(dev, async);
if (async_error)
goto Complete;
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
if (dev->power.syscore || dev->power.direct_complete)
goto Complete;
if (dev->pm_domain) {
info = "late power domain ";
callback = pm_late_early_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "late type ";
callback = pm_late_early_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "late class ";
callback = pm_late_early_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "late bus ";
callback = pm_late_early_op(dev->bus->pm, state);
}
if (callback)
goto Run;
if (dev_pm_skip_suspend(dev))
goto Skip;
if (dev->driver && dev->driver->pm) {
info = "late driver ";
callback = pm_late_early_op(dev->driver->pm, state);
}
Run:
error = dpm_run_callback(callback, dev, state, info);
if (error) {
async_error = error;
goto Complete;
}
dpm_propagate_wakeup_to_parent(dev);
Skip:
dev->power.is_late_suspended = true;
Complete:
TRACE_SUSPEND(error);
complete_all(&dev->power.completion);
return error;
}
static void async_suspend_late(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend_late(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend_late(struct device *dev)
{
if (dpm_async_fn(dev, async_suspend_late))
return 0;
return __device_suspend_late(dev, pm_transition, false);
}
/**
* dpm_suspend_late - Execute "late suspend" callbacks for all devices.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend_late(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
wake_up_all_idle_cpus();
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_suspended_list)) {
struct device *dev = to_device(dpm_suspended_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend_late(dev);
mutex_lock(&dpm_list_mtx);
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_late_early_list);
if (error) {
pm_dev_err(dev, state, " late", error);
dpm_save_failed_dev(dev_name(dev));
}
mutex_unlock(&dpm_list_mtx);
put_device(dev);
mutex_lock(&dpm_list_mtx);
if (error || async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend_late++;
dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
dpm_resume_early(resume_event(state));
}
dpm_show_time(starttime, state, error, "late");
trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
return error;
}
/**
* dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend_end(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error;
error = dpm_suspend_late(state);
if (error)
goto out;
error = dpm_suspend_noirq(state);
if (error)
dpm_resume_early(resume_event(state));
out:
dpm_show_time(starttime, state, error, "end");
return error;
}
EXPORT_SYMBOL_GPL(dpm_suspend_end);
/**
* legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
* @dev: Device to suspend.
* @state: PM transition of the system being carried out.
* @cb: Suspend callback to execute.
* @info: string description of caller.
*/
static int legacy_suspend(struct device *dev, pm_message_t state,
int (*cb)(struct device *dev, pm_message_t state),
const char *info)
{
int error;
ktime_t calltime;
calltime = initcall_debug_start(dev, cb);
trace_device_pm_callback_start(dev, info, state.event);
error = cb(dev, state);
trace_device_pm_callback_end(dev, error);
suspend_report_result(cb, error);
initcall_debug_report(dev, calltime, cb, error);
return error;
}
static void dpm_clear_superiors_direct_complete(struct device *dev)
{
struct device_link *link;
int idx;
if (dev->parent) {
spin_lock_irq(&dev->parent->power.lock);
dev->parent->power.direct_complete = false;
spin_unlock_irq(&dev->parent->power.lock);
}
idx = device_links_read_lock();
list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
spin_lock_irq(&link->supplier->power.lock);
link->supplier->power.direct_complete = false;
spin_unlock_irq(&link->supplier->power.lock);
}
device_links_read_unlock(idx);
}
/**
* __device_suspend - Execute "suspend" callbacks for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*/
static int __device_suspend(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
const char *info = NULL;
int error = 0;
DECLARE_DPM_WATCHDOG_ON_STACK(wd);
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
dpm_wait_for_subordinate(dev, async);
if (async_error) {
dev->power.direct_complete = false;
goto Complete;
}
/*
* Wait for possible runtime PM transitions of the device in progress
* to complete and if there's a runtime resume request pending for it,
* resume it before proceeding with invoking the system-wide suspend
* callbacks for it.
*
* If the system-wide suspend callbacks below change the configuration
* of the device, they must disable runtime PM for it or otherwise
* ensure that its runtime-resume callbacks will not be confused by that
* change in case they are invoked going forward.
*/
pm_runtime_barrier(dev);
if (pm_wakeup_pending()) {
dev->power.direct_complete = false;
async_error = -EBUSY;
goto Complete;
}
if (dev->power.syscore)
goto Complete;
/* Avoid direct_complete to let wakeup_path propagate. */
if (device_may_wakeup(dev) || device_wakeup_path(dev))
dev->power.direct_complete = false;
if (dev->power.direct_complete) {
if (pm_runtime_status_suspended(dev)) {
pm_runtime_disable(dev);
if (pm_runtime_status_suspended(dev)) {
pm_dev_dbg(dev, state, "direct-complete ");
goto Complete;
}
pm_runtime_enable(dev);
}
dev->power.direct_complete = false;
}
dev->power.may_skip_resume = true;
dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
dpm_watchdog_set(&wd, dev);
device_lock(dev);
if (dev->pm_domain) {
info = "power domain ";
callback = pm_op(&dev->pm_domain->ops, state);
goto Run;
}
if (dev->type && dev->type->pm) {
info = "type ";
callback = pm_op(dev->type->pm, state);
goto Run;
}
if (dev->class && dev->class->pm) {
info = "class ";
callback = pm_op(dev->class->pm, state);
goto Run;
}
if (dev->bus) {
if (dev->bus->pm) {
info = "bus ";
callback = pm_op(dev->bus->pm, state);
} else if (dev->bus->suspend) {
pm_dev_dbg(dev, state, "legacy bus ");
error = legacy_suspend(dev, state, dev->bus->suspend,
"legacy bus ");
goto End;
}
}
Run:
if (!callback && dev->driver && dev->driver->pm) {
info = "driver ";
callback = pm_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
End:
if (!error) {
dev->power.is_suspended = true;
if (device_may_wakeup(dev))
dev->power.wakeup_path = true;
dpm_propagate_wakeup_to_parent(dev);
dpm_clear_superiors_direct_complete(dev);
}
device_unlock(dev);
dpm_watchdog_clear(&wd);
Complete:
if (error)
async_error = error;
complete_all(&dev->power.completion);
TRACE_SUSPEND(error);
return error;
}
static void async_suspend(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend(struct device *dev)
{
if (dpm_async_fn(dev, async_suspend))
return 0;
return __device_suspend(dev, pm_transition, false);
}
/**
* dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
might_sleep();
devfreq_suspend();
cpufreq_suspend();
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_prepared_list)) {
struct device *dev = to_device(dpm_prepared_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend(dev);
mutex_lock(&dpm_list_mtx);
if (error) {
pm_dev_err(dev, state, "", error);
dpm_save_failed_dev(dev_name(dev));
} else if (!list_empty(&dev->power.entry)) {
list_move(&dev->power.entry, &dpm_suspended_list);
}
mutex_unlock(&dpm_list_mtx);
put_device(dev);
mutex_lock(&dpm_list_mtx);
if (error || async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend++;
dpm_save_failed_step(SUSPEND_SUSPEND);
}
dpm_show_time(starttime, state, error, NULL);
trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
return error;
}
/**
* device_prepare - Prepare a device for system power transition.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
*
* Execute the ->prepare() callback(s) for given device. No new children of the
* device may be registered after this function has returned.
*/
static int device_prepare(struct device *dev, pm_message_t state)
{
int (*callback)(struct device *) = NULL;
int ret = 0;
/*
* If a device's parent goes into runtime suspend at the wrong time,
* it won't be possible to resume the device. To prevent this we
* block runtime suspend here, during the prepare phase, and allow
* it again during the complete phase.
*/
pm_runtime_get_noresume(dev);
if (dev->power.syscore)
return 0;
device_lock(dev);
dev->power.wakeup_path = false;
if (dev->power.no_pm_callbacks)
goto unlock;
if (dev->pm_domain)
callback = dev->pm_domain->ops.prepare;
else if (dev->type && dev->type->pm)
callback = dev->type->pm->prepare;
else if (dev->class && dev->class->pm)
callback = dev->class->pm->prepare;
else if (dev->bus && dev->bus->pm)
callback = dev->bus->pm->prepare;
if (!callback && dev->driver && dev->driver->pm)
callback = dev->driver->pm->prepare;
if (callback)
ret = callback(dev);
unlock:
device_unlock(dev);
if (ret < 0) {
suspend_report_result(callback, ret);
pm_runtime_put(dev);
return ret;
}
/*
* A positive return value from ->prepare() means "this device appears
* to be runtime-suspended and its state is fine, so if it really is
* runtime-suspended, you can leave it in that state provided that you
* will do the same thing with all of its descendants". This only
* applies to suspend transitions, however.
*/
spin_lock_irq(&dev->power.lock);
dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
(ret > 0 || dev->power.no_pm_callbacks) &&
!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
spin_unlock_irq(&dev->power.lock);
return 0;
}
/**
* dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
* @state: PM transition of the system being carried out.
*
* Execute the ->prepare() callback(s) for all devices.
*/
int dpm_prepare(pm_message_t state)
{
int error = 0;
trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
might_sleep();
/*
* Give a chance for the known devices to complete their probes, before
* disable probing of devices. This sync point is important at least
* at boot time + hibernation restore.
*/
wait_for_device_probe();
/*
* It is unsafe if probing of devices will happen during suspend or
* hibernation and system behavior will be unpredictable in this case.
* So, let's prohibit device's probing here and defer their probes
* instead. The normal behavior will be restored in dpm_complete().
*/
device_block_probing();
mutex_lock(&dpm_list_mtx);
while (!list_empty(&dpm_list)) {
struct device *dev = to_device(dpm_list.next);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
trace_device_pm_callback_start(dev, "", state.event);
error = device_prepare(dev, state);
trace_device_pm_callback_end(dev, error);
mutex_lock(&dpm_list_mtx);
if (!error) {
dev->power.is_prepared = true;
if (!list_empty(&dev->power.entry))
list_move_tail(&dev->power.entry, &dpm_prepared_list);
} else if (error == -EAGAIN) {
error = 0;
} else {
dev_info(dev, "not prepared for power transition: code %d\n",
error);
}
mutex_unlock(&dpm_list_mtx);
put_device(dev);
mutex_lock(&dpm_list_mtx);
}
mutex_unlock(&dpm_list_mtx);
trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
return error;
}
/**
* dpm_suspend_start - Prepare devices for PM transition and suspend them.
* @state: PM transition of the system being carried out.
*
* Prepare all non-sysdev devices for system PM transition and execute "suspend"
* callbacks for them.
*/
int dpm_suspend_start(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error;
error = dpm_prepare(state);
if (error) {
suspend_stats.failed_prepare++;
dpm_save_failed_step(SUSPEND_PREPARE);
} else
error = dpm_suspend(state);
dpm_show_time(starttime, state, error, "start");
return error;
}
EXPORT_SYMBOL_GPL(dpm_suspend_start);
void __suspend_report_result(const char *function, void *fn, int ret)
{
if (ret)
pr_err("%s(): %pS returns %d\n", function, fn, ret);
}
EXPORT_SYMBOL_GPL(__suspend_report_result);
/**
* device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
* @subordinate: Device that needs to wait for @dev.
* @dev: Device to wait for.
*/
int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
{
dpm_wait(dev, subordinate->power.async_suspend);
return async_error;
}
EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
/**
* dpm_for_each_dev - device iterator.
* @data: data for the callback.
* @fn: function to be called for each device.
*
* Iterate over devices in dpm_list, and call @fn for each device,
* passing it @data.
*/
void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
{
struct device *dev;
if (!fn)
return;
device_pm_lock();
list_for_each_entry(dev, &dpm_list, power.entry)
fn(dev, data);
device_pm_unlock();
}
EXPORT_SYMBOL_GPL(dpm_for_each_dev);
static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
{
if (!ops)
return true;
return !ops->prepare &&
!ops->suspend &&
!ops->suspend_late &&
!ops->suspend_noirq &&
!ops->resume_noirq &&
!ops->resume_early &&
!ops->resume &&
!ops->complete;
}
void device_pm_check_callbacks(struct device *dev)
{
spin_lock_irq(&dev->power.lock);
dev->power.no_pm_callbacks =
(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
!dev->bus->suspend && !dev->bus->resume)) &&
(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
!dev->driver->suspend && !dev->driver->resume));
spin_unlock_irq(&dev->power.lock);
}
bool dev_pm_skip_suspend(struct device *dev)
{
return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
pm_runtime_status_suspended(dev);
}