linux/net/unix/garbage.c
Michal Luczaj 041933a1ec af_unix: Fix garbage collection of embryos carrying OOB with SCM_RIGHTS
GC attempts to explicitly drop oob_skb's reference before purging the hit
list.

The problem is with embryos: kfree_skb(u->oob_skb) is never called on an
embryo socket.

The python script below [0] sends a listener's fd to its embryo as OOB
data.  While GC does collect the embryo's queue, it fails to drop the OOB
skb's refcount.  The skb which was in embryo's receive queue stays as
unix_sk(sk)->oob_skb and keeps the listener's refcount [1].

Tell GC to dispose embryo's oob_skb.

[0]:
from array import array
from socket import *

addr = '\x00unix-oob'
lis = socket(AF_UNIX, SOCK_STREAM)
lis.bind(addr)
lis.listen(1)

s = socket(AF_UNIX, SOCK_STREAM)
s.connect(addr)
scm = (SOL_SOCKET, SCM_RIGHTS, array('i', [lis.fileno()]))
s.sendmsg([b'x'], [scm], MSG_OOB)
lis.close()

[1]
$ grep unix-oob /proc/net/unix
$ ./unix-oob.py
$ grep unix-oob /proc/net/unix
0000000000000000: 00000002 00000000 00000000 0001 02     0 @unix-oob
0000000000000000: 00000002 00000000 00010000 0001 01  6072 @unix-oob

Fixes: 4090fa373f ("af_unix: Replace garbage collection algorithm.")
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-05-21 13:42:02 +02:00

630 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* NET3: Garbage Collector For AF_UNIX sockets
*
* Garbage Collector:
* Copyright (C) Barak A. Pearlmutter.
*
* Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
* If it doesn't work blame me, it worked when Barak sent it.
*
* Assumptions:
*
* - object w/ a bit
* - free list
*
* Current optimizations:
*
* - explicit stack instead of recursion
* - tail recurse on first born instead of immediate push/pop
* - we gather the stuff that should not be killed into tree
* and stack is just a path from root to the current pointer.
*
* Future optimizations:
*
* - don't just push entire root set; process in place
*
* Fixes:
* Alan Cox 07 Sept 1997 Vmalloc internal stack as needed.
* Cope with changing max_files.
* Al Viro 11 Oct 1998
* Graph may have cycles. That is, we can send the descriptor
* of foo to bar and vice versa. Current code chokes on that.
* Fix: move SCM_RIGHTS ones into the separate list and then
* skb_free() them all instead of doing explicit fput's.
* Another problem: since fput() may block somebody may
* create a new unix_socket when we are in the middle of sweep
* phase. Fix: revert the logic wrt MARKED. Mark everything
* upon the beginning and unmark non-junk ones.
*
* [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
* sent to connect()'ed but still not accept()'ed sockets.
* Fixed. Old code had slightly different problem here:
* extra fput() in situation when we passed the descriptor via
* such socket and closed it (descriptor). That would happen on
* each unix_gc() until the accept(). Since the struct file in
* question would go to the free list and might be reused...
* That might be the reason of random oopses on filp_close()
* in unrelated processes.
*
* AV 28 Feb 1999
* Kill the explicit allocation of stack. Now we keep the tree
* with root in dummy + pointer (gc_current) to one of the nodes.
* Stack is represented as path from gc_current to dummy. Unmark
* now means "add to tree". Push == "make it a son of gc_current".
* Pop == "move gc_current to parent". We keep only pointers to
* parents (->gc_tree).
* AV 1 Mar 1999
* Damn. Added missing check for ->dead in listen queues scanning.
*
* Miklos Szeredi 25 Jun 2007
* Reimplement with a cycle collecting algorithm. This should
* solve several problems with the previous code, like being racy
* wrt receive and holding up unrelated socket operations.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/un.h>
#include <linux/net.h>
#include <linux/fs.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/file.h>
#include <linux/proc_fs.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <net/sock.h>
#include <net/af_unix.h>
#include <net/scm.h>
#include <net/tcp_states.h>
struct unix_sock *unix_get_socket(struct file *filp)
{
struct inode *inode = file_inode(filp);
/* Socket ? */
if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
struct socket *sock = SOCKET_I(inode);
const struct proto_ops *ops;
struct sock *sk = sock->sk;
ops = READ_ONCE(sock->ops);
/* PF_UNIX ? */
if (sk && ops && ops->family == PF_UNIX)
return unix_sk(sk);
}
return NULL;
}
static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
{
/* If an embryo socket has a fd,
* the listener indirectly holds the fd's refcnt.
*/
if (edge->successor->listener)
return unix_sk(edge->successor->listener)->vertex;
return edge->successor->vertex;
}
static bool unix_graph_maybe_cyclic;
static bool unix_graph_grouped;
static void unix_update_graph(struct unix_vertex *vertex)
{
/* If the receiver socket is not inflight, no cyclic
* reference could be formed.
*/
if (!vertex)
return;
unix_graph_maybe_cyclic = true;
unix_graph_grouped = false;
}
static LIST_HEAD(unix_unvisited_vertices);
enum unix_vertex_index {
UNIX_VERTEX_INDEX_MARK1,
UNIX_VERTEX_INDEX_MARK2,
UNIX_VERTEX_INDEX_START,
};
static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1;
static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
{
struct unix_vertex *vertex = edge->predecessor->vertex;
if (!vertex) {
vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
vertex->index = unix_vertex_unvisited_index;
vertex->out_degree = 0;
INIT_LIST_HEAD(&vertex->edges);
INIT_LIST_HEAD(&vertex->scc_entry);
list_move_tail(&vertex->entry, &unix_unvisited_vertices);
edge->predecessor->vertex = vertex;
}
vertex->out_degree++;
list_add_tail(&edge->vertex_entry, &vertex->edges);
unix_update_graph(unix_edge_successor(edge));
}
static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
{
struct unix_vertex *vertex = edge->predecessor->vertex;
if (!fpl->dead)
unix_update_graph(unix_edge_successor(edge));
list_del(&edge->vertex_entry);
vertex->out_degree--;
if (!vertex->out_degree) {
edge->predecessor->vertex = NULL;
list_move_tail(&vertex->entry, &fpl->vertices);
}
}
static void unix_free_vertices(struct scm_fp_list *fpl)
{
struct unix_vertex *vertex, *next_vertex;
list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
list_del(&vertex->entry);
kfree(vertex);
}
}
static DEFINE_SPINLOCK(unix_gc_lock);
unsigned int unix_tot_inflight;
void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
{
int i = 0, j = 0;
spin_lock(&unix_gc_lock);
if (!fpl->count_unix)
goto out;
do {
struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
struct unix_edge *edge;
if (!inflight)
continue;
edge = fpl->edges + i++;
edge->predecessor = inflight;
edge->successor = receiver;
unix_add_edge(fpl, edge);
} while (i < fpl->count_unix);
receiver->scm_stat.nr_unix_fds += fpl->count_unix;
WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
out:
WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
spin_unlock(&unix_gc_lock);
fpl->inflight = true;
unix_free_vertices(fpl);
}
void unix_del_edges(struct scm_fp_list *fpl)
{
struct unix_sock *receiver;
int i = 0;
spin_lock(&unix_gc_lock);
if (!fpl->count_unix)
goto out;
do {
struct unix_edge *edge = fpl->edges + i++;
unix_del_edge(fpl, edge);
} while (i < fpl->count_unix);
if (!fpl->dead) {
receiver = fpl->edges[0].successor;
receiver->scm_stat.nr_unix_fds -= fpl->count_unix;
}
WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
out:
WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
spin_unlock(&unix_gc_lock);
fpl->inflight = false;
}
void unix_update_edges(struct unix_sock *receiver)
{
/* nr_unix_fds is only updated under unix_state_lock().
* If it's 0 here, the embryo socket is not part of the
* inflight graph, and GC will not see it, so no lock needed.
*/
if (!receiver->scm_stat.nr_unix_fds) {
receiver->listener = NULL;
} else {
spin_lock(&unix_gc_lock);
unix_update_graph(unix_sk(receiver->listener)->vertex);
receiver->listener = NULL;
spin_unlock(&unix_gc_lock);
}
}
int unix_prepare_fpl(struct scm_fp_list *fpl)
{
struct unix_vertex *vertex;
int i;
if (!fpl->count_unix)
return 0;
for (i = 0; i < fpl->count_unix; i++) {
vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
if (!vertex)
goto err;
list_add(&vertex->entry, &fpl->vertices);
}
fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
GFP_KERNEL_ACCOUNT);
if (!fpl->edges)
goto err;
return 0;
err:
unix_free_vertices(fpl);
return -ENOMEM;
}
void unix_destroy_fpl(struct scm_fp_list *fpl)
{
if (fpl->inflight)
unix_del_edges(fpl);
kvfree(fpl->edges);
unix_free_vertices(fpl);
}
static bool unix_vertex_dead(struct unix_vertex *vertex)
{
struct unix_edge *edge;
struct unix_sock *u;
long total_ref;
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
struct unix_vertex *next_vertex = unix_edge_successor(edge);
/* The vertex's fd can be received by a non-inflight socket. */
if (!next_vertex)
return false;
/* The vertex's fd can be received by an inflight socket in
* another SCC.
*/
if (next_vertex->scc_index != vertex->scc_index)
return false;
}
/* No receiver exists out of the same SCC. */
edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
u = edge->predecessor;
total_ref = file_count(u->sk.sk_socket->file);
/* If not close()d, total_ref > out_degree. */
if (total_ref != vertex->out_degree)
return false;
return true;
}
enum unix_recv_queue_lock_class {
U_RECVQ_LOCK_NORMAL,
U_RECVQ_LOCK_EMBRYO,
};
static void unix_collect_queue(struct unix_sock *u, struct sk_buff_head *hitlist)
{
skb_queue_splice_init(&u->sk.sk_receive_queue, hitlist);
#if IS_ENABLED(CONFIG_AF_UNIX_OOB)
if (u->oob_skb) {
WARN_ON_ONCE(skb_unref(u->oob_skb));
u->oob_skb = NULL;
}
#endif
}
static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist)
{
struct unix_vertex *vertex;
list_for_each_entry_reverse(vertex, scc, scc_entry) {
struct sk_buff_head *queue;
struct unix_edge *edge;
struct unix_sock *u;
edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
u = edge->predecessor;
queue = &u->sk.sk_receive_queue;
spin_lock(&queue->lock);
if (u->sk.sk_state == TCP_LISTEN) {
struct sk_buff *skb;
skb_queue_walk(queue, skb) {
struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue;
/* listener -> embryo order, the inversion never happens. */
spin_lock_nested(&embryo_queue->lock, U_RECVQ_LOCK_EMBRYO);
unix_collect_queue(unix_sk(skb->sk), hitlist);
spin_unlock(&embryo_queue->lock);
}
} else {
unix_collect_queue(u, hitlist);
}
spin_unlock(&queue->lock);
}
}
static bool unix_scc_cyclic(struct list_head *scc)
{
struct unix_vertex *vertex;
struct unix_edge *edge;
/* SCC containing multiple vertices ? */
if (!list_is_singular(scc))
return true;
vertex = list_first_entry(scc, typeof(*vertex), scc_entry);
/* Self-reference or a embryo-listener circle ? */
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
if (unix_edge_successor(edge) == vertex)
return true;
}
return false;
}
static LIST_HEAD(unix_visited_vertices);
static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2;
static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index,
struct sk_buff_head *hitlist)
{
LIST_HEAD(vertex_stack);
struct unix_edge *edge;
LIST_HEAD(edge_stack);
next_vertex:
/* Push vertex to vertex_stack and mark it as on-stack
* (index >= UNIX_VERTEX_INDEX_START).
* The vertex will be popped when finalising SCC later.
*/
list_add(&vertex->scc_entry, &vertex_stack);
vertex->index = *last_index;
vertex->scc_index = *last_index;
(*last_index)++;
/* Explore neighbour vertices (receivers of the current vertex's fd). */
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
struct unix_vertex *next_vertex = unix_edge_successor(edge);
if (!next_vertex)
continue;
if (next_vertex->index == unix_vertex_unvisited_index) {
/* Iterative deepening depth first search
*
* 1. Push a forward edge to edge_stack and set
* the successor to vertex for the next iteration.
*/
list_add(&edge->stack_entry, &edge_stack);
vertex = next_vertex;
goto next_vertex;
/* 2. Pop the edge directed to the current vertex
* and restore the ancestor for backtracking.
*/
prev_vertex:
edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
list_del_init(&edge->stack_entry);
next_vertex = vertex;
vertex = edge->predecessor->vertex;
/* If the successor has a smaller scc_index, two vertices
* are in the same SCC, so propagate the smaller scc_index
* to skip SCC finalisation.
*/
vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
} else if (next_vertex->index != unix_vertex_grouped_index) {
/* Loop detected by a back/cross edge.
*
* The successor is on vertex_stack, so two vertices are in
* the same SCC. If the successor has a smaller *scc_index*,
* propagate it to skip SCC finalisation.
*/
vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
} else {
/* The successor was already grouped as another SCC */
}
}
if (vertex->index == vertex->scc_index) {
struct list_head scc;
bool scc_dead = true;
/* SCC finalised.
*
* If the scc_index was not updated, all the vertices above on
* vertex_stack are in the same SCC. Group them using scc_entry.
*/
__list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
list_for_each_entry_reverse(vertex, &scc, scc_entry) {
/* Don't restart DFS from this vertex in unix_walk_scc(). */
list_move_tail(&vertex->entry, &unix_visited_vertices);
/* Mark vertex as off-stack. */
vertex->index = unix_vertex_grouped_index;
if (scc_dead)
scc_dead = unix_vertex_dead(vertex);
}
if (scc_dead)
unix_collect_skb(&scc, hitlist);
else if (!unix_graph_maybe_cyclic)
unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
list_del(&scc);
}
/* Need backtracking ? */
if (!list_empty(&edge_stack))
goto prev_vertex;
}
static void unix_walk_scc(struct sk_buff_head *hitlist)
{
unsigned long last_index = UNIX_VERTEX_INDEX_START;
unix_graph_maybe_cyclic = false;
/* Visit every vertex exactly once.
* __unix_walk_scc() moves visited vertices to unix_visited_vertices.
*/
while (!list_empty(&unix_unvisited_vertices)) {
struct unix_vertex *vertex;
vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
__unix_walk_scc(vertex, &last_index, hitlist);
}
list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
swap(unix_vertex_unvisited_index, unix_vertex_grouped_index);
unix_graph_grouped = true;
}
static void unix_walk_scc_fast(struct sk_buff_head *hitlist)
{
unix_graph_maybe_cyclic = false;
while (!list_empty(&unix_unvisited_vertices)) {
struct unix_vertex *vertex;
struct list_head scc;
bool scc_dead = true;
vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
list_add(&scc, &vertex->scc_entry);
list_for_each_entry_reverse(vertex, &scc, scc_entry) {
list_move_tail(&vertex->entry, &unix_visited_vertices);
if (scc_dead)
scc_dead = unix_vertex_dead(vertex);
}
if (scc_dead)
unix_collect_skb(&scc, hitlist);
else if (!unix_graph_maybe_cyclic)
unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
list_del(&scc);
}
list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
}
static bool gc_in_progress;
static void __unix_gc(struct work_struct *work)
{
struct sk_buff_head hitlist;
struct sk_buff *skb;
spin_lock(&unix_gc_lock);
if (!unix_graph_maybe_cyclic) {
spin_unlock(&unix_gc_lock);
goto skip_gc;
}
__skb_queue_head_init(&hitlist);
if (unix_graph_grouped)
unix_walk_scc_fast(&hitlist);
else
unix_walk_scc(&hitlist);
spin_unlock(&unix_gc_lock);
skb_queue_walk(&hitlist, skb) {
if (UNIXCB(skb).fp)
UNIXCB(skb).fp->dead = true;
}
__skb_queue_purge(&hitlist);
skip_gc:
WRITE_ONCE(gc_in_progress, false);
}
static DECLARE_WORK(unix_gc_work, __unix_gc);
void unix_gc(void)
{
WRITE_ONCE(gc_in_progress, true);
queue_work(system_unbound_wq, &unix_gc_work);
}
#define UNIX_INFLIGHT_TRIGGER_GC 16000
#define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
void wait_for_unix_gc(struct scm_fp_list *fpl)
{
/* If number of inflight sockets is insane,
* force a garbage collect right now.
*
* Paired with the WRITE_ONCE() in unix_inflight(),
* unix_notinflight(), and __unix_gc().
*/
if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
!READ_ONCE(gc_in_progress))
unix_gc();
/* Penalise users who want to send AF_UNIX sockets
* but whose sockets have not been received yet.
*/
if (!fpl || !fpl->count_unix ||
READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
return;
if (READ_ONCE(gc_in_progress))
flush_work(&unix_gc_work);
}