mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
8874c5e3b9
Add support for CMT hardware with 32-bit control and counter registers, as found on r8a73a4 and r8a7790. To use the CMT with 32-bit hardware a second I/O memory resource needs to point out the CMSTR register and it needs to be 32 bit wide. Signed-off-by: Magnus Damm <damm@opensource.se> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Simon Horman <horms+renesas@verge.net.au>
868 lines
21 KiB
C
868 lines
21 KiB
C
/*
|
|
* SuperH Timer Support - CMT
|
|
*
|
|
* Copyright (C) 2008 Magnus Damm
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/io.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/err.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/sh_timer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pm_domain.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
struct sh_cmt_priv {
|
|
void __iomem *mapbase;
|
|
void __iomem *mapbase_str;
|
|
struct clk *clk;
|
|
unsigned long width; /* 16 or 32 bit version of hardware block */
|
|
unsigned long overflow_bit;
|
|
unsigned long clear_bits;
|
|
struct irqaction irqaction;
|
|
struct platform_device *pdev;
|
|
|
|
unsigned long flags;
|
|
unsigned long match_value;
|
|
unsigned long next_match_value;
|
|
unsigned long max_match_value;
|
|
unsigned long rate;
|
|
raw_spinlock_t lock;
|
|
struct clock_event_device ced;
|
|
struct clocksource cs;
|
|
unsigned long total_cycles;
|
|
bool cs_enabled;
|
|
|
|
/* callbacks for CMSTR and CMCSR access */
|
|
unsigned long (*read_control)(void __iomem *base, unsigned long offs);
|
|
void (*write_control)(void __iomem *base, unsigned long offs,
|
|
unsigned long value);
|
|
|
|
/* callbacks for CMCNT and CMCOR access */
|
|
unsigned long (*read_count)(void __iomem *base, unsigned long offs);
|
|
void (*write_count)(void __iomem *base, unsigned long offs,
|
|
unsigned long value);
|
|
};
|
|
|
|
/* Examples of supported CMT timer register layouts and I/O access widths:
|
|
*
|
|
* "16-bit counter and 16-bit control" as found on sh7263:
|
|
* CMSTR 0xfffec000 16-bit
|
|
* CMCSR 0xfffec002 16-bit
|
|
* CMCNT 0xfffec004 16-bit
|
|
* CMCOR 0xfffec006 16-bit
|
|
*
|
|
* "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
|
|
* CMSTR 0xffca0000 16-bit
|
|
* CMCSR 0xffca0060 16-bit
|
|
* CMCNT 0xffca0064 32-bit
|
|
* CMCOR 0xffca0068 32-bit
|
|
*
|
|
* "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
|
|
* CMSTR 0xffca0500 32-bit
|
|
* CMCSR 0xffca0510 32-bit
|
|
* CMCNT 0xffca0514 32-bit
|
|
* CMCOR 0xffca0518 32-bit
|
|
*/
|
|
|
|
static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
|
|
{
|
|
return ioread16(base + (offs << 1));
|
|
}
|
|
|
|
static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
|
|
{
|
|
return ioread32(base + (offs << 2));
|
|
}
|
|
|
|
static void sh_cmt_write16(void __iomem *base, unsigned long offs,
|
|
unsigned long value)
|
|
{
|
|
iowrite16(value, base + (offs << 1));
|
|
}
|
|
|
|
static void sh_cmt_write32(void __iomem *base, unsigned long offs,
|
|
unsigned long value)
|
|
{
|
|
iowrite32(value, base + (offs << 2));
|
|
}
|
|
|
|
#define CMCSR 0 /* channel register */
|
|
#define CMCNT 1 /* channel register */
|
|
#define CMCOR 2 /* channel register */
|
|
|
|
static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
|
|
{
|
|
return p->read_control(p->mapbase_str, 0);
|
|
}
|
|
|
|
static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
|
|
{
|
|
return p->read_control(p->mapbase, CMCSR);
|
|
}
|
|
|
|
static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
|
|
{
|
|
return p->read_count(p->mapbase, CMCNT);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
|
|
unsigned long value)
|
|
{
|
|
p->write_control(p->mapbase_str, 0, value);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
|
|
unsigned long value)
|
|
{
|
|
p->write_control(p->mapbase, CMCSR, value);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
|
|
unsigned long value)
|
|
{
|
|
p->write_count(p->mapbase, CMCNT, value);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
|
|
unsigned long value)
|
|
{
|
|
p->write_count(p->mapbase, CMCOR, value);
|
|
}
|
|
|
|
static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
|
|
int *has_wrapped)
|
|
{
|
|
unsigned long v1, v2, v3;
|
|
int o1, o2;
|
|
|
|
o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
|
|
|
|
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
|
|
do {
|
|
o2 = o1;
|
|
v1 = sh_cmt_read_cmcnt(p);
|
|
v2 = sh_cmt_read_cmcnt(p);
|
|
v3 = sh_cmt_read_cmcnt(p);
|
|
o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
|
|
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
|
|
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
|
|
|
|
*has_wrapped = o1;
|
|
return v2;
|
|
}
|
|
|
|
static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
|
|
|
|
static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
|
|
{
|
|
struct sh_timer_config *cfg = p->pdev->dev.platform_data;
|
|
unsigned long flags, value;
|
|
|
|
/* start stop register shared by multiple timer channels */
|
|
raw_spin_lock_irqsave(&sh_cmt_lock, flags);
|
|
value = sh_cmt_read_cmstr(p);
|
|
|
|
if (start)
|
|
value |= 1 << cfg->timer_bit;
|
|
else
|
|
value &= ~(1 << cfg->timer_bit);
|
|
|
|
sh_cmt_write_cmstr(p, value);
|
|
raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
|
|
}
|
|
|
|
static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
|
|
{
|
|
int k, ret;
|
|
|
|
pm_runtime_get_sync(&p->pdev->dev);
|
|
dev_pm_syscore_device(&p->pdev->dev, true);
|
|
|
|
/* enable clock */
|
|
ret = clk_enable(p->clk);
|
|
if (ret) {
|
|
dev_err(&p->pdev->dev, "cannot enable clock\n");
|
|
goto err0;
|
|
}
|
|
|
|
/* make sure channel is disabled */
|
|
sh_cmt_start_stop_ch(p, 0);
|
|
|
|
/* configure channel, periodic mode and maximum timeout */
|
|
if (p->width == 16) {
|
|
*rate = clk_get_rate(p->clk) / 512;
|
|
sh_cmt_write_cmcsr(p, 0x43);
|
|
} else {
|
|
*rate = clk_get_rate(p->clk) / 8;
|
|
sh_cmt_write_cmcsr(p, 0x01a4);
|
|
}
|
|
|
|
sh_cmt_write_cmcor(p, 0xffffffff);
|
|
sh_cmt_write_cmcnt(p, 0);
|
|
|
|
/*
|
|
* According to the sh73a0 user's manual, as CMCNT can be operated
|
|
* only by the RCLK (Pseudo 32 KHz), there's one restriction on
|
|
* modifying CMCNT register; two RCLK cycles are necessary before
|
|
* this register is either read or any modification of the value
|
|
* it holds is reflected in the LSI's actual operation.
|
|
*
|
|
* While at it, we're supposed to clear out the CMCNT as of this
|
|
* moment, so make sure it's processed properly here. This will
|
|
* take RCLKx2 at maximum.
|
|
*/
|
|
for (k = 0; k < 100; k++) {
|
|
if (!sh_cmt_read_cmcnt(p))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
if (sh_cmt_read_cmcnt(p)) {
|
|
dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
|
|
ret = -ETIMEDOUT;
|
|
goto err1;
|
|
}
|
|
|
|
/* enable channel */
|
|
sh_cmt_start_stop_ch(p, 1);
|
|
return 0;
|
|
err1:
|
|
/* stop clock */
|
|
clk_disable(p->clk);
|
|
|
|
err0:
|
|
return ret;
|
|
}
|
|
|
|
static void sh_cmt_disable(struct sh_cmt_priv *p)
|
|
{
|
|
/* disable channel */
|
|
sh_cmt_start_stop_ch(p, 0);
|
|
|
|
/* disable interrupts in CMT block */
|
|
sh_cmt_write_cmcsr(p, 0);
|
|
|
|
/* stop clock */
|
|
clk_disable(p->clk);
|
|
|
|
dev_pm_syscore_device(&p->pdev->dev, false);
|
|
pm_runtime_put(&p->pdev->dev);
|
|
}
|
|
|
|
/* private flags */
|
|
#define FLAG_CLOCKEVENT (1 << 0)
|
|
#define FLAG_CLOCKSOURCE (1 << 1)
|
|
#define FLAG_REPROGRAM (1 << 2)
|
|
#define FLAG_SKIPEVENT (1 << 3)
|
|
#define FLAG_IRQCONTEXT (1 << 4)
|
|
|
|
static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
|
|
int absolute)
|
|
{
|
|
unsigned long new_match;
|
|
unsigned long value = p->next_match_value;
|
|
unsigned long delay = 0;
|
|
unsigned long now = 0;
|
|
int has_wrapped;
|
|
|
|
now = sh_cmt_get_counter(p, &has_wrapped);
|
|
p->flags |= FLAG_REPROGRAM; /* force reprogram */
|
|
|
|
if (has_wrapped) {
|
|
/* we're competing with the interrupt handler.
|
|
* -> let the interrupt handler reprogram the timer.
|
|
* -> interrupt number two handles the event.
|
|
*/
|
|
p->flags |= FLAG_SKIPEVENT;
|
|
return;
|
|
}
|
|
|
|
if (absolute)
|
|
now = 0;
|
|
|
|
do {
|
|
/* reprogram the timer hardware,
|
|
* but don't save the new match value yet.
|
|
*/
|
|
new_match = now + value + delay;
|
|
if (new_match > p->max_match_value)
|
|
new_match = p->max_match_value;
|
|
|
|
sh_cmt_write_cmcor(p, new_match);
|
|
|
|
now = sh_cmt_get_counter(p, &has_wrapped);
|
|
if (has_wrapped && (new_match > p->match_value)) {
|
|
/* we are changing to a greater match value,
|
|
* so this wrap must be caused by the counter
|
|
* matching the old value.
|
|
* -> first interrupt reprograms the timer.
|
|
* -> interrupt number two handles the event.
|
|
*/
|
|
p->flags |= FLAG_SKIPEVENT;
|
|
break;
|
|
}
|
|
|
|
if (has_wrapped) {
|
|
/* we are changing to a smaller match value,
|
|
* so the wrap must be caused by the counter
|
|
* matching the new value.
|
|
* -> save programmed match value.
|
|
* -> let isr handle the event.
|
|
*/
|
|
p->match_value = new_match;
|
|
break;
|
|
}
|
|
|
|
/* be safe: verify hardware settings */
|
|
if (now < new_match) {
|
|
/* timer value is below match value, all good.
|
|
* this makes sure we won't miss any match events.
|
|
* -> save programmed match value.
|
|
* -> let isr handle the event.
|
|
*/
|
|
p->match_value = new_match;
|
|
break;
|
|
}
|
|
|
|
/* the counter has reached a value greater
|
|
* than our new match value. and since the
|
|
* has_wrapped flag isn't set we must have
|
|
* programmed a too close event.
|
|
* -> increase delay and retry.
|
|
*/
|
|
if (delay)
|
|
delay <<= 1;
|
|
else
|
|
delay = 1;
|
|
|
|
if (!delay)
|
|
dev_warn(&p->pdev->dev, "too long delay\n");
|
|
|
|
} while (delay);
|
|
}
|
|
|
|
static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
|
|
{
|
|
if (delta > p->max_match_value)
|
|
dev_warn(&p->pdev->dev, "delta out of range\n");
|
|
|
|
p->next_match_value = delta;
|
|
sh_cmt_clock_event_program_verify(p, 0);
|
|
}
|
|
|
|
static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&p->lock, flags);
|
|
__sh_cmt_set_next(p, delta);
|
|
raw_spin_unlock_irqrestore(&p->lock, flags);
|
|
}
|
|
|
|
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct sh_cmt_priv *p = dev_id;
|
|
|
|
/* clear flags */
|
|
sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
|
|
|
|
/* update clock source counter to begin with if enabled
|
|
* the wrap flag should be cleared by the timer specific
|
|
* isr before we end up here.
|
|
*/
|
|
if (p->flags & FLAG_CLOCKSOURCE)
|
|
p->total_cycles += p->match_value + 1;
|
|
|
|
if (!(p->flags & FLAG_REPROGRAM))
|
|
p->next_match_value = p->max_match_value;
|
|
|
|
p->flags |= FLAG_IRQCONTEXT;
|
|
|
|
if (p->flags & FLAG_CLOCKEVENT) {
|
|
if (!(p->flags & FLAG_SKIPEVENT)) {
|
|
if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
|
|
p->next_match_value = p->max_match_value;
|
|
p->flags |= FLAG_REPROGRAM;
|
|
}
|
|
|
|
p->ced.event_handler(&p->ced);
|
|
}
|
|
}
|
|
|
|
p->flags &= ~FLAG_SKIPEVENT;
|
|
|
|
if (p->flags & FLAG_REPROGRAM) {
|
|
p->flags &= ~FLAG_REPROGRAM;
|
|
sh_cmt_clock_event_program_verify(p, 1);
|
|
|
|
if (p->flags & FLAG_CLOCKEVENT)
|
|
if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
|
|
|| (p->match_value == p->next_match_value))
|
|
p->flags &= ~FLAG_REPROGRAM;
|
|
}
|
|
|
|
p->flags &= ~FLAG_IRQCONTEXT;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&p->lock, flags);
|
|
|
|
if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
|
|
ret = sh_cmt_enable(p, &p->rate);
|
|
|
|
if (ret)
|
|
goto out;
|
|
p->flags |= flag;
|
|
|
|
/* setup timeout if no clockevent */
|
|
if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
|
|
__sh_cmt_set_next(p, p->max_match_value);
|
|
out:
|
|
raw_spin_unlock_irqrestore(&p->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long f;
|
|
|
|
raw_spin_lock_irqsave(&p->lock, flags);
|
|
|
|
f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
|
|
p->flags &= ~flag;
|
|
|
|
if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
|
|
sh_cmt_disable(p);
|
|
|
|
/* adjust the timeout to maximum if only clocksource left */
|
|
if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
|
|
__sh_cmt_set_next(p, p->max_match_value);
|
|
|
|
raw_spin_unlock_irqrestore(&p->lock, flags);
|
|
}
|
|
|
|
static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
|
|
{
|
|
return container_of(cs, struct sh_cmt_priv, cs);
|
|
}
|
|
|
|
static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
|
|
unsigned long flags, raw;
|
|
unsigned long value;
|
|
int has_wrapped;
|
|
|
|
raw_spin_lock_irqsave(&p->lock, flags);
|
|
value = p->total_cycles;
|
|
raw = sh_cmt_get_counter(p, &has_wrapped);
|
|
|
|
if (unlikely(has_wrapped))
|
|
raw += p->match_value + 1;
|
|
raw_spin_unlock_irqrestore(&p->lock, flags);
|
|
|
|
return value + raw;
|
|
}
|
|
|
|
static int sh_cmt_clocksource_enable(struct clocksource *cs)
|
|
{
|
|
int ret;
|
|
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
|
|
|
|
WARN_ON(p->cs_enabled);
|
|
|
|
p->total_cycles = 0;
|
|
|
|
ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
|
|
if (!ret) {
|
|
__clocksource_updatefreq_hz(cs, p->rate);
|
|
p->cs_enabled = true;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void sh_cmt_clocksource_disable(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
|
|
|
|
WARN_ON(!p->cs_enabled);
|
|
|
|
sh_cmt_stop(p, FLAG_CLOCKSOURCE);
|
|
p->cs_enabled = false;
|
|
}
|
|
|
|
static void sh_cmt_clocksource_suspend(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
|
|
|
|
sh_cmt_stop(p, FLAG_CLOCKSOURCE);
|
|
pm_genpd_syscore_poweroff(&p->pdev->dev);
|
|
}
|
|
|
|
static void sh_cmt_clocksource_resume(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
|
|
|
|
pm_genpd_syscore_poweron(&p->pdev->dev);
|
|
sh_cmt_start(p, FLAG_CLOCKSOURCE);
|
|
}
|
|
|
|
static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
|
|
char *name, unsigned long rating)
|
|
{
|
|
struct clocksource *cs = &p->cs;
|
|
|
|
cs->name = name;
|
|
cs->rating = rating;
|
|
cs->read = sh_cmt_clocksource_read;
|
|
cs->enable = sh_cmt_clocksource_enable;
|
|
cs->disable = sh_cmt_clocksource_disable;
|
|
cs->suspend = sh_cmt_clocksource_suspend;
|
|
cs->resume = sh_cmt_clocksource_resume;
|
|
cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
|
|
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
|
|
|
|
dev_info(&p->pdev->dev, "used as clock source\n");
|
|
|
|
/* Register with dummy 1 Hz value, gets updated in ->enable() */
|
|
clocksource_register_hz(cs, 1);
|
|
return 0;
|
|
}
|
|
|
|
static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
|
|
{
|
|
return container_of(ced, struct sh_cmt_priv, ced);
|
|
}
|
|
|
|
static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
|
|
{
|
|
struct clock_event_device *ced = &p->ced;
|
|
|
|
sh_cmt_start(p, FLAG_CLOCKEVENT);
|
|
|
|
/* TODO: calculate good shift from rate and counter bit width */
|
|
|
|
ced->shift = 32;
|
|
ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
|
|
ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
|
|
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
|
|
|
|
if (periodic)
|
|
sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
|
|
else
|
|
sh_cmt_set_next(p, p->max_match_value);
|
|
}
|
|
|
|
static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
|
|
|
|
/* deal with old setting first */
|
|
switch (ced->mode) {
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
sh_cmt_stop(p, FLAG_CLOCKEVENT);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (mode) {
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
dev_info(&p->pdev->dev, "used for periodic clock events\n");
|
|
sh_cmt_clock_event_start(p, 1);
|
|
break;
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
dev_info(&p->pdev->dev, "used for oneshot clock events\n");
|
|
sh_cmt_clock_event_start(p, 0);
|
|
break;
|
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
|
case CLOCK_EVT_MODE_UNUSED:
|
|
sh_cmt_stop(p, FLAG_CLOCKEVENT);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int sh_cmt_clock_event_next(unsigned long delta,
|
|
struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
|
|
|
|
BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
|
|
if (likely(p->flags & FLAG_IRQCONTEXT))
|
|
p->next_match_value = delta - 1;
|
|
else
|
|
sh_cmt_set_next(p, delta - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
|
|
{
|
|
pm_genpd_syscore_poweroff(&ced_to_sh_cmt(ced)->pdev->dev);
|
|
}
|
|
|
|
static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
|
|
{
|
|
pm_genpd_syscore_poweron(&ced_to_sh_cmt(ced)->pdev->dev);
|
|
}
|
|
|
|
static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
|
|
char *name, unsigned long rating)
|
|
{
|
|
struct clock_event_device *ced = &p->ced;
|
|
|
|
memset(ced, 0, sizeof(*ced));
|
|
|
|
ced->name = name;
|
|
ced->features = CLOCK_EVT_FEAT_PERIODIC;
|
|
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
|
|
ced->rating = rating;
|
|
ced->cpumask = cpumask_of(0);
|
|
ced->set_next_event = sh_cmt_clock_event_next;
|
|
ced->set_mode = sh_cmt_clock_event_mode;
|
|
ced->suspend = sh_cmt_clock_event_suspend;
|
|
ced->resume = sh_cmt_clock_event_resume;
|
|
|
|
dev_info(&p->pdev->dev, "used for clock events\n");
|
|
clockevents_register_device(ced);
|
|
}
|
|
|
|
static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
|
|
unsigned long clockevent_rating,
|
|
unsigned long clocksource_rating)
|
|
{
|
|
if (clockevent_rating)
|
|
sh_cmt_register_clockevent(p, name, clockevent_rating);
|
|
|
|
if (clocksource_rating)
|
|
sh_cmt_register_clocksource(p, name, clocksource_rating);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
|
|
{
|
|
struct sh_timer_config *cfg = pdev->dev.platform_data;
|
|
struct resource *res, *res2;
|
|
int irq, ret;
|
|
ret = -ENXIO;
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
p->pdev = pdev;
|
|
|
|
if (!cfg) {
|
|
dev_err(&p->pdev->dev, "missing platform data\n");
|
|
goto err0;
|
|
}
|
|
|
|
res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
|
|
if (!res) {
|
|
dev_err(&p->pdev->dev, "failed to get I/O memory\n");
|
|
goto err0;
|
|
}
|
|
|
|
/* optional resource for the shared timer start/stop register */
|
|
res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
|
|
|
|
irq = platform_get_irq(p->pdev, 0);
|
|
if (irq < 0) {
|
|
dev_err(&p->pdev->dev, "failed to get irq\n");
|
|
goto err0;
|
|
}
|
|
|
|
/* map memory, let mapbase point to our channel */
|
|
p->mapbase = ioremap_nocache(res->start, resource_size(res));
|
|
if (p->mapbase == NULL) {
|
|
dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
|
|
goto err0;
|
|
}
|
|
|
|
/* map second resource for CMSTR */
|
|
p->mapbase_str = ioremap_nocache(res2 ? res2->start :
|
|
res->start - cfg->channel_offset,
|
|
res2 ? resource_size(res2) : 2);
|
|
if (p->mapbase_str == NULL) {
|
|
dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
|
|
goto err1;
|
|
}
|
|
|
|
/* request irq using setup_irq() (too early for request_irq()) */
|
|
p->irqaction.name = dev_name(&p->pdev->dev);
|
|
p->irqaction.handler = sh_cmt_interrupt;
|
|
p->irqaction.dev_id = p;
|
|
p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
|
|
IRQF_IRQPOLL | IRQF_NOBALANCING;
|
|
|
|
/* get hold of clock */
|
|
p->clk = clk_get(&p->pdev->dev, "cmt_fck");
|
|
if (IS_ERR(p->clk)) {
|
|
dev_err(&p->pdev->dev, "cannot get clock\n");
|
|
ret = PTR_ERR(p->clk);
|
|
goto err2;
|
|
}
|
|
|
|
if (res2 && (resource_size(res2) == 4)) {
|
|
/* assume both CMSTR and CMCSR to be 32-bit */
|
|
p->read_control = sh_cmt_read32;
|
|
p->write_control = sh_cmt_write32;
|
|
} else {
|
|
p->read_control = sh_cmt_read16;
|
|
p->write_control = sh_cmt_write16;
|
|
}
|
|
|
|
if (resource_size(res) == 6) {
|
|
p->width = 16;
|
|
p->read_count = sh_cmt_read16;
|
|
p->write_count = sh_cmt_write16;
|
|
p->overflow_bit = 0x80;
|
|
p->clear_bits = ~0x80;
|
|
} else {
|
|
p->width = 32;
|
|
p->read_count = sh_cmt_read32;
|
|
p->write_count = sh_cmt_write32;
|
|
p->overflow_bit = 0x8000;
|
|
p->clear_bits = ~0xc000;
|
|
}
|
|
|
|
if (p->width == (sizeof(p->max_match_value) * 8))
|
|
p->max_match_value = ~0;
|
|
else
|
|
p->max_match_value = (1 << p->width) - 1;
|
|
|
|
p->match_value = p->max_match_value;
|
|
raw_spin_lock_init(&p->lock);
|
|
|
|
ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
|
|
cfg->clockevent_rating,
|
|
cfg->clocksource_rating);
|
|
if (ret) {
|
|
dev_err(&p->pdev->dev, "registration failed\n");
|
|
goto err3;
|
|
}
|
|
p->cs_enabled = false;
|
|
|
|
ret = setup_irq(irq, &p->irqaction);
|
|
if (ret) {
|
|
dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
|
|
goto err3;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, p);
|
|
|
|
return 0;
|
|
err3:
|
|
clk_put(p->clk);
|
|
err2:
|
|
iounmap(p->mapbase_str);
|
|
err1:
|
|
iounmap(p->mapbase);
|
|
err0:
|
|
return ret;
|
|
}
|
|
|
|
static int sh_cmt_probe(struct platform_device *pdev)
|
|
{
|
|
struct sh_cmt_priv *p = platform_get_drvdata(pdev);
|
|
struct sh_timer_config *cfg = pdev->dev.platform_data;
|
|
int ret;
|
|
|
|
if (!is_early_platform_device(pdev)) {
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
}
|
|
|
|
if (p) {
|
|
dev_info(&pdev->dev, "kept as earlytimer\n");
|
|
goto out;
|
|
}
|
|
|
|
p = kmalloc(sizeof(*p), GFP_KERNEL);
|
|
if (p == NULL) {
|
|
dev_err(&pdev->dev, "failed to allocate driver data\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = sh_cmt_setup(p, pdev);
|
|
if (ret) {
|
|
kfree(p);
|
|
pm_runtime_idle(&pdev->dev);
|
|
return ret;
|
|
}
|
|
if (is_early_platform_device(pdev))
|
|
return 0;
|
|
|
|
out:
|
|
if (cfg->clockevent_rating || cfg->clocksource_rating)
|
|
pm_runtime_irq_safe(&pdev->dev);
|
|
else
|
|
pm_runtime_idle(&pdev->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_remove(struct platform_device *pdev)
|
|
{
|
|
return -EBUSY; /* cannot unregister clockevent and clocksource */
|
|
}
|
|
|
|
static struct platform_driver sh_cmt_device_driver = {
|
|
.probe = sh_cmt_probe,
|
|
.remove = sh_cmt_remove,
|
|
.driver = {
|
|
.name = "sh_cmt",
|
|
}
|
|
};
|
|
|
|
static int __init sh_cmt_init(void)
|
|
{
|
|
return platform_driver_register(&sh_cmt_device_driver);
|
|
}
|
|
|
|
static void __exit sh_cmt_exit(void)
|
|
{
|
|
platform_driver_unregister(&sh_cmt_device_driver);
|
|
}
|
|
|
|
early_platform_init("earlytimer", &sh_cmt_device_driver);
|
|
subsys_initcall(sh_cmt_init);
|
|
module_exit(sh_cmt_exit);
|
|
|
|
MODULE_AUTHOR("Magnus Damm");
|
|
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
|
|
MODULE_LICENSE("GPL v2");
|