linux/fs/cifs/cifsencrypt.c
Shirish Pargaonkar d3686d54c7 cifs: Cleanup and thus reduce smb session structure and fields used during authentication
Removed following fields from smb session structure
 cryptkey, ntlmv2_hash, tilen, tiblob
and ntlmssp_auth structure is allocated dynamically only if the auth mech
in NTLMSSP.

response field within a session_key structure is used to initially store the
target info (either plucked from type 2 challenge packet in case of NTLMSSP
or fabricated in case of NTLMv2 without extended security) and then to store
Message Authentication Key (mak) (session key + client response).

Server challenge or cryptkey needed during a NTLMSSP authentication
is now part of ntlmssp_auth structure which gets allocated and freed
once authenticaiton process is done.

Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-29 01:47:33 +00:00

753 lines
22 KiB
C

/*
* fs/cifs/cifsencrypt.c
*
* Copyright (C) International Business Machines Corp., 2005,2006
* Author(s): Steve French (sfrench@us.ibm.com)
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include "cifspdu.h"
#include "cifsglob.h"
#include "cifs_debug.h"
#include "md5.h"
#include "cifs_unicode.h"
#include "cifsproto.h"
#include "ntlmssp.h"
#include <linux/ctype.h>
#include <linux/random.h>
/* Calculate and return the CIFS signature based on the mac key and SMB PDU */
/* the 16 byte signature must be allocated by the caller */
/* Note we only use the 1st eight bytes */
/* Note that the smb header signature field on input contains the
sequence number before this function is called */
extern void mdfour(unsigned char *out, unsigned char *in, int n);
extern void E_md4hash(const unsigned char *passwd, unsigned char *p16);
extern void SMBencrypt(unsigned char *passwd, const unsigned char *c8,
unsigned char *p24);
static int cifs_calculate_signature(const struct smb_hdr *cifs_pdu,
struct TCP_Server_Info *server, char *signature)
{
int rc;
if (cifs_pdu == NULL || signature == NULL || server == NULL)
return -EINVAL;
if (!server->secmech.sdescmd5) {
cERROR(1, "%s: Can't generate signature\n", __func__);
return -1;
}
rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
if (rc) {
cERROR(1, "%s: Oould not init md5\n", __func__);
return rc;
}
crypto_shash_update(&server->secmech.sdescmd5->shash,
server->session_key.response, server->session_key.len);
crypto_shash_update(&server->secmech.sdescmd5->shash,
cifs_pdu->Protocol, cifs_pdu->smb_buf_length);
rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);
return 0;
}
int cifs_sign_smb(struct smb_hdr *cifs_pdu, struct TCP_Server_Info *server,
__u32 *pexpected_response_sequence_number)
{
int rc = 0;
char smb_signature[20];
if ((cifs_pdu == NULL) || (server == NULL))
return -EINVAL;
if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
return rc;
spin_lock(&GlobalMid_Lock);
cifs_pdu->Signature.Sequence.SequenceNumber =
cpu_to_le32(server->sequence_number);
cifs_pdu->Signature.Sequence.Reserved = 0;
*pexpected_response_sequence_number = server->sequence_number++;
server->sequence_number++;
spin_unlock(&GlobalMid_Lock);
rc = cifs_calculate_signature(cifs_pdu, server, smb_signature);
if (rc)
memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
else
memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
return rc;
}
static int cifs_calc_signature2(const struct kvec *iov, int n_vec,
struct TCP_Server_Info *server, char *signature)
{
int i;
int rc;
if (iov == NULL || signature == NULL || server == NULL)
return -EINVAL;
if (!server->secmech.sdescmd5) {
cERROR(1, "%s: Can't generate signature\n", __func__);
return -1;
}
rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
if (rc) {
cERROR(1, "%s: Oould not init md5\n", __func__);
return rc;
}
crypto_shash_update(&server->secmech.sdescmd5->shash,
server->session_key.response, server->session_key.len);
for (i = 0; i < n_vec; i++) {
if (iov[i].iov_len == 0)
continue;
if (iov[i].iov_base == NULL) {
cERROR(1, "null iovec entry");
return -EIO;
}
/* The first entry includes a length field (which does not get
signed that occupies the first 4 bytes before the header */
if (i == 0) {
if (iov[0].iov_len <= 8) /* cmd field at offset 9 */
break; /* nothing to sign or corrupt header */
crypto_shash_update(&server->secmech.sdescmd5->shash,
iov[i].iov_base + 4, iov[i].iov_len - 4);
} else
crypto_shash_update(&server->secmech.sdescmd5->shash,
iov[i].iov_base, iov[i].iov_len);
}
rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);
return rc;
}
int cifs_sign_smb2(struct kvec *iov, int n_vec, struct TCP_Server_Info *server,
__u32 *pexpected_response_sequence_number)
{
int rc = 0;
char smb_signature[20];
struct smb_hdr *cifs_pdu = iov[0].iov_base;
if ((cifs_pdu == NULL) || (server == NULL))
return -EINVAL;
if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
return rc;
spin_lock(&GlobalMid_Lock);
cifs_pdu->Signature.Sequence.SequenceNumber =
cpu_to_le32(server->sequence_number);
cifs_pdu->Signature.Sequence.Reserved = 0;
*pexpected_response_sequence_number = server->sequence_number++;
server->sequence_number++;
spin_unlock(&GlobalMid_Lock);
rc = cifs_calc_signature2(iov, n_vec, server, smb_signature);
if (rc)
memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
else
memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
return rc;
}
int cifs_verify_signature(struct smb_hdr *cifs_pdu,
struct TCP_Server_Info *server,
__u32 expected_sequence_number)
{
unsigned int rc;
char server_response_sig[8];
char what_we_think_sig_should_be[20];
if (cifs_pdu == NULL || server == NULL)
return -EINVAL;
if (cifs_pdu->Command == SMB_COM_NEGOTIATE)
return 0;
if (cifs_pdu->Command == SMB_COM_LOCKING_ANDX) {
struct smb_com_lock_req *pSMB =
(struct smb_com_lock_req *)cifs_pdu;
if (pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)
return 0;
}
/* BB what if signatures are supposed to be on for session but
server does not send one? BB */
/* Do not need to verify session setups with signature "BSRSPYL " */
if (memcmp(cifs_pdu->Signature.SecuritySignature, "BSRSPYL ", 8) == 0)
cFYI(1, "dummy signature received for smb command 0x%x",
cifs_pdu->Command);
/* save off the origiginal signature so we can modify the smb and check
its signature against what the server sent */
memcpy(server_response_sig, cifs_pdu->Signature.SecuritySignature, 8);
cifs_pdu->Signature.Sequence.SequenceNumber =
cpu_to_le32(expected_sequence_number);
cifs_pdu->Signature.Sequence.Reserved = 0;
rc = cifs_calculate_signature(cifs_pdu, server,
what_we_think_sig_should_be);
if (rc)
return rc;
/* cifs_dump_mem("what we think it should be: ",
what_we_think_sig_should_be, 16); */
if (memcmp(server_response_sig, what_we_think_sig_should_be, 8))
return -EACCES;
else
return 0;
}
/* first calculate 24 bytes ntlm response and then 16 byte session key */
int setup_ntlm_response(struct cifsSesInfo *ses)
{
unsigned int temp_len = CIFS_SESS_KEY_SIZE + CIFS_AUTH_RESP_SIZE;
char temp_key[CIFS_SESS_KEY_SIZE];
if (!ses)
return -EINVAL;
ses->auth_key.response = kmalloc(temp_len, GFP_KERNEL);
if (!ses->auth_key.response) {
cERROR(1, "NTLM can't allocate (%u bytes) memory", temp_len);
return -ENOMEM;
}
ses->auth_key.len = temp_len;
SMBNTencrypt(ses->password, ses->server->cryptkey,
ses->auth_key.response + CIFS_SESS_KEY_SIZE);
E_md4hash(ses->password, temp_key);
mdfour(ses->auth_key.response, temp_key, CIFS_SESS_KEY_SIZE);
return 0;
}
#ifdef CONFIG_CIFS_WEAK_PW_HASH
void calc_lanman_hash(const char *password, const char *cryptkey, bool encrypt,
char *lnm_session_key)
{
int i;
char password_with_pad[CIFS_ENCPWD_SIZE];
memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
if (password)
strncpy(password_with_pad, password, CIFS_ENCPWD_SIZE);
if (!encrypt && global_secflags & CIFSSEC_MAY_PLNTXT) {
memset(lnm_session_key, 0, CIFS_SESS_KEY_SIZE);
memcpy(lnm_session_key, password_with_pad,
CIFS_ENCPWD_SIZE);
return;
}
/* calculate old style session key */
/* calling toupper is less broken than repeatedly
calling nls_toupper would be since that will never
work for UTF8, but neither handles multibyte code pages
but the only alternative would be converting to UCS-16 (Unicode)
(using a routine something like UniStrupr) then
uppercasing and then converting back from Unicode - which
would only worth doing it if we knew it were utf8. Basically
utf8 and other multibyte codepages each need their own strupper
function since a byte at a time will ont work. */
for (i = 0; i < CIFS_ENCPWD_SIZE; i++)
password_with_pad[i] = toupper(password_with_pad[i]);
SMBencrypt(password_with_pad, cryptkey, lnm_session_key);
/* clear password before we return/free memory */
memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
}
#endif /* CIFS_WEAK_PW_HASH */
/* Build a proper attribute value/target info pairs blob.
* Fill in netbios and dns domain name and workstation name
* and client time (total five av pairs and + one end of fields indicator.
* Allocate domain name which gets freed when session struct is deallocated.
*/
static int
build_avpair_blob(struct cifsSesInfo *ses, const struct nls_table *nls_cp)
{
unsigned int dlen;
unsigned int wlen;
unsigned int size = 6 * sizeof(struct ntlmssp2_name);
__le64 curtime;
char *defdmname = "WORKGROUP";
unsigned char *blobptr;
struct ntlmssp2_name *attrptr;
if (!ses->domainName) {
ses->domainName = kstrdup(defdmname, GFP_KERNEL);
if (!ses->domainName)
return -ENOMEM;
}
dlen = strlen(ses->domainName);
wlen = strlen(ses->server->hostname);
/* The length of this blob is a size which is
* six times the size of a structure which holds name/size +
* two times the unicode length of a domain name +
* two times the unicode length of a server name +
* size of a timestamp (which is 8 bytes).
*/
ses->auth_key.len = size + 2 * (2 * dlen) + 2 * (2 * wlen) + 8;
ses->auth_key.response = kzalloc(ses->auth_key.len, GFP_KERNEL);
if (!ses->auth_key.response) {
ses->auth_key.len = 0;
cERROR(1, "Challenge target info allocation failure");
return -ENOMEM;
}
blobptr = ses->auth_key.response;
attrptr = (struct ntlmssp2_name *) blobptr;
attrptr->type = cpu_to_le16(NTLMSSP_AV_NB_DOMAIN_NAME);
attrptr->length = cpu_to_le16(2 * dlen);
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
cifs_strtoUCS((__le16 *)blobptr, ses->domainName, dlen, nls_cp);
blobptr += 2 * dlen;
attrptr = (struct ntlmssp2_name *) blobptr;
attrptr->type = cpu_to_le16(NTLMSSP_AV_NB_COMPUTER_NAME);
attrptr->length = cpu_to_le16(2 * wlen);
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
cifs_strtoUCS((__le16 *)blobptr, ses->server->hostname, wlen, nls_cp);
blobptr += 2 * wlen;
attrptr = (struct ntlmssp2_name *) blobptr;
attrptr->type = cpu_to_le16(NTLMSSP_AV_DNS_DOMAIN_NAME);
attrptr->length = cpu_to_le16(2 * dlen);
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
cifs_strtoUCS((__le16 *)blobptr, ses->domainName, dlen, nls_cp);
blobptr += 2 * dlen;
attrptr = (struct ntlmssp2_name *) blobptr;
attrptr->type = cpu_to_le16(NTLMSSP_AV_DNS_COMPUTER_NAME);
attrptr->length = cpu_to_le16(2 * wlen);
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
cifs_strtoUCS((__le16 *)blobptr, ses->server->hostname, wlen, nls_cp);
blobptr += 2 * wlen;
attrptr = (struct ntlmssp2_name *) blobptr;
attrptr->type = cpu_to_le16(NTLMSSP_AV_TIMESTAMP);
attrptr->length = cpu_to_le16(sizeof(__le64));
blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
curtime = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
memcpy(blobptr, &curtime, sizeof(__le64));
return 0;
}
/* Server has provided av pairs/target info in the type 2 challenge
* packet and we have plucked it and stored within smb session.
* We parse that blob here to find netbios domain name to be used
* as part of ntlmv2 authentication (in Target String), if not already
* specified on the command line.
* If this function returns without any error but without fetching
* domain name, authentication may fail against some server but
* may not fail against other (those who are not very particular
* about target string i.e. for some, just user name might suffice.
*/
static int
find_domain_name(struct cifsSesInfo *ses, const struct nls_table *nls_cp)
{
unsigned int attrsize;
unsigned int type;
unsigned int onesize = sizeof(struct ntlmssp2_name);
unsigned char *blobptr;
unsigned char *blobend;
struct ntlmssp2_name *attrptr;
if (!ses->auth_key.len || !ses->auth_key.response)
return 0;
blobptr = ses->auth_key.response;
blobend = blobptr + ses->auth_key.len;
while (blobptr + onesize < blobend) {
attrptr = (struct ntlmssp2_name *) blobptr;
type = le16_to_cpu(attrptr->type);
if (type == NTLMSSP_AV_EOL)
break;
blobptr += 2; /* advance attr type */
attrsize = le16_to_cpu(attrptr->length);
blobptr += 2; /* advance attr size */
if (blobptr + attrsize > blobend)
break;
if (type == NTLMSSP_AV_NB_DOMAIN_NAME) {
if (!attrsize)
break;
if (!ses->domainName) {
ses->domainName =
kmalloc(attrsize + 1, GFP_KERNEL);
if (!ses->domainName)
return -ENOMEM;
cifs_from_ucs2(ses->domainName,
(__le16 *)blobptr, attrsize, attrsize,
nls_cp, false);
break;
}
}
blobptr += attrsize; /* advance attr value */
}
return 0;
}
static int calc_ntlmv2_hash(struct cifsSesInfo *ses, char *ntlmv2_hash,
const struct nls_table *nls_cp)
{
int rc = 0;
int len;
char nt_hash[CIFS_NTHASH_SIZE];
wchar_t *user;
wchar_t *domain;
wchar_t *server;
if (!ses->server->secmech.sdeschmacmd5) {
cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
return -1;
}
/* calculate md4 hash of password */
E_md4hash(ses->password, nt_hash);
crypto_shash_setkey(ses->server->secmech.hmacmd5, nt_hash,
CIFS_NTHASH_SIZE);
rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
if (rc) {
cERROR(1, "calc_ntlmv2_hash: could not init hmacmd5\n");
return rc;
}
/* convert ses->userName to unicode and uppercase */
len = strlen(ses->userName);
user = kmalloc(2 + (len * 2), GFP_KERNEL);
if (user == NULL) {
cERROR(1, "calc_ntlmv2_hash: user mem alloc failure\n");
rc = -ENOMEM;
goto calc_exit_2;
}
len = cifs_strtoUCS((__le16 *)user, ses->userName, len, nls_cp);
UniStrupr(user);
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
(char *)user, 2 * len);
/* convert ses->domainName to unicode and uppercase */
if (ses->domainName) {
len = strlen(ses->domainName);
domain = kmalloc(2 + (len * 2), GFP_KERNEL);
if (domain == NULL) {
cERROR(1, "calc_ntlmv2_hash: domain mem alloc failure");
rc = -ENOMEM;
goto calc_exit_1;
}
len = cifs_strtoUCS((__le16 *)domain, ses->domainName, len,
nls_cp);
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
(char *)domain, 2 * len);
kfree(domain);
} else if (ses->serverName) {
len = strlen(ses->serverName);
server = kmalloc(2 + (len * 2), GFP_KERNEL);
if (server == NULL) {
cERROR(1, "calc_ntlmv2_hash: server mem alloc failure");
rc = -ENOMEM;
goto calc_exit_1;
}
len = cifs_strtoUCS((__le16 *)server, ses->serverName, len,
nls_cp);
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
(char *)server, 2 * len);
kfree(server);
}
rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
ntlmv2_hash);
calc_exit_1:
kfree(user);
calc_exit_2:
return rc;
}
static int
CalcNTLMv2_response(const struct cifsSesInfo *ses, char *ntlmv2_hash)
{
int rc;
unsigned int offset = CIFS_SESS_KEY_SIZE + 8;
if (!ses->server->secmech.sdeschmacmd5) {
cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
return -1;
}
crypto_shash_setkey(ses->server->secmech.hmacmd5,
ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
if (rc) {
cERROR(1, "CalcNTLMv2_response: could not init hmacmd5");
return rc;
}
if (ses->server->secType == RawNTLMSSP)
memcpy(ses->auth_key.response + offset,
ses->ntlmssp->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
else
memcpy(ses->auth_key.response + offset,
ses->server->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
ses->auth_key.response + offset, ses->auth_key.len - offset);
rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
ses->auth_key.response + CIFS_SESS_KEY_SIZE);
return rc;
}
int
setup_ntlmv2_rsp(struct cifsSesInfo *ses, const struct nls_table *nls_cp)
{
int rc;
int baselen;
unsigned int tilen;
struct ntlmv2_resp *buf;
char ntlmv2_hash[16];
unsigned char *tiblob = NULL; /* target info blob */
if (ses->server->secType == RawNTLMSSP) {
if (!ses->domainName) {
rc = find_domain_name(ses, nls_cp);
if (rc) {
cERROR(1, "error %d finding domain name", rc);
goto setup_ntlmv2_rsp_ret;
}
}
} else {
rc = build_avpair_blob(ses, nls_cp);
if (rc) {
cERROR(1, "error %d building av pair blob", rc);
goto setup_ntlmv2_rsp_ret;
}
}
baselen = CIFS_SESS_KEY_SIZE + sizeof(struct ntlmv2_resp);
tilen = ses->auth_key.len;
tiblob = ses->auth_key.response;
ses->auth_key.response = kmalloc(baselen + tilen, GFP_KERNEL);
if (!ses->auth_key.response) {
rc = ENOMEM;
ses->auth_key.len = 0;
cERROR(1, "%s: Can't allocate auth blob", __func__);
goto setup_ntlmv2_rsp_ret;
}
ses->auth_key.len += baselen;
buf = (struct ntlmv2_resp *)
(ses->auth_key.response + CIFS_SESS_KEY_SIZE);
buf->blob_signature = cpu_to_le32(0x00000101);
buf->reserved = 0;
buf->time = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
get_random_bytes(&buf->client_chal, sizeof(buf->client_chal));
buf->reserved2 = 0;
memcpy(ses->auth_key.response + baselen, tiblob, tilen);
/* calculate ntlmv2_hash */
rc = calc_ntlmv2_hash(ses, ntlmv2_hash, nls_cp);
if (rc) {
cERROR(1, "could not get v2 hash rc %d", rc);
goto setup_ntlmv2_rsp_ret;
}
/* calculate first part of the client response (CR1) */
rc = CalcNTLMv2_response(ses, ntlmv2_hash);
if (rc) {
cERROR(1, "Could not calculate CR1 rc: %d", rc);
goto setup_ntlmv2_rsp_ret;
}
/* now calculate the session key for NTLMv2 */
crypto_shash_setkey(ses->server->secmech.hmacmd5,
ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
if (rc) {
cERROR(1, "%s: Could not init hmacmd5\n", __func__);
goto setup_ntlmv2_rsp_ret;
}
crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
ses->auth_key.response + CIFS_SESS_KEY_SIZE,
CIFS_HMAC_MD5_HASH_SIZE);
rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
ses->auth_key.response);
setup_ntlmv2_rsp_ret:
kfree(tiblob);
return rc;
}
int
calc_seckey(struct cifsSesInfo *ses)
{
int rc;
struct crypto_blkcipher *tfm_arc4;
struct scatterlist sgin, sgout;
struct blkcipher_desc desc;
unsigned char sec_key[CIFS_SESS_KEY_SIZE]; /* a nonce */
get_random_bytes(sec_key, CIFS_SESS_KEY_SIZE);
tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
if (!tfm_arc4 || IS_ERR(tfm_arc4)) {
cERROR(1, "could not allocate crypto API arc4\n");
return PTR_ERR(tfm_arc4);
}
desc.tfm = tfm_arc4;
crypto_blkcipher_setkey(tfm_arc4, ses->auth_key.response,
CIFS_SESS_KEY_SIZE);
sg_init_one(&sgin, sec_key, CIFS_SESS_KEY_SIZE);
sg_init_one(&sgout, ses->ntlmssp->ciphertext, CIFS_CPHTXT_SIZE);
rc = crypto_blkcipher_encrypt(&desc, &sgout, &sgin, CIFS_CPHTXT_SIZE);
if (rc) {
cERROR(1, "could not encrypt session key rc: %d\n", rc);
crypto_free_blkcipher(tfm_arc4);
return rc;
}
/* make secondary_key/nonce as session key */
memcpy(ses->auth_key.response, sec_key, CIFS_SESS_KEY_SIZE);
/* and make len as that of session key only */
ses->auth_key.len = CIFS_SESS_KEY_SIZE;
crypto_free_blkcipher(tfm_arc4);
return 0;
}
void
cifs_crypto_shash_release(struct TCP_Server_Info *server)
{
if (server->secmech.md5)
crypto_free_shash(server->secmech.md5);
if (server->secmech.hmacmd5)
crypto_free_shash(server->secmech.hmacmd5);
kfree(server->secmech.sdeschmacmd5);
kfree(server->secmech.sdescmd5);
}
int
cifs_crypto_shash_allocate(struct TCP_Server_Info *server)
{
int rc;
unsigned int size;
server->secmech.hmacmd5 = crypto_alloc_shash("hmac(md5)", 0, 0);
if (!server->secmech.hmacmd5 ||
IS_ERR(server->secmech.hmacmd5)) {
cERROR(1, "could not allocate crypto hmacmd5\n");
return PTR_ERR(server->secmech.hmacmd5);
}
server->secmech.md5 = crypto_alloc_shash("md5", 0, 0);
if (!server->secmech.md5 || IS_ERR(server->secmech.md5)) {
cERROR(1, "could not allocate crypto md5\n");
rc = PTR_ERR(server->secmech.md5);
goto crypto_allocate_md5_fail;
}
size = sizeof(struct shash_desc) +
crypto_shash_descsize(server->secmech.hmacmd5);
server->secmech.sdeschmacmd5 = kmalloc(size, GFP_KERNEL);
if (!server->secmech.sdeschmacmd5) {
cERROR(1, "cifs_crypto_shash_allocate: can't alloc hmacmd5\n");
rc = -ENOMEM;
goto crypto_allocate_hmacmd5_sdesc_fail;
}
server->secmech.sdeschmacmd5->shash.tfm = server->secmech.hmacmd5;
server->secmech.sdeschmacmd5->shash.flags = 0x0;
size = sizeof(struct shash_desc) +
crypto_shash_descsize(server->secmech.md5);
server->secmech.sdescmd5 = kmalloc(size, GFP_KERNEL);
if (!server->secmech.sdescmd5) {
cERROR(1, "cifs_crypto_shash_allocate: can't alloc md5\n");
rc = -ENOMEM;
goto crypto_allocate_md5_sdesc_fail;
}
server->secmech.sdescmd5->shash.tfm = server->secmech.md5;
server->secmech.sdescmd5->shash.flags = 0x0;
return 0;
crypto_allocate_md5_sdesc_fail:
kfree(server->secmech.sdeschmacmd5);
crypto_allocate_hmacmd5_sdesc_fail:
crypto_free_shash(server->secmech.md5);
crypto_allocate_md5_fail:
crypto_free_shash(server->secmech.hmacmd5);
return rc;
}