linux/arch/x86/kernel/pvclock.c
Peter Hurley 3d2a80a230 x86/kvm: Fix pvclock vsyscall fixmap
The physical memory fixmapped for the pvclock clock_gettime vsyscall
was allocated, and thus is not a kernel symbol. __pa() is the proper
method to use in this case.

Fixes the crash below when booting a next-20130204+ smp guest on a
3.8-rc5+ KVM host.

[    0.666410] udevd[97]: starting version 175
[    0.674043] udevd[97]: udevd:[97]: segfault at ffffffffff5fd020
     ip 00007fff069e277f sp 00007fff068c9ef8 error d

Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
2013-02-28 08:50:11 +02:00

197 lines
5.1 KiB
C

/* paravirtual clock -- common code used by kvm/xen
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/gfp.h>
#include <linux/bootmem.h>
#include <asm/fixmap.h>
#include <asm/pvclock.h>
static u8 valid_flags __read_mostly = 0;
void pvclock_set_flags(u8 flags)
{
valid_flags = flags;
}
unsigned long pvclock_tsc_khz(struct pvclock_vcpu_time_info *src)
{
u64 pv_tsc_khz = 1000000ULL << 32;
do_div(pv_tsc_khz, src->tsc_to_system_mul);
if (src->tsc_shift < 0)
pv_tsc_khz <<= -src->tsc_shift;
else
pv_tsc_khz >>= src->tsc_shift;
return pv_tsc_khz;
}
static atomic64_t last_value = ATOMIC64_INIT(0);
void pvclock_resume(void)
{
atomic64_set(&last_value, 0);
}
u8 pvclock_read_flags(struct pvclock_vcpu_time_info *src)
{
unsigned version;
cycle_t ret;
u8 flags;
do {
version = __pvclock_read_cycles(src, &ret, &flags);
} while ((src->version & 1) || version != src->version);
return flags & valid_flags;
}
cycle_t pvclock_clocksource_read(struct pvclock_vcpu_time_info *src)
{
unsigned version;
cycle_t ret;
u64 last;
u8 flags;
do {
version = __pvclock_read_cycles(src, &ret, &flags);
} while ((src->version & 1) || version != src->version);
if ((valid_flags & PVCLOCK_TSC_STABLE_BIT) &&
(flags & PVCLOCK_TSC_STABLE_BIT))
return ret;
/*
* Assumption here is that last_value, a global accumulator, always goes
* forward. If we are less than that, we should not be much smaller.
* We assume there is an error marging we're inside, and then the correction
* does not sacrifice accuracy.
*
* For reads: global may have changed between test and return,
* but this means someone else updated poked the clock at a later time.
* We just need to make sure we are not seeing a backwards event.
*
* For updates: last_value = ret is not enough, since two vcpus could be
* updating at the same time, and one of them could be slightly behind,
* making the assumption that last_value always go forward fail to hold.
*/
last = atomic64_read(&last_value);
do {
if (ret < last)
return last;
last = atomic64_cmpxchg(&last_value, last, ret);
} while (unlikely(last != ret));
return ret;
}
void pvclock_read_wallclock(struct pvclock_wall_clock *wall_clock,
struct pvclock_vcpu_time_info *vcpu_time,
struct timespec *ts)
{
u32 version;
u64 delta;
struct timespec now;
/* get wallclock at system boot */
do {
version = wall_clock->version;
rmb(); /* fetch version before time */
now.tv_sec = wall_clock->sec;
now.tv_nsec = wall_clock->nsec;
rmb(); /* fetch time before checking version */
} while ((wall_clock->version & 1) || (version != wall_clock->version));
delta = pvclock_clocksource_read(vcpu_time); /* time since system boot */
delta += now.tv_sec * (u64)NSEC_PER_SEC + now.tv_nsec;
now.tv_nsec = do_div(delta, NSEC_PER_SEC);
now.tv_sec = delta;
set_normalized_timespec(ts, now.tv_sec, now.tv_nsec);
}
static struct pvclock_vsyscall_time_info *pvclock_vdso_info;
static struct pvclock_vsyscall_time_info *
pvclock_get_vsyscall_user_time_info(int cpu)
{
if (!pvclock_vdso_info) {
BUG();
return NULL;
}
return &pvclock_vdso_info[cpu];
}
struct pvclock_vcpu_time_info *pvclock_get_vsyscall_time_info(int cpu)
{
return &pvclock_get_vsyscall_user_time_info(cpu)->pvti;
}
#ifdef CONFIG_X86_64
static int pvclock_task_migrate(struct notifier_block *nb, unsigned long l,
void *v)
{
struct task_migration_notifier *mn = v;
struct pvclock_vsyscall_time_info *pvti;
pvti = pvclock_get_vsyscall_user_time_info(mn->from_cpu);
/* this is NULL when pvclock vsyscall is not initialized */
if (unlikely(pvti == NULL))
return NOTIFY_DONE;
pvti->migrate_count++;
return NOTIFY_DONE;
}
static struct notifier_block pvclock_migrate = {
.notifier_call = pvclock_task_migrate,
};
/*
* Initialize the generic pvclock vsyscall state. This will allocate
* a/some page(s) for the per-vcpu pvclock information, set up a
* fixmap mapping for the page(s)
*/
int __init pvclock_init_vsyscall(struct pvclock_vsyscall_time_info *i,
int size)
{
int idx;
WARN_ON (size != PVCLOCK_VSYSCALL_NR_PAGES*PAGE_SIZE);
pvclock_vdso_info = i;
for (idx = 0; idx <= (PVCLOCK_FIXMAP_END-PVCLOCK_FIXMAP_BEGIN); idx++) {
__set_fixmap(PVCLOCK_FIXMAP_BEGIN + idx,
__pa(i) + (idx*PAGE_SIZE),
PAGE_KERNEL_VVAR);
}
register_task_migration_notifier(&pvclock_migrate);
return 0;
}
#endif