mirror of
https://github.com/torvalds/linux
synced 2024-11-05 18:23:50 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
244 lines
7 KiB
C
244 lines
7 KiB
C
/* SCTP kernel implementation
|
|
* Copyright (c) 1999-2000 Cisco, Inc.
|
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
|
* Copyright (c) 2002 International Business Machines, Corp.
|
|
*
|
|
* This file is part of the SCTP kernel implementation
|
|
*
|
|
* These functions are the methods for accessing the SCTP inqueue.
|
|
*
|
|
* An SCTP inqueue is a queue into which you push SCTP packets
|
|
* (which might be bundles or fragments of chunks) and out of which you
|
|
* pop SCTP whole chunks.
|
|
*
|
|
* This SCTP implementation is free software;
|
|
* you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This SCTP implementation is distributed in the hope that it
|
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
* ************************
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNU CC; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*
|
|
* Please send any bug reports or fixes you make to the
|
|
* email address(es):
|
|
* lksctp developers <lksctp-developers@lists.sourceforge.net>
|
|
*
|
|
* Or submit a bug report through the following website:
|
|
* http://www.sf.net/projects/lksctp
|
|
*
|
|
* Written or modified by:
|
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
|
* Karl Knutson <karl@athena.chicago.il.us>
|
|
*
|
|
* Any bugs reported given to us we will try to fix... any fixes shared will
|
|
* be incorporated into the next SCTP release.
|
|
*/
|
|
|
|
#include <net/sctp/sctp.h>
|
|
#include <net/sctp/sm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/slab.h>
|
|
|
|
/* Initialize an SCTP inqueue. */
|
|
void sctp_inq_init(struct sctp_inq *queue)
|
|
{
|
|
INIT_LIST_HEAD(&queue->in_chunk_list);
|
|
queue->in_progress = NULL;
|
|
|
|
/* Create a task for delivering data. */
|
|
INIT_WORK(&queue->immediate, NULL);
|
|
|
|
queue->malloced = 0;
|
|
}
|
|
|
|
/* Release the memory associated with an SCTP inqueue. */
|
|
void sctp_inq_free(struct sctp_inq *queue)
|
|
{
|
|
struct sctp_chunk *chunk, *tmp;
|
|
|
|
/* Empty the queue. */
|
|
list_for_each_entry_safe(chunk, tmp, &queue->in_chunk_list, list) {
|
|
list_del_init(&chunk->list);
|
|
sctp_chunk_free(chunk);
|
|
}
|
|
|
|
/* If there is a packet which is currently being worked on,
|
|
* free it as well.
|
|
*/
|
|
if (queue->in_progress) {
|
|
sctp_chunk_free(queue->in_progress);
|
|
queue->in_progress = NULL;
|
|
}
|
|
|
|
if (queue->malloced) {
|
|
/* Dump the master memory segment. */
|
|
kfree(queue);
|
|
}
|
|
}
|
|
|
|
/* Put a new packet in an SCTP inqueue.
|
|
* We assume that packet->sctp_hdr is set and in host byte order.
|
|
*/
|
|
void sctp_inq_push(struct sctp_inq *q, struct sctp_chunk *chunk)
|
|
{
|
|
/* Directly call the packet handling routine. */
|
|
if (chunk->rcvr->dead) {
|
|
sctp_chunk_free(chunk);
|
|
return;
|
|
}
|
|
|
|
/* We are now calling this either from the soft interrupt
|
|
* or from the backlog processing.
|
|
* Eventually, we should clean up inqueue to not rely
|
|
* on the BH related data structures.
|
|
*/
|
|
list_add_tail(&chunk->list, &q->in_chunk_list);
|
|
q->immediate.func(&q->immediate);
|
|
}
|
|
|
|
/* Peek at the next chunk on the inqeue. */
|
|
struct sctp_chunkhdr *sctp_inq_peek(struct sctp_inq *queue)
|
|
{
|
|
struct sctp_chunk *chunk;
|
|
sctp_chunkhdr_t *ch = NULL;
|
|
|
|
chunk = queue->in_progress;
|
|
/* If there is no more chunks in this packet, say so */
|
|
if (chunk->singleton ||
|
|
chunk->end_of_packet ||
|
|
chunk->pdiscard)
|
|
return NULL;
|
|
|
|
ch = (sctp_chunkhdr_t *)chunk->chunk_end;
|
|
|
|
return ch;
|
|
}
|
|
|
|
|
|
/* Extract a chunk from an SCTP inqueue.
|
|
*
|
|
* WARNING: If you need to put the chunk on another queue, you need to
|
|
* make a shallow copy (clone) of it.
|
|
*/
|
|
struct sctp_chunk *sctp_inq_pop(struct sctp_inq *queue)
|
|
{
|
|
struct sctp_chunk *chunk;
|
|
sctp_chunkhdr_t *ch = NULL;
|
|
|
|
/* The assumption is that we are safe to process the chunks
|
|
* at this time.
|
|
*/
|
|
|
|
if ((chunk = queue->in_progress)) {
|
|
/* There is a packet that we have been working on.
|
|
* Any post processing work to do before we move on?
|
|
*/
|
|
if (chunk->singleton ||
|
|
chunk->end_of_packet ||
|
|
chunk->pdiscard) {
|
|
sctp_chunk_free(chunk);
|
|
chunk = queue->in_progress = NULL;
|
|
} else {
|
|
/* Nothing to do. Next chunk in the packet, please. */
|
|
ch = (sctp_chunkhdr_t *) chunk->chunk_end;
|
|
|
|
/* Force chunk->skb->data to chunk->chunk_end. */
|
|
skb_pull(chunk->skb,
|
|
chunk->chunk_end - chunk->skb->data);
|
|
|
|
/* Verify that we have at least chunk headers
|
|
* worth of buffer left.
|
|
*/
|
|
if (skb_headlen(chunk->skb) < sizeof(sctp_chunkhdr_t)) {
|
|
sctp_chunk_free(chunk);
|
|
chunk = queue->in_progress = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do we need to take the next packet out of the queue to process? */
|
|
if (!chunk) {
|
|
struct list_head *entry;
|
|
|
|
/* Is the queue empty? */
|
|
if (list_empty(&queue->in_chunk_list))
|
|
return NULL;
|
|
|
|
entry = queue->in_chunk_list.next;
|
|
chunk = queue->in_progress =
|
|
list_entry(entry, struct sctp_chunk, list);
|
|
list_del_init(entry);
|
|
|
|
/* This is the first chunk in the packet. */
|
|
chunk->singleton = 1;
|
|
ch = (sctp_chunkhdr_t *) chunk->skb->data;
|
|
chunk->data_accepted = 0;
|
|
}
|
|
|
|
chunk->chunk_hdr = ch;
|
|
chunk->chunk_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
|
|
/* In the unlikely case of an IP reassembly, the skb could be
|
|
* non-linear. If so, update chunk_end so that it doesn't go past
|
|
* the skb->tail.
|
|
*/
|
|
if (unlikely(skb_is_nonlinear(chunk->skb))) {
|
|
if (chunk->chunk_end > skb_tail_pointer(chunk->skb))
|
|
chunk->chunk_end = skb_tail_pointer(chunk->skb);
|
|
}
|
|
skb_pull(chunk->skb, sizeof(sctp_chunkhdr_t));
|
|
chunk->subh.v = NULL; /* Subheader is no longer valid. */
|
|
|
|
if (chunk->chunk_end < skb_tail_pointer(chunk->skb)) {
|
|
/* This is not a singleton */
|
|
chunk->singleton = 0;
|
|
} else if (chunk->chunk_end > skb_tail_pointer(chunk->skb)) {
|
|
/* RFC 2960, Section 6.10 Bundling
|
|
*
|
|
* Partial chunks MUST NOT be placed in an SCTP packet.
|
|
* If the receiver detects a partial chunk, it MUST drop
|
|
* the chunk.
|
|
*
|
|
* Since the end of the chunk is past the end of our buffer
|
|
* (which contains the whole packet, we can freely discard
|
|
* the whole packet.
|
|
*/
|
|
sctp_chunk_free(chunk);
|
|
chunk = queue->in_progress = NULL;
|
|
|
|
return NULL;
|
|
} else {
|
|
/* We are at the end of the packet, so mark the chunk
|
|
* in case we need to send a SACK.
|
|
*/
|
|
chunk->end_of_packet = 1;
|
|
}
|
|
|
|
SCTP_DEBUG_PRINTK("+++sctp_inq_pop+++ chunk %p[%s],"
|
|
" length %d, skb->len %d\n",chunk,
|
|
sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)),
|
|
ntohs(chunk->chunk_hdr->length), chunk->skb->len);
|
|
return chunk;
|
|
}
|
|
|
|
/* Set a top-half handler.
|
|
*
|
|
* Originally, we the top-half handler was scheduled as a BH. We now
|
|
* call the handler directly in sctp_inq_push() at a time that
|
|
* we know we are lock safe.
|
|
* The intent is that this routine will pull stuff out of the
|
|
* inqueue and process it.
|
|
*/
|
|
void sctp_inq_set_th_handler(struct sctp_inq *q, work_func_t callback)
|
|
{
|
|
INIT_WORK(&q->immediate, callback);
|
|
}
|
|
|