linux/drivers/cpufreq/ppc-corenet-cpufreq.c
Viresh Kumar dc2398d7ff cpufreq: ppc-corenet: Use generic cpufreq routines
Most of the CPUFreq drivers do similar things in .exit() and .verify() routines
and .attr. So its better if we have generic routines for them which can be used
by cpufreq drivers then.

This patch uses these generic routines in the ppc-corenet driver.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-10-16 00:50:26 +02:00

366 lines
8.7 KiB
C

/*
* Copyright 2013 Freescale Semiconductor, Inc.
*
* CPU Frequency Scaling driver for Freescale PowerPC corenet SoCs.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/errno.h>
#include <sysdev/fsl_soc.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/smp.h>
/**
* struct cpu_data - per CPU data struct
* @clk: the clk of CPU
* @parent: the parent node of cpu clock
* @table: frequency table
*/
struct cpu_data {
struct clk *clk;
struct device_node *parent;
struct cpufreq_frequency_table *table;
};
/**
* struct soc_data - SoC specific data
* @freq_mask: mask the disallowed frequencies
* @flag: unique flags
*/
struct soc_data {
u32 freq_mask[4];
u32 flag;
};
#define FREQ_MASK 1
/* see hardware specification for the allowed frqeuencies */
static const struct soc_data sdata[] = {
{ /* used by p2041 and p3041 */
.freq_mask = {0x8, 0x8, 0x2, 0x2},
.flag = FREQ_MASK,
},
{ /* used by p5020 */
.freq_mask = {0x8, 0x2},
.flag = FREQ_MASK,
},
{ /* used by p4080, p5040 */
.freq_mask = {0},
.flag = 0,
},
};
/*
* the minimum allowed core frequency, in Hz
* for chassis v1.0, >= platform frequency
* for chassis v2.0, >= platform frequency / 2
*/
static u32 min_cpufreq;
static const u32 *fmask;
/* serialize frequency changes */
static DEFINE_MUTEX(cpufreq_lock);
static DEFINE_PER_CPU(struct cpu_data *, cpu_data);
/* cpumask in a cluster */
static DEFINE_PER_CPU(cpumask_var_t, cpu_mask);
#ifndef CONFIG_SMP
static inline const struct cpumask *cpu_core_mask(int cpu)
{
return cpumask_of(0);
}
#endif
static unsigned int corenet_cpufreq_get_speed(unsigned int cpu)
{
struct cpu_data *data = per_cpu(cpu_data, cpu);
return clk_get_rate(data->clk) / 1000;
}
/* reduce the duplicated frequencies in frequency table */
static void freq_table_redup(struct cpufreq_frequency_table *freq_table,
int count)
{
int i, j;
for (i = 1; i < count; i++) {
for (j = 0; j < i; j++) {
if (freq_table[j].frequency == CPUFREQ_ENTRY_INVALID ||
freq_table[j].frequency !=
freq_table[i].frequency)
continue;
freq_table[i].frequency = CPUFREQ_ENTRY_INVALID;
break;
}
}
}
/* sort the frequencies in frequency table in descenting order */
static void freq_table_sort(struct cpufreq_frequency_table *freq_table,
int count)
{
int i, j, ind;
unsigned int freq, max_freq;
struct cpufreq_frequency_table table;
for (i = 0; i < count - 1; i++) {
max_freq = freq_table[i].frequency;
ind = i;
for (j = i + 1; j < count; j++) {
freq = freq_table[j].frequency;
if (freq == CPUFREQ_ENTRY_INVALID ||
freq <= max_freq)
continue;
ind = j;
max_freq = freq;
}
if (ind != i) {
/* exchange the frequencies */
table.driver_data = freq_table[i].driver_data;
table.frequency = freq_table[i].frequency;
freq_table[i].driver_data = freq_table[ind].driver_data;
freq_table[i].frequency = freq_table[ind].frequency;
freq_table[ind].driver_data = table.driver_data;
freq_table[ind].frequency = table.frequency;
}
}
}
static int corenet_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
struct device_node *np;
int i, count, ret;
u32 freq, mask;
struct clk *clk;
struct cpufreq_frequency_table *table;
struct cpu_data *data;
unsigned int cpu = policy->cpu;
np = of_get_cpu_node(cpu, NULL);
if (!np)
return -ENODEV;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
pr_err("%s: no memory\n", __func__);
goto err_np;
}
data->clk = of_clk_get(np, 0);
if (IS_ERR(data->clk)) {
pr_err("%s: no clock information\n", __func__);
goto err_nomem2;
}
data->parent = of_parse_phandle(np, "clocks", 0);
if (!data->parent) {
pr_err("%s: could not get clock information\n", __func__);
goto err_nomem2;
}
count = of_property_count_strings(data->parent, "clock-names");
table = kcalloc(count + 1, sizeof(*table), GFP_KERNEL);
if (!table) {
pr_err("%s: no memory\n", __func__);
goto err_node;
}
if (fmask)
mask = fmask[get_hard_smp_processor_id(cpu)];
else
mask = 0x0;
for (i = 0; i < count; i++) {
clk = of_clk_get(data->parent, i);
freq = clk_get_rate(clk);
/*
* the clock is valid if its frequency is not masked
* and large than minimum allowed frequency.
*/
if (freq < min_cpufreq || (mask & (1 << i)))
table[i].frequency = CPUFREQ_ENTRY_INVALID;
else
table[i].frequency = freq / 1000;
table[i].driver_data = i;
}
freq_table_redup(table, count);
freq_table_sort(table, count);
table[i].frequency = CPUFREQ_TABLE_END;
/* set the min and max frequency properly */
ret = cpufreq_table_validate_and_show(policy, table);
if (ret) {
pr_err("invalid frequency table: %d\n", ret);
goto err_nomem1;
}
data->table = table;
per_cpu(cpu_data, cpu) = data;
/* update ->cpus if we have cluster, no harm if not */
cpumask_copy(policy->cpus, per_cpu(cpu_mask, cpu));
for_each_cpu(i, per_cpu(cpu_mask, cpu))
per_cpu(cpu_data, i) = data;
policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
policy->cur = corenet_cpufreq_get_speed(policy->cpu);
of_node_put(np);
return 0;
err_nomem1:
kfree(table);
err_node:
of_node_put(data->parent);
err_nomem2:
per_cpu(cpu_data, cpu) = NULL;
kfree(data);
err_np:
of_node_put(np);
return -ENODEV;
}
static int __exit corenet_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
struct cpu_data *data = per_cpu(cpu_data, policy->cpu);
unsigned int cpu;
cpufreq_frequency_table_put_attr(policy->cpu);
of_node_put(data->parent);
kfree(data->table);
kfree(data);
for_each_cpu(cpu, per_cpu(cpu_mask, policy->cpu))
per_cpu(cpu_data, cpu) = NULL;
return 0;
}
static int corenet_cpufreq_target(struct cpufreq_policy *policy,
unsigned int target_freq, unsigned int relation)
{
struct cpufreq_freqs freqs;
unsigned int new;
struct clk *parent;
int ret;
struct cpu_data *data = per_cpu(cpu_data, policy->cpu);
cpufreq_frequency_table_target(policy, data->table,
target_freq, relation, &new);
if (policy->cur == data->table[new].frequency)
return 0;
freqs.old = policy->cur;
freqs.new = data->table[new].frequency;
mutex_lock(&cpufreq_lock);
cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
parent = of_clk_get(data->parent, data->table[new].driver_data);
ret = clk_set_parent(data->clk, parent);
if (ret)
freqs.new = freqs.old;
cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
mutex_unlock(&cpufreq_lock);
return ret;
}
static struct cpufreq_driver ppc_corenet_cpufreq_driver = {
.name = "ppc_cpufreq",
.flags = CPUFREQ_CONST_LOOPS,
.init = corenet_cpufreq_cpu_init,
.exit = __exit_p(corenet_cpufreq_cpu_exit),
.verify = cpufreq_generic_frequency_table_verify,
.target = corenet_cpufreq_target,
.get = corenet_cpufreq_get_speed,
.attr = cpufreq_generic_attr,
};
static const struct of_device_id node_matches[] __initdata = {
{ .compatible = "fsl,p2041-clockgen", .data = &sdata[0], },
{ .compatible = "fsl,p3041-clockgen", .data = &sdata[0], },
{ .compatible = "fsl,p5020-clockgen", .data = &sdata[1], },
{ .compatible = "fsl,p4080-clockgen", .data = &sdata[2], },
{ .compatible = "fsl,p5040-clockgen", .data = &sdata[2], },
{ .compatible = "fsl,qoriq-clockgen-2.0", },
{}
};
static int __init ppc_corenet_cpufreq_init(void)
{
int ret;
struct device_node *np;
const struct of_device_id *match;
const struct soc_data *data;
unsigned int cpu;
np = of_find_matching_node(NULL, node_matches);
if (!np)
return -ENODEV;
for_each_possible_cpu(cpu) {
if (!alloc_cpumask_var(&per_cpu(cpu_mask, cpu), GFP_KERNEL))
goto err_mask;
cpumask_copy(per_cpu(cpu_mask, cpu), cpu_core_mask(cpu));
}
match = of_match_node(node_matches, np);
data = match->data;
if (data) {
if (data->flag)
fmask = data->freq_mask;
min_cpufreq = fsl_get_sys_freq();
} else {
min_cpufreq = fsl_get_sys_freq() / 2;
}
of_node_put(np);
ret = cpufreq_register_driver(&ppc_corenet_cpufreq_driver);
if (!ret)
pr_info("Freescale PowerPC corenet CPU frequency scaling driver\n");
return ret;
err_mask:
for_each_possible_cpu(cpu)
free_cpumask_var(per_cpu(cpu_mask, cpu));
return -ENOMEM;
}
module_init(ppc_corenet_cpufreq_init);
static void __exit ppc_corenet_cpufreq_exit(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu)
free_cpumask_var(per_cpu(cpu_mask, cpu));
cpufreq_unregister_driver(&ppc_corenet_cpufreq_driver);
}
module_exit(ppc_corenet_cpufreq_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Tang Yuantian <Yuantian.Tang@freescale.com>");
MODULE_DESCRIPTION("cpufreq driver for Freescale e500mc series SoCs");