linux/drivers/block/xsysace.c
Grant Likely bfbd442f69 Fix Xilinx SystemACE driver to handle empty CF slot
The SystemACE driver does not handle an empty CF slot gracefully. An
empty CF slot ends up hanging the system. This patch adds a check for
the CF state and stops trying to process requests if the slot is empty.

Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-03-14 21:06:52 +01:00

1307 lines
34 KiB
C

/*
* Xilinx SystemACE device driver
*
* Copyright 2007 Secret Lab Technologies Ltd.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
/*
* The SystemACE chip is designed to configure FPGAs by loading an FPGA
* bitstream from a file on a CF card and squirting it into FPGAs connected
* to the SystemACE JTAG chain. It also has the advantage of providing an
* MPU interface which can be used to control the FPGA configuration process
* and to use the attached CF card for general purpose storage.
*
* This driver is a block device driver for the SystemACE.
*
* Initialization:
* The driver registers itself as a platform_device driver at module
* load time. The platform bus will take care of calling the
* ace_probe() method for all SystemACE instances in the system. Any
* number of SystemACE instances are supported. ace_probe() calls
* ace_setup() which initialized all data structures, reads the CF
* id structure and registers the device.
*
* Processing:
* Just about all of the heavy lifting in this driver is performed by
* a Finite State Machine (FSM). The driver needs to wait on a number
* of events; some raised by interrupts, some which need to be polled
* for. Describing all of the behaviour in a FSM seems to be the
* easiest way to keep the complexity low and make it easy to
* understand what the driver is doing. If the block ops or the
* request function need to interact with the hardware, then they
* simply need to flag the request and kick of FSM processing.
*
* The FSM itself is atomic-safe code which can be run from any
* context. The general process flow is:
* 1. obtain the ace->lock spinlock.
* 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
* cleared.
* 3. release the lock.
*
* Individual states do not sleep in any way. If a condition needs to
* be waited for then the state much clear the fsm_continue flag and
* either schedule the FSM to be run again at a later time, or expect
* an interrupt to call the FSM when the desired condition is met.
*
* In normal operation, the FSM is processed at interrupt context
* either when the driver's tasklet is scheduled, or when an irq is
* raised by the hardware. The tasklet can be scheduled at any time.
* The request method in particular schedules the tasklet when a new
* request has been indicated by the block layer. Once started, the
* FSM proceeds as far as it can processing the request until it
* needs on a hardware event. At this point, it must yield execution.
*
* A state has two options when yielding execution:
* 1. ace_fsm_yield()
* - Call if need to poll for event.
* - clears the fsm_continue flag to exit the processing loop
* - reschedules the tasklet to run again as soon as possible
* 2. ace_fsm_yieldirq()
* - Call if an irq is expected from the HW
* - clears the fsm_continue flag to exit the processing loop
* - does not reschedule the tasklet so the FSM will not be processed
* again until an irq is received.
* After calling a yield function, the state must return control back
* to the FSM main loop.
*
* Additionally, the driver maintains a kernel timer which can process
* the FSM. If the FSM gets stalled, typically due to a missed
* interrupt, then the kernel timer will expire and the driver can
* continue where it left off.
*
* To Do:
* - Add FPGA configuration control interface.
* - Request major number from lanana
*/
#undef DEBUG
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/platform_device.h>
#if defined(CONFIG_OF)
#include <linux/of_device.h>
#include <linux/of_platform.h>
#endif
MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
MODULE_DESCRIPTION("Xilinx SystemACE device driver");
MODULE_LICENSE("GPL");
/* SystemACE register definitions */
#define ACE_BUSMODE (0x00)
#define ACE_STATUS (0x04)
#define ACE_STATUS_CFGLOCK (0x00000001)
#define ACE_STATUS_MPULOCK (0x00000002)
#define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
#define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
#define ACE_STATUS_CFDETECT (0x00000010)
#define ACE_STATUS_DATABUFRDY (0x00000020)
#define ACE_STATUS_DATABUFMODE (0x00000040)
#define ACE_STATUS_CFGDONE (0x00000080)
#define ACE_STATUS_RDYFORCFCMD (0x00000100)
#define ACE_STATUS_CFGMODEPIN (0x00000200)
#define ACE_STATUS_CFGADDR_MASK (0x0000e000)
#define ACE_STATUS_CFBSY (0x00020000)
#define ACE_STATUS_CFRDY (0x00040000)
#define ACE_STATUS_CFDWF (0x00080000)
#define ACE_STATUS_CFDSC (0x00100000)
#define ACE_STATUS_CFDRQ (0x00200000)
#define ACE_STATUS_CFCORR (0x00400000)
#define ACE_STATUS_CFERR (0x00800000)
#define ACE_ERROR (0x08)
#define ACE_CFGLBA (0x0c)
#define ACE_MPULBA (0x10)
#define ACE_SECCNTCMD (0x14)
#define ACE_SECCNTCMD_RESET (0x0100)
#define ACE_SECCNTCMD_IDENTIFY (0x0200)
#define ACE_SECCNTCMD_READ_DATA (0x0300)
#define ACE_SECCNTCMD_WRITE_DATA (0x0400)
#define ACE_SECCNTCMD_ABORT (0x0600)
#define ACE_VERSION (0x16)
#define ACE_VERSION_REVISION_MASK (0x00FF)
#define ACE_VERSION_MINOR_MASK (0x0F00)
#define ACE_VERSION_MAJOR_MASK (0xF000)
#define ACE_CTRL (0x18)
#define ACE_CTRL_FORCELOCKREQ (0x0001)
#define ACE_CTRL_LOCKREQ (0x0002)
#define ACE_CTRL_FORCECFGADDR (0x0004)
#define ACE_CTRL_FORCECFGMODE (0x0008)
#define ACE_CTRL_CFGMODE (0x0010)
#define ACE_CTRL_CFGSTART (0x0020)
#define ACE_CTRL_CFGSEL (0x0040)
#define ACE_CTRL_CFGRESET (0x0080)
#define ACE_CTRL_DATABUFRDYIRQ (0x0100)
#define ACE_CTRL_ERRORIRQ (0x0200)
#define ACE_CTRL_CFGDONEIRQ (0x0400)
#define ACE_CTRL_RESETIRQ (0x0800)
#define ACE_CTRL_CFGPROG (0x1000)
#define ACE_CTRL_CFGADDR_MASK (0xe000)
#define ACE_FATSTAT (0x1c)
#define ACE_NUM_MINORS 16
#define ACE_SECTOR_SIZE (512)
#define ACE_FIFO_SIZE (32)
#define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
#define ACE_BUS_WIDTH_8 0
#define ACE_BUS_WIDTH_16 1
struct ace_reg_ops;
struct ace_device {
/* driver state data */
int id;
int media_change;
int users;
struct list_head list;
/* finite state machine data */
struct tasklet_struct fsm_tasklet;
uint fsm_task; /* Current activity (ACE_TASK_*) */
uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
uint fsm_continue_flag; /* cleared to exit FSM mainloop */
uint fsm_iter_num;
struct timer_list stall_timer;
/* Transfer state/result, use for both id and block request */
struct request *req; /* request being processed */
void *data_ptr; /* pointer to I/O buffer */
int data_count; /* number of buffers remaining */
int data_result; /* Result of transfer; 0 := success */
int id_req_count; /* count of id requests */
int id_result;
struct completion id_completion; /* used when id req finishes */
int in_irq;
/* Details of hardware device */
resource_size_t physaddr;
void __iomem *baseaddr;
int irq;
int bus_width; /* 0 := 8 bit; 1 := 16 bit */
struct ace_reg_ops *reg_ops;
int lock_count;
/* Block device data structures */
spinlock_t lock;
struct device *dev;
struct request_queue *queue;
struct gendisk *gd;
/* Inserted CF card parameters */
struct hd_driveid cf_id;
};
static int ace_major;
/* ---------------------------------------------------------------------
* Low level register access
*/
struct ace_reg_ops {
u16(*in) (struct ace_device * ace, int reg);
void (*out) (struct ace_device * ace, int reg, u16 val);
void (*datain) (struct ace_device * ace);
void (*dataout) (struct ace_device * ace);
};
/* 8 Bit bus width */
static u16 ace_in_8(struct ace_device *ace, int reg)
{
void __iomem *r = ace->baseaddr + reg;
return in_8(r) | (in_8(r + 1) << 8);
}
static void ace_out_8(struct ace_device *ace, int reg, u16 val)
{
void __iomem *r = ace->baseaddr + reg;
out_8(r, val);
out_8(r + 1, val >> 8);
}
static void ace_datain_8(struct ace_device *ace)
{
void __iomem *r = ace->baseaddr + 0x40;
u8 *dst = ace->data_ptr;
int i = ACE_FIFO_SIZE;
while (i--)
*dst++ = in_8(r++);
ace->data_ptr = dst;
}
static void ace_dataout_8(struct ace_device *ace)
{
void __iomem *r = ace->baseaddr + 0x40;
u8 *src = ace->data_ptr;
int i = ACE_FIFO_SIZE;
while (i--)
out_8(r++, *src++);
ace->data_ptr = src;
}
static struct ace_reg_ops ace_reg_8_ops = {
.in = ace_in_8,
.out = ace_out_8,
.datain = ace_datain_8,
.dataout = ace_dataout_8,
};
/* 16 bit big endian bus attachment */
static u16 ace_in_be16(struct ace_device *ace, int reg)
{
return in_be16(ace->baseaddr + reg);
}
static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
{
out_be16(ace->baseaddr + reg, val);
}
static void ace_datain_be16(struct ace_device *ace)
{
int i = ACE_FIFO_SIZE / 2;
u16 *dst = ace->data_ptr;
while (i--)
*dst++ = in_le16(ace->baseaddr + 0x40);
ace->data_ptr = dst;
}
static void ace_dataout_be16(struct ace_device *ace)
{
int i = ACE_FIFO_SIZE / 2;
u16 *src = ace->data_ptr;
while (i--)
out_le16(ace->baseaddr + 0x40, *src++);
ace->data_ptr = src;
}
/* 16 bit little endian bus attachment */
static u16 ace_in_le16(struct ace_device *ace, int reg)
{
return in_le16(ace->baseaddr + reg);
}
static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
{
out_le16(ace->baseaddr + reg, val);
}
static void ace_datain_le16(struct ace_device *ace)
{
int i = ACE_FIFO_SIZE / 2;
u16 *dst = ace->data_ptr;
while (i--)
*dst++ = in_be16(ace->baseaddr + 0x40);
ace->data_ptr = dst;
}
static void ace_dataout_le16(struct ace_device *ace)
{
int i = ACE_FIFO_SIZE / 2;
u16 *src = ace->data_ptr;
while (i--)
out_be16(ace->baseaddr + 0x40, *src++);
ace->data_ptr = src;
}
static struct ace_reg_ops ace_reg_be16_ops = {
.in = ace_in_be16,
.out = ace_out_be16,
.datain = ace_datain_be16,
.dataout = ace_dataout_be16,
};
static struct ace_reg_ops ace_reg_le16_ops = {
.in = ace_in_le16,
.out = ace_out_le16,
.datain = ace_datain_le16,
.dataout = ace_dataout_le16,
};
static inline u16 ace_in(struct ace_device *ace, int reg)
{
return ace->reg_ops->in(ace, reg);
}
static inline u32 ace_in32(struct ace_device *ace, int reg)
{
return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
}
static inline void ace_out(struct ace_device *ace, int reg, u16 val)
{
ace->reg_ops->out(ace, reg, val);
}
static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
{
ace_out(ace, reg, val);
ace_out(ace, reg + 2, val >> 16);
}
/* ---------------------------------------------------------------------
* Debug support functions
*/
#if defined(DEBUG)
static void ace_dump_mem(void *base, int len)
{
const char *ptr = base;
int i, j;
for (i = 0; i < len; i += 16) {
printk(KERN_INFO "%.8x:", i);
for (j = 0; j < 16; j++) {
if (!(j % 4))
printk(" ");
printk("%.2x", ptr[i + j]);
}
printk(" ");
for (j = 0; j < 16; j++)
printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
printk("\n");
}
}
#else
static inline void ace_dump_mem(void *base, int len)
{
}
#endif
static void ace_dump_regs(struct ace_device *ace)
{
dev_info(ace->dev, " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
KERN_INFO " status:%.8x mpu_lba:%.8x busmode:%4x\n"
KERN_INFO " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
ace_in32(ace, ACE_CTRL),
ace_in(ace, ACE_SECCNTCMD),
ace_in(ace, ACE_VERSION),
ace_in32(ace, ACE_STATUS),
ace_in32(ace, ACE_MPULBA),
ace_in(ace, ACE_BUSMODE),
ace_in32(ace, ACE_ERROR),
ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
}
void ace_fix_driveid(struct hd_driveid *id)
{
#if defined(__BIG_ENDIAN)
u16 *buf = (void *)id;
int i;
/* All half words have wrong byte order; swap the bytes */
for (i = 0; i < sizeof(struct hd_driveid); i += 2, buf++)
*buf = le16_to_cpu(*buf);
/* Some of the data values are 32bit; swap the half words */
id->lba_capacity = ((id->lba_capacity >> 16) & 0x0000FFFF) |
((id->lba_capacity << 16) & 0xFFFF0000);
id->spg = ((id->spg >> 16) & 0x0000FFFF) |
((id->spg << 16) & 0xFFFF0000);
#endif
}
/* ---------------------------------------------------------------------
* Finite State Machine (FSM) implementation
*/
/* FSM tasks; used to direct state transitions */
#define ACE_TASK_IDLE 0
#define ACE_TASK_IDENTIFY 1
#define ACE_TASK_READ 2
#define ACE_TASK_WRITE 3
#define ACE_FSM_NUM_TASKS 4
/* FSM state definitions */
#define ACE_FSM_STATE_IDLE 0
#define ACE_FSM_STATE_REQ_LOCK 1
#define ACE_FSM_STATE_WAIT_LOCK 2
#define ACE_FSM_STATE_WAIT_CFREADY 3
#define ACE_FSM_STATE_IDENTIFY_PREPARE 4
#define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
#define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
#define ACE_FSM_STATE_REQ_PREPARE 7
#define ACE_FSM_STATE_REQ_TRANSFER 8
#define ACE_FSM_STATE_REQ_COMPLETE 9
#define ACE_FSM_STATE_ERROR 10
#define ACE_FSM_NUM_STATES 11
/* Set flag to exit FSM loop and reschedule tasklet */
static inline void ace_fsm_yield(struct ace_device *ace)
{
dev_dbg(ace->dev, "ace_fsm_yield()\n");
tasklet_schedule(&ace->fsm_tasklet);
ace->fsm_continue_flag = 0;
}
/* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
static inline void ace_fsm_yieldirq(struct ace_device *ace)
{
dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
if (ace->irq == NO_IRQ)
/* No IRQ assigned, so need to poll */
tasklet_schedule(&ace->fsm_tasklet);
ace->fsm_continue_flag = 0;
}
/* Get the next read/write request; ending requests that we don't handle */
struct request *ace_get_next_request(struct request_queue * q)
{
struct request *req;
while ((req = elv_next_request(q)) != NULL) {
if (blk_fs_request(req))
break;
end_request(req, 0);
}
return req;
}
static void ace_fsm_dostate(struct ace_device *ace)
{
struct request *req;
u32 status;
u16 val;
int count;
#if defined(DEBUG)
dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
ace->fsm_state, ace->id_req_count);
#endif
/* Verify that there is actually a CF in the slot. If not, then
* bail out back to the idle state and wake up all the waiters */
status = ace_in32(ace, ACE_STATUS);
if ((status & ACE_STATUS_CFDETECT) == 0) {
ace->fsm_state = ACE_FSM_STATE_IDLE;
ace->media_change = 1;
set_capacity(ace->gd, 0);
dev_info(ace->dev, "No CF in slot\n");
/* Drop all pending requests */
while ((req = elv_next_request(ace->queue)) != NULL)
end_request(req, 0);
/* Drop back to IDLE state and notify waiters */
ace->fsm_state = ACE_FSM_STATE_IDLE;
ace->id_result = -EIO;
while (ace->id_req_count) {
complete(&ace->id_completion);
ace->id_req_count--;
}
}
switch (ace->fsm_state) {
case ACE_FSM_STATE_IDLE:
/* See if there is anything to do */
if (ace->id_req_count || ace_get_next_request(ace->queue)) {
ace->fsm_iter_num++;
ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
mod_timer(&ace->stall_timer, jiffies + HZ);
if (!timer_pending(&ace->stall_timer))
add_timer(&ace->stall_timer);
break;
}
del_timer(&ace->stall_timer);
ace->fsm_continue_flag = 0;
break;
case ACE_FSM_STATE_REQ_LOCK:
if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
/* Already have the lock, jump to next state */
ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
break;
}
/* Request the lock */
val = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
break;
case ACE_FSM_STATE_WAIT_LOCK:
if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
/* got the lock; move to next state */
ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
break;
}
/* wait a bit for the lock */
ace_fsm_yield(ace);
break;
case ACE_FSM_STATE_WAIT_CFREADY:
status = ace_in32(ace, ACE_STATUS);
if (!(status & ACE_STATUS_RDYFORCFCMD) ||
(status & ACE_STATUS_CFBSY)) {
/* CF card isn't ready; it needs to be polled */
ace_fsm_yield(ace);
break;
}
/* Device is ready for command; determine what to do next */
if (ace->id_req_count)
ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
else
ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
break;
case ACE_FSM_STATE_IDENTIFY_PREPARE:
/* Send identify command */
ace->fsm_task = ACE_TASK_IDENTIFY;
ace->data_ptr = &ace->cf_id;
ace->data_count = ACE_BUF_PER_SECTOR;
ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
/* As per datasheet, put config controller in reset */
val = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
/* irq handler takes over from this point; wait for the
* transfer to complete */
ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
ace_fsm_yieldirq(ace);
break;
case ACE_FSM_STATE_IDENTIFY_TRANSFER:
/* Check that the sysace is ready to receive data */
status = ace_in32(ace, ACE_STATUS);
if (status & ACE_STATUS_CFBSY) {
dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
ace->fsm_task, ace->fsm_iter_num,
ace->data_count);
ace_fsm_yield(ace);
break;
}
if (!(status & ACE_STATUS_DATABUFRDY)) {
ace_fsm_yield(ace);
break;
}
/* Transfer the next buffer */
ace->reg_ops->datain(ace);
ace->data_count--;
/* If there are still buffers to be transfers; jump out here */
if (ace->data_count != 0) {
ace_fsm_yieldirq(ace);
break;
}
/* transfer finished; kick state machine */
dev_dbg(ace->dev, "identify finished\n");
ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
break;
case ACE_FSM_STATE_IDENTIFY_COMPLETE:
ace_fix_driveid(&ace->cf_id);
ace_dump_mem(&ace->cf_id, 512); /* Debug: Dump out disk ID */
if (ace->data_result) {
/* Error occured, disable the disk */
ace->media_change = 1;
set_capacity(ace->gd, 0);
dev_err(ace->dev, "error fetching CF id (%i)\n",
ace->data_result);
} else {
ace->media_change = 0;
/* Record disk parameters */
set_capacity(ace->gd, ace->cf_id.lba_capacity);
dev_info(ace->dev, "capacity: %i sectors\n",
ace->cf_id.lba_capacity);
}
/* We're done, drop to IDLE state and notify waiters */
ace->fsm_state = ACE_FSM_STATE_IDLE;
ace->id_result = ace->data_result;
while (ace->id_req_count) {
complete(&ace->id_completion);
ace->id_req_count--;
}
break;
case ACE_FSM_STATE_REQ_PREPARE:
req = ace_get_next_request(ace->queue);
if (!req) {
ace->fsm_state = ACE_FSM_STATE_IDLE;
break;
}
/* Okay, it's a data request, set it up for transfer */
dev_dbg(ace->dev,
"request: sec=%llx hcnt=%lx, ccnt=%x, dir=%i\n",
(unsigned long long) req->sector, req->hard_nr_sectors,
req->current_nr_sectors, rq_data_dir(req));
ace->req = req;
ace->data_ptr = req->buffer;
ace->data_count = req->current_nr_sectors * ACE_BUF_PER_SECTOR;
ace_out32(ace, ACE_MPULBA, req->sector & 0x0FFFFFFF);
count = req->hard_nr_sectors;
if (rq_data_dir(req)) {
/* Kick off write request */
dev_dbg(ace->dev, "write data\n");
ace->fsm_task = ACE_TASK_WRITE;
ace_out(ace, ACE_SECCNTCMD,
count | ACE_SECCNTCMD_WRITE_DATA);
} else {
/* Kick off read request */
dev_dbg(ace->dev, "read data\n");
ace->fsm_task = ACE_TASK_READ;
ace_out(ace, ACE_SECCNTCMD,
count | ACE_SECCNTCMD_READ_DATA);
}
/* As per datasheet, put config controller in reset */
val = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
/* Move to the transfer state. The systemace will raise
* an interrupt once there is something to do
*/
ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
if (ace->fsm_task == ACE_TASK_READ)
ace_fsm_yieldirq(ace); /* wait for data ready */
break;
case ACE_FSM_STATE_REQ_TRANSFER:
/* Check that the sysace is ready to receive data */
status = ace_in32(ace, ACE_STATUS);
if (status & ACE_STATUS_CFBSY) {
dev_dbg(ace->dev,
"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
ace->fsm_task, ace->fsm_iter_num,
ace->req->current_nr_sectors * 16,
ace->data_count, ace->in_irq);
ace_fsm_yield(ace); /* need to poll CFBSY bit */
break;
}
if (!(status & ACE_STATUS_DATABUFRDY)) {
dev_dbg(ace->dev,
"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
ace->fsm_task, ace->fsm_iter_num,
ace->req->current_nr_sectors * 16,
ace->data_count, ace->in_irq);
ace_fsm_yieldirq(ace);
break;
}
/* Transfer the next buffer */
if (ace->fsm_task == ACE_TASK_WRITE)
ace->reg_ops->dataout(ace);
else
ace->reg_ops->datain(ace);
ace->data_count--;
/* If there are still buffers to be transfers; jump out here */
if (ace->data_count != 0) {
ace_fsm_yieldirq(ace);
break;
}
/* bio finished; is there another one? */
if (__blk_end_request(ace->req, 0,
blk_rq_cur_bytes(ace->req))) {
/* dev_dbg(ace->dev, "next block; h=%li c=%i\n",
* ace->req->hard_nr_sectors,
* ace->req->current_nr_sectors);
*/
ace->data_ptr = ace->req->buffer;
ace->data_count = ace->req->current_nr_sectors * 16;
ace_fsm_yieldirq(ace);
break;
}
ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
break;
case ACE_FSM_STATE_REQ_COMPLETE:
ace->req = NULL;
/* Finished request; go to idle state */
ace->fsm_state = ACE_FSM_STATE_IDLE;
break;
default:
ace->fsm_state = ACE_FSM_STATE_IDLE;
break;
}
}
static void ace_fsm_tasklet(unsigned long data)
{
struct ace_device *ace = (void *)data;
unsigned long flags;
spin_lock_irqsave(&ace->lock, flags);
/* Loop over state machine until told to stop */
ace->fsm_continue_flag = 1;
while (ace->fsm_continue_flag)
ace_fsm_dostate(ace);
spin_unlock_irqrestore(&ace->lock, flags);
}
static void ace_stall_timer(unsigned long data)
{
struct ace_device *ace = (void *)data;
unsigned long flags;
dev_warn(ace->dev,
"kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
ace->data_count);
spin_lock_irqsave(&ace->lock, flags);
/* Rearm the stall timer *before* entering FSM (which may then
* delete the timer) */
mod_timer(&ace->stall_timer, jiffies + HZ);
/* Loop over state machine until told to stop */
ace->fsm_continue_flag = 1;
while (ace->fsm_continue_flag)
ace_fsm_dostate(ace);
spin_unlock_irqrestore(&ace->lock, flags);
}
/* ---------------------------------------------------------------------
* Interrupt handling routines
*/
static int ace_interrupt_checkstate(struct ace_device *ace)
{
u32 sreg = ace_in32(ace, ACE_STATUS);
u16 creg = ace_in(ace, ACE_CTRL);
/* Check for error occurance */
if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
(creg & ACE_CTRL_ERRORIRQ)) {
dev_err(ace->dev, "transfer failure\n");
ace_dump_regs(ace);
return -EIO;
}
return 0;
}
static irqreturn_t ace_interrupt(int irq, void *dev_id)
{
u16 creg;
struct ace_device *ace = dev_id;
/* be safe and get the lock */
spin_lock(&ace->lock);
ace->in_irq = 1;
/* clear the interrupt */
creg = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
ace_out(ace, ACE_CTRL, creg);
/* check for IO failures */
if (ace_interrupt_checkstate(ace))
ace->data_result = -EIO;
if (ace->fsm_task == 0) {
dev_err(ace->dev,
"spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
ace_in(ace, ACE_SECCNTCMD));
dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
ace->fsm_task, ace->fsm_state, ace->data_count);
}
/* Loop over state machine until told to stop */
ace->fsm_continue_flag = 1;
while (ace->fsm_continue_flag)
ace_fsm_dostate(ace);
/* done with interrupt; drop the lock */
ace->in_irq = 0;
spin_unlock(&ace->lock);
return IRQ_HANDLED;
}
/* ---------------------------------------------------------------------
* Block ops
*/
static void ace_request(struct request_queue * q)
{
struct request *req;
struct ace_device *ace;
req = ace_get_next_request(q);
if (req) {
ace = req->rq_disk->private_data;
tasklet_schedule(&ace->fsm_tasklet);
}
}
static int ace_media_changed(struct gendisk *gd)
{
struct ace_device *ace = gd->private_data;
dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
return ace->media_change;
}
static int ace_revalidate_disk(struct gendisk *gd)
{
struct ace_device *ace = gd->private_data;
unsigned long flags;
dev_dbg(ace->dev, "ace_revalidate_disk()\n");
if (ace->media_change) {
dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
spin_lock_irqsave(&ace->lock, flags);
ace->id_req_count++;
spin_unlock_irqrestore(&ace->lock, flags);
tasklet_schedule(&ace->fsm_tasklet);
wait_for_completion(&ace->id_completion);
}
dev_dbg(ace->dev, "revalidate complete\n");
return ace->id_result;
}
static int ace_open(struct block_device *bdev, fmode_t mode)
{
struct ace_device *ace = bdev->bd_disk->private_data;
unsigned long flags;
dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
spin_lock_irqsave(&ace->lock, flags);
ace->users++;
spin_unlock_irqrestore(&ace->lock, flags);
check_disk_change(bdev);
return 0;
}
static int ace_release(struct gendisk *disk, fmode_t mode)
{
struct ace_device *ace = disk->private_data;
unsigned long flags;
u16 val;
dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
spin_lock_irqsave(&ace->lock, flags);
ace->users--;
if (ace->users == 0) {
val = ace_in(ace, ACE_CTRL);
ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
}
spin_unlock_irqrestore(&ace->lock, flags);
return 0;
}
static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct ace_device *ace = bdev->bd_disk->private_data;
dev_dbg(ace->dev, "ace_getgeo()\n");
geo->heads = ace->cf_id.heads;
geo->sectors = ace->cf_id.sectors;
geo->cylinders = ace->cf_id.cyls;
return 0;
}
static struct block_device_operations ace_fops = {
.owner = THIS_MODULE,
.open = ace_open,
.release = ace_release,
.media_changed = ace_media_changed,
.revalidate_disk = ace_revalidate_disk,
.getgeo = ace_getgeo,
};
/* --------------------------------------------------------------------
* SystemACE device setup/teardown code
*/
static int __devinit ace_setup(struct ace_device *ace)
{
u16 version;
u16 val;
int rc;
dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
(unsigned long long)ace->physaddr, ace->irq);
spin_lock_init(&ace->lock);
init_completion(&ace->id_completion);
/*
* Map the device
*/
ace->baseaddr = ioremap(ace->physaddr, 0x80);
if (!ace->baseaddr)
goto err_ioremap;
/*
* Initialize the state machine tasklet and stall timer
*/
tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
/*
* Initialize the request queue
*/
ace->queue = blk_init_queue(ace_request, &ace->lock);
if (ace->queue == NULL)
goto err_blk_initq;
blk_queue_hardsect_size(ace->queue, 512);
/*
* Allocate and initialize GD structure
*/
ace->gd = alloc_disk(ACE_NUM_MINORS);
if (!ace->gd)
goto err_alloc_disk;
ace->gd->major = ace_major;
ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
ace->gd->fops = &ace_fops;
ace->gd->queue = ace->queue;
ace->gd->private_data = ace;
snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
/* set bus width */
if (ace->bus_width == ACE_BUS_WIDTH_16) {
/* 0x0101 should work regardless of endianess */
ace_out_le16(ace, ACE_BUSMODE, 0x0101);
/* read it back to determine endianess */
if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
ace->reg_ops = &ace_reg_le16_ops;
else
ace->reg_ops = &ace_reg_be16_ops;
} else {
ace_out_8(ace, ACE_BUSMODE, 0x00);
ace->reg_ops = &ace_reg_8_ops;
}
/* Make sure version register is sane */
version = ace_in(ace, ACE_VERSION);
if ((version == 0) || (version == 0xFFFF))
goto err_read;
/* Put sysace in a sane state by clearing most control reg bits */
ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
/* Now we can hook up the irq handler */
if (ace->irq != NO_IRQ) {
rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
if (rc) {
/* Failure - fall back to polled mode */
dev_err(ace->dev, "request_irq failed\n");
ace->irq = NO_IRQ;
}
}
/* Enable interrupts */
val = ace_in(ace, ACE_CTRL);
val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
ace_out(ace, ACE_CTRL, val);
/* Print the identification */
dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
(version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
(unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
ace->media_change = 1;
ace_revalidate_disk(ace->gd);
/* Make the sysace device 'live' */
add_disk(ace->gd);
return 0;
err_read:
put_disk(ace->gd);
err_alloc_disk:
blk_cleanup_queue(ace->queue);
err_blk_initq:
iounmap(ace->baseaddr);
err_ioremap:
dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
(unsigned long long) ace->physaddr);
return -ENOMEM;
}
static void __devexit ace_teardown(struct ace_device *ace)
{
if (ace->gd) {
del_gendisk(ace->gd);
put_disk(ace->gd);
}
if (ace->queue)
blk_cleanup_queue(ace->queue);
tasklet_kill(&ace->fsm_tasklet);
if (ace->irq != NO_IRQ)
free_irq(ace->irq, ace);
iounmap(ace->baseaddr);
}
static int __devinit
ace_alloc(struct device *dev, int id, resource_size_t physaddr,
int irq, int bus_width)
{
struct ace_device *ace;
int rc;
dev_dbg(dev, "ace_alloc(%p)\n", dev);
if (!physaddr) {
rc = -ENODEV;
goto err_noreg;
}
/* Allocate and initialize the ace device structure */
ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
if (!ace) {
rc = -ENOMEM;
goto err_alloc;
}
ace->dev = dev;
ace->id = id;
ace->physaddr = physaddr;
ace->irq = irq;
ace->bus_width = bus_width;
/* Call the setup code */
rc = ace_setup(ace);
if (rc)
goto err_setup;
dev_set_drvdata(dev, ace);
return 0;
err_setup:
dev_set_drvdata(dev, NULL);
kfree(ace);
err_alloc:
err_noreg:
dev_err(dev, "could not initialize device, err=%i\n", rc);
return rc;
}
static void __devexit ace_free(struct device *dev)
{
struct ace_device *ace = dev_get_drvdata(dev);
dev_dbg(dev, "ace_free(%p)\n", dev);
if (ace) {
ace_teardown(ace);
dev_set_drvdata(dev, NULL);
kfree(ace);
}
}
/* ---------------------------------------------------------------------
* Platform Bus Support
*/
static int __devinit ace_probe(struct platform_device *dev)
{
resource_size_t physaddr = 0;
int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
int id = dev->id;
int irq = NO_IRQ;
int i;
dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
for (i = 0; i < dev->num_resources; i++) {
if (dev->resource[i].flags & IORESOURCE_MEM)
physaddr = dev->resource[i].start;
if (dev->resource[i].flags & IORESOURCE_IRQ)
irq = dev->resource[i].start;
}
/* Call the bus-independant setup code */
return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
}
/*
* Platform bus remove() method
*/
static int __devexit ace_remove(struct platform_device *dev)
{
ace_free(&dev->dev);
return 0;
}
static struct platform_driver ace_platform_driver = {
.probe = ace_probe,
.remove = __devexit_p(ace_remove),
.driver = {
.owner = THIS_MODULE,
.name = "xsysace",
},
};
/* ---------------------------------------------------------------------
* OF_Platform Bus Support
*/
#if defined(CONFIG_OF)
static int __devinit
ace_of_probe(struct of_device *op, const struct of_device_id *match)
{
struct resource res;
resource_size_t physaddr;
const u32 *id;
int irq, bus_width, rc;
dev_dbg(&op->dev, "ace_of_probe(%p, %p)\n", op, match);
/* device id */
id = of_get_property(op->node, "port-number", NULL);
/* physaddr */
rc = of_address_to_resource(op->node, 0, &res);
if (rc) {
dev_err(&op->dev, "invalid address\n");
return rc;
}
physaddr = res.start;
/* irq */
irq = irq_of_parse_and_map(op->node, 0);
/* bus width */
bus_width = ACE_BUS_WIDTH_16;
if (of_find_property(op->node, "8-bit", NULL))
bus_width = ACE_BUS_WIDTH_8;
/* Call the bus-independant setup code */
return ace_alloc(&op->dev, id ? *id : 0, physaddr, irq, bus_width);
}
static int __devexit ace_of_remove(struct of_device *op)
{
ace_free(&op->dev);
return 0;
}
/* Match table for of_platform binding */
static struct of_device_id ace_of_match[] __devinitdata = {
{ .compatible = "xlnx,opb-sysace-1.00.b", },
{ .compatible = "xlnx,opb-sysace-1.00.c", },
{ .compatible = "xlnx,xps-sysace-1.00.a", },
{ .compatible = "xlnx,sysace", },
{},
};
MODULE_DEVICE_TABLE(of, ace_of_match);
static struct of_platform_driver ace_of_driver = {
.owner = THIS_MODULE,
.name = "xsysace",
.match_table = ace_of_match,
.probe = ace_of_probe,
.remove = __devexit_p(ace_of_remove),
.driver = {
.name = "xsysace",
},
};
/* Registration helpers to keep the number of #ifdefs to a minimum */
static inline int __init ace_of_register(void)
{
pr_debug("xsysace: registering OF binding\n");
return of_register_platform_driver(&ace_of_driver);
}
static inline void __exit ace_of_unregister(void)
{
of_unregister_platform_driver(&ace_of_driver);
}
#else /* CONFIG_OF */
/* CONFIG_OF not enabled; do nothing helpers */
static inline int __init ace_of_register(void) { return 0; }
static inline void __exit ace_of_unregister(void) { }
#endif /* CONFIG_OF */
/* ---------------------------------------------------------------------
* Module init/exit routines
*/
static int __init ace_init(void)
{
int rc;
ace_major = register_blkdev(ace_major, "xsysace");
if (ace_major <= 0) {
rc = -ENOMEM;
goto err_blk;
}
rc = ace_of_register();
if (rc)
goto err_of;
pr_debug("xsysace: registering platform binding\n");
rc = platform_driver_register(&ace_platform_driver);
if (rc)
goto err_plat;
pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
return 0;
err_plat:
ace_of_unregister();
err_of:
unregister_blkdev(ace_major, "xsysace");
err_blk:
printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
return rc;
}
static void __exit ace_exit(void)
{
pr_debug("Unregistering Xilinx SystemACE driver\n");
platform_driver_unregister(&ace_platform_driver);
ace_of_unregister();
unregister_blkdev(ace_major, "xsysace");
}
module_init(ace_init);
module_exit(ace_exit);