linux/fs/ntfs3/ntfs.h
Konstantin Komarov 4cdfb6e7bc
fs/ntfs3: Disable ATTR_LIST_ENTRY size check
The use of sizeof(struct ATTR_LIST_ENTRY) has been replaced with le_size(0)
due to alignment peculiarities on different platforms.

Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202312071005.g6YrbaIe-lkp@intel.com/
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
2023-12-21 14:25:40 +03:00

1236 lines
36 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
*
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
*
* on-disk ntfs structs
*/
// clang-format off
#ifndef _LINUX_NTFS3_NTFS_H
#define _LINUX_NTFS3_NTFS_H
#include <linux/blkdev.h>
#include <linux/build_bug.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/string.h>
#include <linux/types.h>
#include "debug.h"
/* TODO: Check 4K MFT record and 512 bytes cluster. */
/* Check each run for marked clusters. */
#define NTFS3_CHECK_FREE_CLST
#define NTFS_NAME_LEN 255
/*
* ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
* xfstest generic/041 creates 3003 hardlinks.
*/
#define NTFS_LINK_MAX 4000
/*
* Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
* Logical and virtual cluster number if needed, may be
* redefined to use 64 bit value.
*/
//#define CONFIG_NTFS3_64BIT_CLUSTER
#define NTFS_LZNT_MAX_CLUSTER 4096
#define NTFS_LZNT_CUNIT 4
#define NTFS_LZNT_CLUSTERS (1u<<NTFS_LZNT_CUNIT)
struct GUID {
__le32 Data1;
__le16 Data2;
__le16 Data3;
u8 Data4[8];
};
/*
* This struct repeats layout of ATTR_FILE_NAME
* at offset 0x40.
* It used to store global constants NAME_MFT/NAME_MIRROR...
* most constant names are shorter than 10.
*/
struct cpu_str {
u8 len;
u8 unused;
u16 name[10];
};
struct le_str {
u8 len;
u8 unused;
__le16 name[];
};
static_assert(SECTOR_SHIFT == 9);
#ifdef CONFIG_NTFS3_64BIT_CLUSTER
typedef u64 CLST;
static_assert(sizeof(size_t) == 8);
#else
typedef u32 CLST;
#endif
#define SPARSE_LCN64 ((u64)-1)
#define SPARSE_LCN ((CLST)-1)
#define RESIDENT_LCN ((CLST)-2)
#define COMPRESSED_LCN ((CLST)-3)
#define COMPRESSION_UNIT 4
#define COMPRESS_MAX_CLUSTER 0x1000
enum RECORD_NUM {
MFT_REC_MFT = 0,
MFT_REC_MIRR = 1,
MFT_REC_LOG = 2,
MFT_REC_VOL = 3,
MFT_REC_ATTR = 4,
MFT_REC_ROOT = 5,
MFT_REC_BITMAP = 6,
MFT_REC_BOOT = 7,
MFT_REC_BADCLUST = 8,
MFT_REC_SECURE = 9,
MFT_REC_UPCASE = 10,
MFT_REC_EXTEND = 11,
MFT_REC_RESERVED = 12,
MFT_REC_FREE = 16,
MFT_REC_USER = 24,
};
enum ATTR_TYPE {
ATTR_ZERO = cpu_to_le32(0x00),
ATTR_STD = cpu_to_le32(0x10),
ATTR_LIST = cpu_to_le32(0x20),
ATTR_NAME = cpu_to_le32(0x30),
ATTR_ID = cpu_to_le32(0x40),
ATTR_SECURE = cpu_to_le32(0x50),
ATTR_LABEL = cpu_to_le32(0x60),
ATTR_VOL_INFO = cpu_to_le32(0x70),
ATTR_DATA = cpu_to_le32(0x80),
ATTR_ROOT = cpu_to_le32(0x90),
ATTR_ALLOC = cpu_to_le32(0xA0),
ATTR_BITMAP = cpu_to_le32(0xB0),
ATTR_REPARSE = cpu_to_le32(0xC0),
ATTR_EA_INFO = cpu_to_le32(0xD0),
ATTR_EA = cpu_to_le32(0xE0),
ATTR_PROPERTYSET = cpu_to_le32(0xF0),
ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
ATTR_END = cpu_to_le32(0xFFFFFFFF)
};
static_assert(sizeof(enum ATTR_TYPE) == 4);
enum FILE_ATTRIBUTE {
FILE_ATTRIBUTE_READONLY = cpu_to_le32(0x00000001),
FILE_ATTRIBUTE_HIDDEN = cpu_to_le32(0x00000002),
FILE_ATTRIBUTE_SYSTEM = cpu_to_le32(0x00000004),
FILE_ATTRIBUTE_ARCHIVE = cpu_to_le32(0x00000020),
FILE_ATTRIBUTE_DEVICE = cpu_to_le32(0x00000040),
FILE_ATTRIBUTE_TEMPORARY = cpu_to_le32(0x00000100),
FILE_ATTRIBUTE_SPARSE_FILE = cpu_to_le32(0x00000200),
FILE_ATTRIBUTE_REPARSE_POINT = cpu_to_le32(0x00000400),
FILE_ATTRIBUTE_COMPRESSED = cpu_to_le32(0x00000800),
FILE_ATTRIBUTE_OFFLINE = cpu_to_le32(0x00001000),
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
FILE_ATTRIBUTE_ENCRYPTED = cpu_to_le32(0x00004000),
FILE_ATTRIBUTE_VALID_FLAGS = cpu_to_le32(0x00007fb7),
FILE_ATTRIBUTE_DIRECTORY = cpu_to_le32(0x10000000),
FILE_ATTRIBUTE_INDEX = cpu_to_le32(0x20000000)
};
static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
extern const struct cpu_str NAME_MFT;
extern const struct cpu_str NAME_MIRROR;
extern const struct cpu_str NAME_LOGFILE;
extern const struct cpu_str NAME_VOLUME;
extern const struct cpu_str NAME_ATTRDEF;
extern const struct cpu_str NAME_ROOT;
extern const struct cpu_str NAME_BITMAP;
extern const struct cpu_str NAME_BOOT;
extern const struct cpu_str NAME_BADCLUS;
extern const struct cpu_str NAME_QUOTA;
extern const struct cpu_str NAME_SECURE;
extern const struct cpu_str NAME_UPCASE;
extern const struct cpu_str NAME_EXTEND;
extern const struct cpu_str NAME_OBJID;
extern const struct cpu_str NAME_REPARSE;
extern const struct cpu_str NAME_USNJRNL;
extern const __le16 I30_NAME[4];
extern const __le16 SII_NAME[4];
extern const __le16 SDH_NAME[4];
extern const __le16 SO_NAME[2];
extern const __le16 SQ_NAME[2];
extern const __le16 SR_NAME[2];
extern const __le16 BAD_NAME[4];
extern const __le16 SDS_NAME[4];
extern const __le16 WOF_NAME[17]; /* WofCompressedData */
/* MFT record number structure. */
struct MFT_REF {
__le32 low; // The low part of the number.
__le16 high; // The high part of the number.
__le16 seq; // The sequence number of MFT record.
};
static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
static inline CLST ino_get(const struct MFT_REF *ref)
{
#ifdef CONFIG_NTFS3_64BIT_CLUSTER
return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
#else
return le32_to_cpu(ref->low);
#endif
}
struct NTFS_BOOT {
u8 jump_code[3]; // 0x00: Jump to boot code.
u8 system_id[8]; // 0x03: System ID, equals "NTFS "
// NOTE: This member is not aligned(!)
// bytes_per_sector[0] must be 0.
// bytes_per_sector[1] must be multiplied by 256.
u8 bytes_per_sector[2]; // 0x0B: Bytes per sector.
u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
u8 unused1[7];
u8 media_type; // 0x15: Media type (0xF8 - harddisk)
u8 unused2[2];
__le16 sct_per_track; // 0x18: number of sectors per track.
__le16 heads; // 0x1A: number of heads per cylinder.
__le32 hidden_sectors; // 0x1C: number of 'hidden' sectors.
u8 unused3[4];
u8 bios_drive_num; // 0x24: BIOS drive number =0x80.
u8 unused4;
u8 signature_ex; // 0x26: Extended BOOT signature =0x80.
u8 unused5;
__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
__le64 mft_clst; // 0x30: First cluster of $MFT
__le64 mft2_clst; // 0x38: First cluster of $MFTMirr
s8 record_size; // 0x40: Size of MFT record in clusters(sectors).
u8 unused6[3];
s8 index_size; // 0x44: Size of INDX record in clusters(sectors).
u8 unused7[3];
__le64 serial_num; // 0x48: Volume serial number
__le32 check_sum; // 0x50: Simple additive checksum of all
// of the u32's which precede the 'check_sum'.
u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
u8 boot_magic[2]; // 0x1FE: Boot signature =0x55 + 0xAA
};
static_assert(sizeof(struct NTFS_BOOT) == 0x200);
enum NTFS_SIGNATURE {
NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
};
static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
/* MFT Record header structure. */
struct NTFS_RECORD_HEADER {
/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
enum NTFS_SIGNATURE sign; // 0x00:
__le16 fix_off; // 0x04:
__le16 fix_num; // 0x06:
__le64 lsn; // 0x08: Log file sequence number,
};
static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
{
return hdr->sign == NTFS_BAAD_SIGNATURE;
}
/* Possible bits in struct MFT_REC.flags. */
enum RECORD_FLAG {
RECORD_FLAG_IN_USE = cpu_to_le16(0x0001),
RECORD_FLAG_DIR = cpu_to_le16(0x0002),
RECORD_FLAG_SYSTEM = cpu_to_le16(0x0004),
RECORD_FLAG_INDEX = cpu_to_le16(0x0008),
};
/* MFT Record structure. */
struct MFT_REC {
struct NTFS_RECORD_HEADER rhdr; // 'FILE'
__le16 seq; // 0x10: Sequence number for this record.
__le16 hard_links; // 0x12: The number of hard links to record.
__le16 attr_off; // 0x14: Offset to attributes.
__le16 flags; // 0x16: See RECORD_FLAG.
__le32 used; // 0x18: The size of used part.
__le32 total; // 0x1C: Total record size.
struct MFT_REF parent_ref; // 0x20: Parent MFT record.
__le16 next_attr_id; // 0x28: The next attribute Id.
__le16 res; // 0x2A: High part of MFT record?
__le32 mft_record; // 0x2C: Current MFT record number.
__le16 fixups[]; // 0x30:
};
#define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
#define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
/*
* define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30)
* to format new mft records with bigger header (as current ntfs.sys does)
*
* define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A)
* to format new mft records with smaller header (as old ntfs.sys did)
* Both variants are valid.
*/
#define MFTRECORD_FIXUP_OFFSET MFTRECORD_FIXUP_OFFSET_1
static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
static inline bool is_rec_base(const struct MFT_REC *rec)
{
const struct MFT_REF *r = &rec->parent_ref;
return !r->low && !r->high && !r->seq;
}
static inline bool is_mft_rec5(const struct MFT_REC *rec)
{
return le16_to_cpu(rec->rhdr.fix_off) >=
offsetof(struct MFT_REC, fixups);
}
static inline bool is_rec_inuse(const struct MFT_REC *rec)
{
return rec->flags & RECORD_FLAG_IN_USE;
}
static inline bool clear_rec_inuse(struct MFT_REC *rec)
{
return rec->flags &= ~RECORD_FLAG_IN_USE;
}
/* Possible values of ATTR_RESIDENT.flags */
#define RESIDENT_FLAG_INDEXED 0x01
struct ATTR_RESIDENT {
__le32 data_size; // 0x10: The size of data.
__le16 data_off; // 0x14: Offset to data.
u8 flags; // 0x16: Resident flags ( 1 - indexed ).
u8 res; // 0x17:
}; // sizeof() = 0x18
struct ATTR_NONRESIDENT {
__le64 svcn; // 0x10: Starting VCN of this segment.
__le64 evcn; // 0x18: End VCN of this segment.
__le16 run_off; // 0x20: Offset to packed runs.
// Unit of Compression size for this stream, expressed
// as a log of the cluster size.
//
// 0 means file is not compressed
// 1, 2, 3, and 4 are potentially legal values if the
// stream is compressed, however the implementation
// may only choose to use 4, or possibly 3.
// Note that 4 means cluster size time 16.
// If convenient the implementation may wish to accept a
// reasonable range of legal values here (1-5?),
// even if the implementation only generates
// a smaller set of values itself.
u8 c_unit; // 0x22:
u8 res1[5]; // 0x23:
__le64 alloc_size; // 0x28: The allocated size of attribute in bytes.
// (multiple of cluster size)
__le64 data_size; // 0x30: The size of attribute in bytes <= alloc_size.
__le64 valid_size; // 0x38: The size of valid part in bytes <= data_size.
__le64 total_size; // 0x40: The sum of the allocated clusters for a file.
// (present only for the first segment (0 == vcn)
// of compressed attribute)
}; // sizeof()=0x40 or 0x48 (if compressed)
/* Possible values of ATTRIB.flags: */
#define ATTR_FLAG_COMPRESSED cpu_to_le16(0x0001)
#define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
#define ATTR_FLAG_ENCRYPTED cpu_to_le16(0x4000)
#define ATTR_FLAG_SPARSED cpu_to_le16(0x8000)
struct ATTRIB {
enum ATTR_TYPE type; // 0x00: The type of this attribute.
__le32 size; // 0x04: The size of this attribute.
u8 non_res; // 0x08: Is this attribute non-resident?
u8 name_len; // 0x09: This attribute name length.
__le16 name_off; // 0x0A: Offset to the attribute name.
__le16 flags; // 0x0C: See ATTR_FLAG_XXX.
__le16 id; // 0x0E: Unique id (per record).
union {
struct ATTR_RESIDENT res; // 0x10
struct ATTR_NONRESIDENT nres; // 0x10
};
};
/* Define attribute sizes. */
#define SIZEOF_RESIDENT 0x18
#define SIZEOF_NONRESIDENT_EX 0x48
#define SIZEOF_NONRESIDENT 0x40
#define SIZEOF_RESIDENT_LE cpu_to_le16(0x18)
#define SIZEOF_NONRESIDENT_EX_LE cpu_to_le16(0x48)
#define SIZEOF_NONRESIDENT_LE cpu_to_le16(0x40)
static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
{
return attr->non_res ? ((attr->flags &
(ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
le64_to_cpu(attr->nres.total_size) :
le64_to_cpu(attr->nres.alloc_size))
: ALIGN(le32_to_cpu(attr->res.data_size), 8);
}
static inline u64 attr_size(const struct ATTRIB *attr)
{
return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
le32_to_cpu(attr->res.data_size);
}
static inline bool is_attr_encrypted(const struct ATTRIB *attr)
{
return attr->flags & ATTR_FLAG_ENCRYPTED;
}
static inline bool is_attr_sparsed(const struct ATTRIB *attr)
{
return attr->flags & ATTR_FLAG_SPARSED;
}
static inline bool is_attr_compressed(const struct ATTRIB *attr)
{
return attr->flags & ATTR_FLAG_COMPRESSED;
}
static inline bool is_attr_ext(const struct ATTRIB *attr)
{
return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
}
static inline bool is_attr_indexed(const struct ATTRIB *attr)
{
return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
}
static inline __le16 const *attr_name(const struct ATTRIB *attr)
{
return Add2Ptr(attr, le16_to_cpu(attr->name_off));
}
static inline u64 attr_svcn(const struct ATTRIB *attr)
{
return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
}
static_assert(sizeof(struct ATTRIB) == 0x48);
static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
{
u32 asize, rsize;
u16 off;
if (attr->non_res)
return NULL;
asize = le32_to_cpu(attr->size);
off = le16_to_cpu(attr->res.data_off);
if (asize < datasize + off)
return NULL;
rsize = le32_to_cpu(attr->res.data_size);
if (rsize < datasize)
return NULL;
return Add2Ptr(attr, off);
}
static inline void *resident_data(const struct ATTRIB *attr)
{
return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
}
static inline void *attr_run(const struct ATTRIB *attr)
{
return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
}
/* Standard information attribute (0x10). */
struct ATTR_STD_INFO {
__le64 cr_time; // 0x00: File creation file.
__le64 m_time; // 0x08: File modification time.
__le64 c_time; // 0x10: Last time any attribute was modified.
__le64 a_time; // 0x18: File last access time.
enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
__le32 max_ver_num; // 0x24: Maximum Number of Versions.
__le32 ver_num; // 0x28: Version Number.
__le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
};
static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
#define SECURITY_ID_INVALID 0x00000000
#define SECURITY_ID_FIRST 0x00000100
struct ATTR_STD_INFO5 {
__le64 cr_time; // 0x00: File creation file.
__le64 m_time; // 0x08: File modification time.
__le64 c_time; // 0x10: Last time any attribute was modified.
__le64 a_time; // 0x18: File last access time.
enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
__le32 max_ver_num; // 0x24: Maximum Number of Versions.
__le32 ver_num; // 0x28: Version Number.
__le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
__le32 owner_id; // 0x30: Owner Id of the user owning the file.
__le32 security_id; // 0x34: The Security Id is a key in the $SII Index and $SDS.
__le64 quota_charge; // 0x38:
__le64 usn; // 0x40: Last Update Sequence Number of the file. This is a direct
// index into the file $UsnJrnl. If zero, the USN Journal is
// disabled.
};
static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
/* Attribute list entry structure (0x20) */
struct ATTR_LIST_ENTRY {
enum ATTR_TYPE type; // 0x00: The type of attribute.
__le16 size; // 0x04: The size of this record.
u8 name_len; // 0x06: The length of attribute name.
u8 name_off; // 0x07: The offset to attribute name.
__le64 vcn; // 0x08: Starting VCN of this attribute.
struct MFT_REF ref; // 0x10: MFT record number with attribute.
__le16 id; // 0x18: struct ATTRIB ID.
__le16 name[]; // 0x1A: To get real name use name_off.
}; // sizeof(0x20)
static inline u32 le_size(u8 name_len)
{
return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
name_len * sizeof(short), 8);
}
/* Returns 0 if 'attr' has the same type and name. */
static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
const struct ATTRIB *attr)
{
return le->type != attr->type || le->name_len != attr->name_len ||
(!le->name_len &&
memcmp(Add2Ptr(le, le->name_off),
Add2Ptr(attr, le16_to_cpu(attr->name_off)),
le->name_len * sizeof(short)));
}
static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
{
return Add2Ptr(le, le->name_off);
}
/* File name types (the field type in struct ATTR_FILE_NAME). */
#define FILE_NAME_POSIX 0
#define FILE_NAME_UNICODE 1
#define FILE_NAME_DOS 2
#define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
/* Filename attribute structure (0x30). */
struct NTFS_DUP_INFO {
__le64 cr_time; // 0x00: File creation file.
__le64 m_time; // 0x08: File modification time.
__le64 c_time; // 0x10: Last time any attribute was modified.
__le64 a_time; // 0x18: File last access time.
__le64 alloc_size; // 0x20: Data attribute allocated size, multiple of cluster size.
__le64 data_size; // 0x28: Data attribute size <= Dataalloc_size.
enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more.
__le16 ea_size; // 0x34: Packed EAs.
__le16 reparse; // 0x36: Used by Reparse.
}; // 0x38
struct ATTR_FILE_NAME {
struct MFT_REF home; // 0x00: MFT record for directory.
struct NTFS_DUP_INFO dup;// 0x08:
u8 name_len; // 0x40: File name length in words.
u8 type; // 0x41: File name type.
__le16 name[]; // 0x42: File name.
};
static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
#define SIZEOF_ATTRIBUTE_FILENAME 0x44
#define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
{
return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
}
static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
{
/* Don't return struct_size(fname, name, fname->name_len); */
return offsetof(struct ATTR_FILE_NAME, name) +
fname->name_len * sizeof(short);
}
static inline u8 paired_name(u8 type)
{
if (type == FILE_NAME_UNICODE)
return FILE_NAME_DOS;
if (type == FILE_NAME_DOS)
return FILE_NAME_UNICODE;
return FILE_NAME_POSIX;
}
/* Index entry defines ( the field flags in NtfsDirEntry ). */
#define NTFS_IE_HAS_SUBNODES cpu_to_le16(1)
#define NTFS_IE_LAST cpu_to_le16(2)
/* Directory entry structure. */
struct NTFS_DE {
union {
struct MFT_REF ref; // 0x00: MFT record number with this file.
struct {
__le16 data_off; // 0x00:
__le16 data_size; // 0x02:
__le32 res; // 0x04: Must be 0.
} view;
};
__le16 size; // 0x08: The size of this entry.
__le16 key_size; // 0x0A: The size of File name length in bytes + 0x42.
__le16 flags; // 0x0C: Entry flags: NTFS_IE_XXX.
__le16 res; // 0x0E:
// Here any indexed attribute can be placed.
// One of them is:
// struct ATTR_FILE_NAME AttrFileName;
//
// The last 8 bytes of this structure contains
// the VBN of subnode.
// !!! Note !!!
// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
// __le64 vbn;
};
static_assert(sizeof(struct NTFS_DE) == 0x10);
static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
{
__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
*v = vcn;
}
static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
{
__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
*v = cpu_to_le64(vcn);
}
static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
{
return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
}
static inline CLST de_get_vbn(const struct NTFS_DE *e)
{
__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
return le64_to_cpu(*v);
}
static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
{
return Add2Ptr(e, le16_to_cpu(e->size));
}
static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
{
return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
Add2Ptr(e, sizeof(struct NTFS_DE)) :
NULL;
}
static inline bool de_is_last(const struct NTFS_DE *e)
{
return e->flags & NTFS_IE_LAST;
}
static inline bool de_has_vcn(const struct NTFS_DE *e)
{
return e->flags & NTFS_IE_HAS_SUBNODES;
}
static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
{
return (e->flags & NTFS_IE_HAS_SUBNODES) &&
(u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
sizeof(__le64)));
}
#define MAX_BYTES_PER_NAME_ENTRY \
ALIGN(sizeof(struct NTFS_DE) + \
offsetof(struct ATTR_FILE_NAME, name) + \
NTFS_NAME_LEN * sizeof(short), 8)
struct INDEX_HDR {
__le32 de_off; // 0x00: The offset from the start of this structure
// to the first NTFS_DE.
__le32 used; // 0x04: The size of this structure plus all
// entries (quad-word aligned).
__le32 total; // 0x08: The allocated size of for this structure plus all entries.
u8 flags; // 0x0C: 0x00 = Small directory, 0x01 = Large directory.
u8 res[3];
//
// de_off + used <= total
//
};
static_assert(sizeof(struct INDEX_HDR) == 0x10);
static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
{
u32 de_off = le32_to_cpu(hdr->de_off);
u32 used = le32_to_cpu(hdr->used);
struct NTFS_DE *e;
u16 esize;
if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
return NULL;
e = Add2Ptr(hdr, de_off);
esize = le16_to_cpu(e->size);
if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
return NULL;
return e;
}
static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
const struct NTFS_DE *e)
{
size_t off = PtrOffset(hdr, e);
u32 used = le32_to_cpu(hdr->used);
u16 esize;
if (off >= used)
return NULL;
esize = le16_to_cpu(e->size);
if (esize < sizeof(struct NTFS_DE) ||
off + esize + sizeof(struct NTFS_DE) > used)
return NULL;
return Add2Ptr(e, esize);
}
static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
{
return hdr->flags & 1;
}
struct INDEX_BUFFER {
struct NTFS_RECORD_HEADER rhdr; // 'INDX'
__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
struct INDEX_HDR ihdr; // 0x18:
};
static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
{
const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
return !first || de_is_last(first);
}
static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
{
return !(ib->ihdr.flags & 1);
}
/* Index root structure ( 0x90 ). */
enum COLLATION_RULE {
NTFS_COLLATION_TYPE_BINARY = cpu_to_le32(0),
// $I30
NTFS_COLLATION_TYPE_FILENAME = cpu_to_le32(0x01),
// $SII of $Secure and $Q of Quota
NTFS_COLLATION_TYPE_UINT = cpu_to_le32(0x10),
// $O of Quota
NTFS_COLLATION_TYPE_SID = cpu_to_le32(0x11),
// $SDH of $Secure
NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
// $O of ObjId and "$R" for Reparse
NTFS_COLLATION_TYPE_UINTS = cpu_to_le32(0x13)
};
static_assert(sizeof(enum COLLATION_RULE) == 4);
//
struct INDEX_ROOT {
enum ATTR_TYPE type; // 0x00: The type of attribute to index on.
enum COLLATION_RULE rule; // 0x04: The rule.
__le32 index_block_size;// 0x08: The size of index record.
u8 index_block_clst; // 0x0C: The number of clusters or sectors per index.
u8 res[3];
struct INDEX_HDR ihdr; // 0x10:
};
static_assert(sizeof(struct INDEX_ROOT) == 0x20);
static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
#define VOLUME_FLAG_DIRTY cpu_to_le16(0x0001)
#define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
struct VOLUME_INFO {
__le64 res1; // 0x00
u8 major_ver; // 0x08: NTFS major version number (before .)
u8 minor_ver; // 0x09: NTFS minor version number (after .)
__le16 flags; // 0x0A: Volume flags, see VOLUME_FLAG_XXX
}; // sizeof=0xC
#define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
#define NTFS_LABEL_MAX_LENGTH (0x100 / sizeof(short))
#define NTFS_ATTR_INDEXABLE cpu_to_le32(0x00000002)
#define NTFS_ATTR_DUPALLOWED cpu_to_le32(0x00000004)
#define NTFS_ATTR_MUST_BE_INDEXED cpu_to_le32(0x00000010)
#define NTFS_ATTR_MUST_BE_NAMED cpu_to_le32(0x00000020)
#define NTFS_ATTR_MUST_BE_RESIDENT cpu_to_le32(0x00000040)
#define NTFS_ATTR_LOG_ALWAYS cpu_to_le32(0x00000080)
/* $AttrDef file entry. */
struct ATTR_DEF_ENTRY {
__le16 name[0x40]; // 0x00: Attr name.
enum ATTR_TYPE type; // 0x80: struct ATTRIB type.
__le32 res; // 0x84:
enum COLLATION_RULE rule; // 0x88:
__le32 flags; // 0x8C: NTFS_ATTR_XXX (see above).
__le64 min_sz; // 0x90: Minimum attribute data size.
__le64 max_sz; // 0x98: Maximum attribute data size.
};
static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
/* Object ID (0x40) */
struct OBJECT_ID {
struct GUID ObjId; // 0x00: Unique Id assigned to file.
// Birth Volume Id is the Object Id of the Volume on.
// which the Object Id was allocated. It never changes.
struct GUID BirthVolumeId; //0x10:
// Birth Object Id is the first Object Id that was
// ever assigned to this MFT Record. I.e. If the Object Id
// is changed for some reason, this field will reflect the
// original value of the Object Id.
struct GUID BirthObjectId; // 0x20:
// Domain Id is currently unused but it is intended to be
// used in a network environment where the local machine is
// part of a Windows 2000 Domain. This may be used in a Windows
// 2000 Advanced Server managed domain.
struct GUID DomainId; // 0x30:
};
static_assert(sizeof(struct OBJECT_ID) == 0x40);
/* O Directory entry structure ( rule = 0x13 ) */
struct NTFS_DE_O {
struct NTFS_DE de;
struct GUID ObjId; // 0x10: Unique Id assigned to file.
struct MFT_REF ref; // 0x20: MFT record number with this file.
// Birth Volume Id is the Object Id of the Volume on
// which the Object Id was allocated. It never changes.
struct GUID BirthVolumeId; // 0x28:
// Birth Object Id is the first Object Id that was
// ever assigned to this MFT Record. I.e. If the Object Id
// is changed for some reason, this field will reflect the
// original value of the Object Id.
// This field is valid if data_size == 0x48.
struct GUID BirthObjectId; // 0x38:
// Domain Id is currently unused but it is intended
// to be used in a network environment where the local
// machine is part of a Windows 2000 Domain. This may be
// used in a Windows 2000 Advanced Server managed domain.
struct GUID BirthDomainId; // 0x48:
};
static_assert(sizeof(struct NTFS_DE_O) == 0x58);
/* Q Directory entry structure ( rule = 0x11 ) */
struct NTFS_DE_Q {
struct NTFS_DE de;
__le32 owner_id; // 0x10: Unique Id assigned to file
/* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
__le32 Version; // 0x14: 0x02
__le32 Flags; // 0x18: Quota flags, see above
__le64 BytesUsed; // 0x1C:
__le64 ChangeTime; // 0x24:
__le64 WarningLimit; // 0x28:
__le64 HardLimit; // 0x34:
__le64 ExceededTime; // 0x3C:
// SID is placed here
}__packed; // sizeof() = 0x44
static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
#define SecurityDescriptorsBlockSize 0x40000 // 256K
#define SecurityDescriptorMaxSize 0x20000 // 128K
#define Log2OfSecurityDescriptorsBlockSize 18
struct SECURITY_KEY {
__le32 hash; // Hash value for descriptor
__le32 sec_id; // Security Id (guaranteed unique)
};
/* Security descriptors (the content of $Secure::SDS data stream) */
struct SECURITY_HDR {
struct SECURITY_KEY key; // 0x00: Security Key.
__le64 off; // 0x08: Offset of this entry in the file.
__le32 size; // 0x10: Size of this entry, 8 byte aligned.
/*
* Security descriptor itself is placed here.
* Total size is 16 byte aligned.
*/
} __packed;
static_assert(sizeof(struct SECURITY_HDR) == 0x14);
/* SII Directory entry structure */
struct NTFS_DE_SII {
struct NTFS_DE de;
__le32 sec_id; // 0x10: Key: sizeof(security_id) = wKeySize
struct SECURITY_HDR sec_hdr; // 0x14:
} __packed;
static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
/* SDH Directory entry structure */
struct NTFS_DE_SDH {
struct NTFS_DE de;
struct SECURITY_KEY key; // 0x10: Key
struct SECURITY_HDR sec_hdr; // 0x18: Data
__le16 magic[2]; // 0x2C: 0x00490049 "I I"
};
#define SIZEOF_SDH_DIRENTRY 0x30
struct REPARSE_KEY {
__le32 ReparseTag; // 0x00: Reparse Tag
struct MFT_REF ref; // 0x04: MFT record number with this file
}; // sizeof() = 0x0C
static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
#define SIZEOF_REPARSE_KEY 0x0C
/* Reparse Directory entry structure */
struct NTFS_DE_R {
struct NTFS_DE de;
struct REPARSE_KEY key; // 0x10: Reparse Key.
u32 zero; // 0x1c:
}; // sizeof() = 0x20
static_assert(sizeof(struct NTFS_DE_R) == 0x20);
/* CompressReparseBuffer.WofVersion */
#define WOF_CURRENT_VERSION cpu_to_le32(1)
/* CompressReparseBuffer.WofProvider */
#define WOF_PROVIDER_WIM cpu_to_le32(1)
/* CompressReparseBuffer.WofProvider */
#define WOF_PROVIDER_SYSTEM cpu_to_le32(2)
/* CompressReparseBuffer.ProviderVer */
#define WOF_PROVIDER_CURRENT_VERSION cpu_to_le32(1)
#define WOF_COMPRESSION_XPRESS4K cpu_to_le32(0) // 4k
#define WOF_COMPRESSION_LZX32K cpu_to_le32(1) // 32k
#define WOF_COMPRESSION_XPRESS8K cpu_to_le32(2) // 8k
#define WOF_COMPRESSION_XPRESS16K cpu_to_le32(3) // 16k
/*
* ATTR_REPARSE (0xC0)
*
* The reparse struct GUID structure is used by all 3rd party layered drivers to
* store data in a reparse point. For non-Microsoft tags, The struct GUID field
* cannot be GUID_NULL.
* The constraints on reparse tags are defined below.
* Microsoft tags can also be used with this format of the reparse point buffer.
*/
struct REPARSE_POINT {
__le32 ReparseTag; // 0x00:
__le16 ReparseDataLength;// 0x04:
__le16 Reserved;
struct GUID Guid; // 0x08:
//
// Here GenericReparseBuffer is placed
//
};
static_assert(sizeof(struct REPARSE_POINT) == 0x18);
/* Maximum allowed size of the reparse data. */
#define MAXIMUM_REPARSE_DATA_BUFFER_SIZE (16 * 1024)
/*
* The value of the following constant needs to satisfy the following
* conditions:
* (1) Be at least as large as the largest of the reserved tags.
* (2) Be strictly smaller than all the tags in use.
*/
#define IO_REPARSE_TAG_RESERVED_RANGE 1
/*
* The reparse tags are a ULONG. The 32 bits are laid out as follows:
*
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-+-+-+-+-----------------------+-------------------------------+
* |M|R|N|R| Reserved bits | Reparse Tag Value |
* +-+-+-+-+-----------------------+-------------------------------+
*
* M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
* All ISVs must use a tag with a 0 in this position.
* Note: If a Microsoft tag is used by non-Microsoft software, the
* behavior is not defined.
*
* R is reserved. Must be zero for non-Microsoft tags.
*
* N is name surrogate. When set to 1, the file represents another named
* entity in the system.
*
* The M and N bits are OR-able.
* The following macros check for the M and N bit values:
*/
/*
* Macro to determine whether a reparse point tag corresponds to a tag
* owned by Microsoft.
*/
#define IsReparseTagMicrosoft(_tag) (((_tag)&IO_REPARSE_TAG_MICROSOFT))
/* Macro to determine whether a reparse point tag is a name surrogate. */
#define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
/*
* The following constant represents the bits that are valid to use in
* reparse tags.
*/
#define IO_REPARSE_TAG_VALID_VALUES 0xF000FFFF
/*
* Macro to determine whether a reparse tag is a valid tag.
*/
#define IsReparseTagValid(_tag) \
(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) && \
((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
/* Microsoft tags for reparse points. */
enum IO_REPARSE_TAG {
IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0),
IO_REPARSE_TAG_NAME_SURROGATE = cpu_to_le32(0x20000000),
IO_REPARSE_TAG_MICROSOFT = cpu_to_le32(0x80000000),
IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0xA0000003),
IO_REPARSE_TAG_SYMLINK = cpu_to_le32(0xA000000C),
IO_REPARSE_TAG_HSM = cpu_to_le32(0xC0000004),
IO_REPARSE_TAG_SIS = cpu_to_le32(0x80000007),
IO_REPARSE_TAG_DEDUP = cpu_to_le32(0x80000013),
IO_REPARSE_TAG_COMPRESS = cpu_to_le32(0x80000017),
/*
* The reparse tag 0x80000008 is reserved for Microsoft internal use.
* May be published in the future.
*/
/* Microsoft reparse tag reserved for DFS */
IO_REPARSE_TAG_DFS = cpu_to_le32(0x8000000A),
/* Microsoft reparse tag reserved for the file system filter manager. */
IO_REPARSE_TAG_FILTER_MANAGER = cpu_to_le32(0x8000000B),
/* Non-Microsoft tags for reparse points */
/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
/* Tag allocated to ARKIVIO. */
IO_REPARSE_TAG_ARKIVIO = cpu_to_le32(0x0000000C),
/* Tag allocated to SOLUTIONSOFT. */
IO_REPARSE_TAG_SOLUTIONSOFT = cpu_to_le32(0x2000000D),
/* Tag allocated to COMMVAULT. */
IO_REPARSE_TAG_COMMVAULT = cpu_to_le32(0x0000000E),
/* OneDrive?? */
IO_REPARSE_TAG_CLOUD = cpu_to_le32(0x9000001A),
IO_REPARSE_TAG_CLOUD_1 = cpu_to_le32(0x9000101A),
IO_REPARSE_TAG_CLOUD_2 = cpu_to_le32(0x9000201A),
IO_REPARSE_TAG_CLOUD_3 = cpu_to_le32(0x9000301A),
IO_REPARSE_TAG_CLOUD_4 = cpu_to_le32(0x9000401A),
IO_REPARSE_TAG_CLOUD_5 = cpu_to_le32(0x9000501A),
IO_REPARSE_TAG_CLOUD_6 = cpu_to_le32(0x9000601A),
IO_REPARSE_TAG_CLOUD_7 = cpu_to_le32(0x9000701A),
IO_REPARSE_TAG_CLOUD_8 = cpu_to_le32(0x9000801A),
IO_REPARSE_TAG_CLOUD_9 = cpu_to_le32(0x9000901A),
IO_REPARSE_TAG_CLOUD_A = cpu_to_le32(0x9000A01A),
IO_REPARSE_TAG_CLOUD_B = cpu_to_le32(0x9000B01A),
IO_REPARSE_TAG_CLOUD_C = cpu_to_le32(0x9000C01A),
IO_REPARSE_TAG_CLOUD_D = cpu_to_le32(0x9000D01A),
IO_REPARSE_TAG_CLOUD_E = cpu_to_le32(0x9000E01A),
IO_REPARSE_TAG_CLOUD_F = cpu_to_le32(0x9000F01A),
};
#define SYMLINK_FLAG_RELATIVE 1
/* Microsoft reparse buffer. (see DDK for details) */
struct REPARSE_DATA_BUFFER {
__le32 ReparseTag; // 0x00:
__le16 ReparseDataLength; // 0x04:
__le16 Reserved;
union {
/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
struct {
__le16 SubstituteNameOffset; // 0x08
__le16 SubstituteNameLength; // 0x0A
__le16 PrintNameOffset; // 0x0C
__le16 PrintNameLength; // 0x0E
__le16 PathBuffer[]; // 0x10
} MountPointReparseBuffer;
/*
* If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
* https://msdn.microsoft.com/en-us/library/cc232006.aspx
*/
struct {
__le16 SubstituteNameOffset; // 0x08
__le16 SubstituteNameLength; // 0x0A
__le16 PrintNameOffset; // 0x0C
__le16 PrintNameLength; // 0x0E
// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
__le32 Flags; // 0x10
__le16 PathBuffer[]; // 0x14
} SymbolicLinkReparseBuffer;
/* If ReparseTag == 0x80000017U */
struct {
__le32 WofVersion; // 0x08 == 1
/*
* 1 - WIM backing provider ("WIMBoot"),
* 2 - System compressed file provider
*/
__le32 WofProvider; // 0x0C:
__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
} CompressReparseBuffer;
struct {
u8 DataBuffer[1]; // 0x08:
} GenericReparseBuffer;
};
};
/* ATTR_EA_INFO (0xD0) */
#define FILE_NEED_EA 0x80 // See ntifs.h
/*
* FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
* interpreted without understanding the associated extended attributes.
*/
struct EA_INFO {
__le16 size_pack; // 0x00: Size of buffer to hold in packed form.
__le16 count; // 0x02: Count of EA's with FILE_NEED_EA bit set.
__le32 size; // 0x04: Size of buffer to hold in unpacked form.
};
static_assert(sizeof(struct EA_INFO) == 8);
/* ATTR_EA (0xE0) */
struct EA_FULL {
__le32 size; // 0x00: (not in packed)
u8 flags; // 0x04:
u8 name_len; // 0x05:
__le16 elength; // 0x06:
u8 name[]; // 0x08:
};
static_assert(offsetof(struct EA_FULL, name) == 8);
#define ACL_REVISION 2
#define ACL_REVISION_DS 4
#define SE_SELF_RELATIVE cpu_to_le16(0x8000)
struct SECURITY_DESCRIPTOR_RELATIVE {
u8 Revision;
u8 Sbz1;
__le16 Control;
__le32 Owner;
__le32 Group;
__le32 Sacl;
__le32 Dacl;
};
static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
struct ACE_HEADER {
u8 AceType;
u8 AceFlags;
__le16 AceSize;
};
static_assert(sizeof(struct ACE_HEADER) == 4);
struct ACL {
u8 AclRevision;
u8 Sbz1;
__le16 AclSize;
__le16 AceCount;
__le16 Sbz2;
};
static_assert(sizeof(struct ACL) == 8);
struct SID {
u8 Revision;
u8 SubAuthorityCount;
u8 IdentifierAuthority[6];
__le32 SubAuthority[];
};
static_assert(offsetof(struct SID, SubAuthority) == 8);
#endif /* _LINUX_NTFS3_NTFS_H */
// clang-format on