linux/fs/pnode.c
Eric W. Biederman 0c56fe3142 mnt: Don't propagate unmounts to locked mounts
If the first mount in shared subtree is locked don't unmount the
shared subtree.

This is ensured by walking through the mounts parents before children
and marking a mount as unmountable if it is not locked or it is locked
but it's parent is marked.

This allows recursive mount detach to propagate through a set of
mounts when unmounting them would not reveal what is under any locked
mount.

Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2015-04-02 20:34:20 -05:00

452 lines
11 KiB
C

/*
* linux/fs/pnode.c
*
* (C) Copyright IBM Corporation 2005.
* Released under GPL v2.
* Author : Ram Pai (linuxram@us.ibm.com)
*
*/
#include <linux/mnt_namespace.h>
#include <linux/mount.h>
#include <linux/fs.h>
#include <linux/nsproxy.h>
#include "internal.h"
#include "pnode.h"
/* return the next shared peer mount of @p */
static inline struct mount *next_peer(struct mount *p)
{
return list_entry(p->mnt_share.next, struct mount, mnt_share);
}
static inline struct mount *first_slave(struct mount *p)
{
return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
}
static inline struct mount *next_slave(struct mount *p)
{
return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
}
static struct mount *get_peer_under_root(struct mount *mnt,
struct mnt_namespace *ns,
const struct path *root)
{
struct mount *m = mnt;
do {
/* Check the namespace first for optimization */
if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
return m;
m = next_peer(m);
} while (m != mnt);
return NULL;
}
/*
* Get ID of closest dominating peer group having a representative
* under the given root.
*
* Caller must hold namespace_sem
*/
int get_dominating_id(struct mount *mnt, const struct path *root)
{
struct mount *m;
for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
if (d)
return d->mnt_group_id;
}
return 0;
}
static int do_make_slave(struct mount *mnt)
{
struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
struct mount *slave_mnt;
/*
* slave 'mnt' to a peer mount that has the
* same root dentry. If none is available then
* slave it to anything that is available.
*/
while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
if (peer_mnt == mnt) {
peer_mnt = next_peer(mnt);
if (peer_mnt == mnt)
peer_mnt = NULL;
}
if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) &&
list_empty(&mnt->mnt_share))
mnt_release_group_id(mnt);
list_del_init(&mnt->mnt_share);
mnt->mnt_group_id = 0;
if (peer_mnt)
master = peer_mnt;
if (master) {
list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
slave_mnt->mnt_master = master;
list_move(&mnt->mnt_slave, &master->mnt_slave_list);
list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
INIT_LIST_HEAD(&mnt->mnt_slave_list);
} else {
struct list_head *p = &mnt->mnt_slave_list;
while (!list_empty(p)) {
slave_mnt = list_first_entry(p,
struct mount, mnt_slave);
list_del_init(&slave_mnt->mnt_slave);
slave_mnt->mnt_master = NULL;
}
}
mnt->mnt_master = master;
CLEAR_MNT_SHARED(mnt);
return 0;
}
/*
* vfsmount lock must be held for write
*/
void change_mnt_propagation(struct mount *mnt, int type)
{
if (type == MS_SHARED) {
set_mnt_shared(mnt);
return;
}
do_make_slave(mnt);
if (type != MS_SLAVE) {
list_del_init(&mnt->mnt_slave);
mnt->mnt_master = NULL;
if (type == MS_UNBINDABLE)
mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
else
mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
}
}
/*
* get the next mount in the propagation tree.
* @m: the mount seen last
* @origin: the original mount from where the tree walk initiated
*
* Note that peer groups form contiguous segments of slave lists.
* We rely on that in get_source() to be able to find out if
* vfsmount found while iterating with propagation_next() is
* a peer of one we'd found earlier.
*/
static struct mount *propagation_next(struct mount *m,
struct mount *origin)
{
/* are there any slaves of this mount? */
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
return first_slave(m);
while (1) {
struct mount *master = m->mnt_master;
if (master == origin->mnt_master) {
struct mount *next = next_peer(m);
return (next == origin) ? NULL : next;
} else if (m->mnt_slave.next != &master->mnt_slave_list)
return next_slave(m);
/* back at master */
m = master;
}
}
static struct mount *next_group(struct mount *m, struct mount *origin)
{
while (1) {
while (1) {
struct mount *next;
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
return first_slave(m);
next = next_peer(m);
if (m->mnt_group_id == origin->mnt_group_id) {
if (next == origin)
return NULL;
} else if (m->mnt_slave.next != &next->mnt_slave)
break;
m = next;
}
/* m is the last peer */
while (1) {
struct mount *master = m->mnt_master;
if (m->mnt_slave.next != &master->mnt_slave_list)
return next_slave(m);
m = next_peer(master);
if (master->mnt_group_id == origin->mnt_group_id)
break;
if (master->mnt_slave.next == &m->mnt_slave)
break;
m = master;
}
if (m == origin)
return NULL;
}
}
/* all accesses are serialized by namespace_sem */
static struct user_namespace *user_ns;
static struct mount *last_dest, *last_source, *dest_master;
static struct mountpoint *mp;
static struct hlist_head *list;
static int propagate_one(struct mount *m)
{
struct mount *child;
int type;
/* skip ones added by this propagate_mnt() */
if (IS_MNT_NEW(m))
return 0;
/* skip if mountpoint isn't covered by it */
if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
return 0;
if (m->mnt_group_id == last_dest->mnt_group_id) {
type = CL_MAKE_SHARED;
} else {
struct mount *n, *p;
for (n = m; ; n = p) {
p = n->mnt_master;
if (p == dest_master || IS_MNT_MARKED(p)) {
while (last_dest->mnt_master != p) {
last_source = last_source->mnt_master;
last_dest = last_source->mnt_parent;
}
if (n->mnt_group_id != last_dest->mnt_group_id) {
last_source = last_source->mnt_master;
last_dest = last_source->mnt_parent;
}
break;
}
}
type = CL_SLAVE;
/* beginning of peer group among the slaves? */
if (IS_MNT_SHARED(m))
type |= CL_MAKE_SHARED;
}
/* Notice when we are propagating across user namespaces */
if (m->mnt_ns->user_ns != user_ns)
type |= CL_UNPRIVILEGED;
child = copy_tree(last_source, last_source->mnt.mnt_root, type);
if (IS_ERR(child))
return PTR_ERR(child);
child->mnt.mnt_flags &= ~MNT_LOCKED;
mnt_set_mountpoint(m, mp, child);
last_dest = m;
last_source = child;
if (m->mnt_master != dest_master) {
read_seqlock_excl(&mount_lock);
SET_MNT_MARK(m->mnt_master);
read_sequnlock_excl(&mount_lock);
}
hlist_add_head(&child->mnt_hash, list);
return 0;
}
/*
* mount 'source_mnt' under the destination 'dest_mnt' at
* dentry 'dest_dentry'. And propagate that mount to
* all the peer and slave mounts of 'dest_mnt'.
* Link all the new mounts into a propagation tree headed at
* source_mnt. Also link all the new mounts using ->mnt_list
* headed at source_mnt's ->mnt_list
*
* @dest_mnt: destination mount.
* @dest_dentry: destination dentry.
* @source_mnt: source mount.
* @tree_list : list of heads of trees to be attached.
*/
int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
struct mount *source_mnt, struct hlist_head *tree_list)
{
struct mount *m, *n;
int ret = 0;
/*
* we don't want to bother passing tons of arguments to
* propagate_one(); everything is serialized by namespace_sem,
* so globals will do just fine.
*/
user_ns = current->nsproxy->mnt_ns->user_ns;
last_dest = dest_mnt;
last_source = source_mnt;
mp = dest_mp;
list = tree_list;
dest_master = dest_mnt->mnt_master;
/* all peers of dest_mnt, except dest_mnt itself */
for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
ret = propagate_one(n);
if (ret)
goto out;
}
/* all slave groups */
for (m = next_group(dest_mnt, dest_mnt); m;
m = next_group(m, dest_mnt)) {
/* everything in that slave group */
n = m;
do {
ret = propagate_one(n);
if (ret)
goto out;
n = next_peer(n);
} while (n != m);
}
out:
read_seqlock_excl(&mount_lock);
hlist_for_each_entry(n, tree_list, mnt_hash) {
m = n->mnt_parent;
if (m->mnt_master != dest_mnt->mnt_master)
CLEAR_MNT_MARK(m->mnt_master);
}
read_sequnlock_excl(&mount_lock);
return ret;
}
/*
* return true if the refcount is greater than count
*/
static inline int do_refcount_check(struct mount *mnt, int count)
{
return mnt_get_count(mnt) > count;
}
/*
* check if the mount 'mnt' can be unmounted successfully.
* @mnt: the mount to be checked for unmount
* NOTE: unmounting 'mnt' would naturally propagate to all
* other mounts its parent propagates to.
* Check if any of these mounts that **do not have submounts**
* have more references than 'refcnt'. If so return busy.
*
* vfsmount lock must be held for write
*/
int propagate_mount_busy(struct mount *mnt, int refcnt)
{
struct mount *m, *child;
struct mount *parent = mnt->mnt_parent;
int ret = 0;
if (mnt == parent)
return do_refcount_check(mnt, refcnt);
/*
* quickly check if the current mount can be unmounted.
* If not, we don't have to go checking for all other
* mounts
*/
if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
return 1;
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
if (child && list_empty(&child->mnt_mounts) &&
(ret = do_refcount_check(child, 1)))
break;
}
return ret;
}
/*
* Clear MNT_LOCKED when it can be shown to be safe.
*
* mount_lock lock must be held for write
*/
void propagate_mount_unlock(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m, *child;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
if (child)
child->mnt.mnt_flags &= ~MNT_LOCKED;
}
}
/*
* Mark all mounts that the MNT_LOCKED logic will allow to be unmounted.
*/
static void mark_umount_candidates(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
struct mount *child = __lookup_mnt_last(&m->mnt,
mnt->mnt_mountpoint);
if (child && (!IS_MNT_LOCKED(child) || IS_MNT_MARKED(m))) {
SET_MNT_MARK(child);
}
}
}
/*
* NOTE: unmounting 'mnt' naturally propagates to all other mounts its
* parent propagates to.
*/
static void __propagate_umount(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
struct mount *child = __lookup_mnt_last(&m->mnt,
mnt->mnt_mountpoint);
/*
* umount the child only if the child has no children
* and the child is marked safe to unmount.
*/
if (!child || !IS_MNT_MARKED(child))
continue;
CLEAR_MNT_MARK(child);
if (list_empty(&child->mnt_mounts)) {
list_del_init(&child->mnt_child);
child->mnt.mnt_flags |= MNT_UMOUNT;
list_move_tail(&child->mnt_list, &mnt->mnt_list);
}
}
}
/*
* collect all mounts that receive propagation from the mount in @list,
* and return these additional mounts in the same list.
* @list: the list of mounts to be unmounted.
*
* vfsmount lock must be held for write
*/
int propagate_umount(struct list_head *list)
{
struct mount *mnt;
list_for_each_entry_reverse(mnt, list, mnt_list)
mark_umount_candidates(mnt);
list_for_each_entry(mnt, list, mnt_list)
__propagate_umount(mnt);
return 0;
}