linux/arch/mips/cavium-octeon/octeon-platform.c
Linus Torvalds 3051bf36c2 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
 "Highlights:

   1) Support TX_RING in AF_PACKET TPACKET_V3 mode, from Sowmini
      Varadhan.

   2) Simplify classifier state on sk_buff in order to shrink it a bit.
      From Willem de Bruijn.

   3) Introduce SIPHASH and it's usage for secure sequence numbers and
      syncookies. From Jason A. Donenfeld.

   4) Reduce CPU usage for ICMP replies we are going to limit or
      suppress, from Jesper Dangaard Brouer.

   5) Introduce Shared Memory Communications socket layer, from Ursula
      Braun.

   6) Add RACK loss detection and allow it to actually trigger fast
      recovery instead of just assisting after other algorithms have
      triggered it. From Yuchung Cheng.

   7) Add xmit_more and BQL support to mvneta driver, from Simon Guinot.

   8) skb_cow_data avoidance in esp4 and esp6, from Steffen Klassert.

   9) Export MPLS packet stats via netlink, from Robert Shearman.

  10) Significantly improve inet port bind conflict handling, especially
      when an application is restarted and changes it's setting of
      reuseport. From Josef Bacik.

  11) Implement TX batching in vhost_net, from Jason Wang.

  12) Extend the dummy device so that VF (virtual function) features,
      such as configuration, can be more easily tested. From Phil
      Sutter.

  13) Avoid two atomic ops per page on x86 in bnx2x driver, from Eric
      Dumazet.

  14) Add new bpf MAP, implementing a longest prefix match trie. From
      Daniel Mack.

  15) Packet sample offloading support in mlxsw driver, from Yotam Gigi.

  16) Add new aquantia driver, from David VomLehn.

  17) Add bpf tracepoints, from Daniel Borkmann.

  18) Add support for port mirroring to b53 and bcm_sf2 drivers, from
      Florian Fainelli.

  19) Remove custom busy polling in many drivers, it is done in the core
      networking since 4.5 times. From Eric Dumazet.

  20) Support XDP adjust_head in virtio_net, from John Fastabend.

  21) Fix several major holes in neighbour entry confirmation, from
      Julian Anastasov.

  22) Add XDP support to bnxt_en driver, from Michael Chan.

  23) VXLAN offloads for enic driver, from Govindarajulu Varadarajan.

  24) Add IPVTAP driver (IP-VLAN based tap driver) from Sainath Grandhi.

  25) Support GRO in IPSEC protocols, from Steffen Klassert"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1764 commits)
  Revert "ath10k: Search SMBIOS for OEM board file extension"
  net: socket: fix recvmmsg not returning error from sock_error
  bnxt_en: use eth_hw_addr_random()
  bpf: fix unlocking of jited image when module ronx not set
  arch: add ARCH_HAS_SET_MEMORY config
  net: napi_watchdog() can use napi_schedule_irqoff()
  tcp: Revert "tcp: tcp_probe: use spin_lock_bh()"
  net/hsr: use eth_hw_addr_random()
  net: mvpp2: enable building on 64-bit platforms
  net: mvpp2: switch to build_skb() in the RX path
  net: mvpp2: simplify MVPP2_PRS_RI_* definitions
  net: mvpp2: fix indentation of MVPP2_EXT_GLOBAL_CTRL_DEFAULT
  net: mvpp2: remove unused register definitions
  net: mvpp2: simplify mvpp2_bm_bufs_add()
  net: mvpp2: drop useless fields in mvpp2_bm_pool and related code
  net: mvpp2: remove unused 'tx_skb' field of 'struct mvpp2_tx_queue'
  net: mvpp2: release reference to txq_cpu[] entry after unmapping
  net: mvpp2: handle too large value in mvpp2_rx_time_coal_set()
  net: mvpp2: handle too large value handling in mvpp2_rx_pkts_coal_set()
  net: mvpp2: remove useless arguments in mvpp2_rx_{pkts, time}_coal_set
  ...
2017-02-22 10:15:09 -08:00

1064 lines
27 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2004-2016 Cavium Networks
* Copyright (C) 2008 Wind River Systems
*/
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/of_platform.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <linux/usb/ehci_def.h>
#include <linux/usb/ehci_pdriver.h>
#include <linux/usb/ohci_pdriver.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-helper-board.h>
#include <asm/octeon/cvmx-uctlx-defs.h>
#define CVMX_UAHCX_EHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000010ull))
#define CVMX_UAHCX_OHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000408ull))
/* Octeon Random Number Generator. */
static int __init octeon_rng_device_init(void)
{
struct platform_device *pd;
int ret = 0;
struct resource rng_resources[] = {
{
.flags = IORESOURCE_MEM,
.start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
.end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
}, {
.flags = IORESOURCE_MEM,
.start = cvmx_build_io_address(8, 0),
.end = cvmx_build_io_address(8, 0) + 0x7
}
};
pd = platform_device_alloc("octeon_rng", -1);
if (!pd) {
ret = -ENOMEM;
goto out;
}
ret = platform_device_add_resources(pd, rng_resources,
ARRAY_SIZE(rng_resources));
if (ret)
goto fail;
ret = platform_device_add(pd);
if (ret)
goto fail;
return ret;
fail:
platform_device_put(pd);
out:
return ret;
}
device_initcall(octeon_rng_device_init);
#ifdef CONFIG_USB
static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
static int octeon2_usb_clock_start_cnt;
static int __init octeon2_usb_reset(void)
{
union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
u32 ucmd;
if (!OCTEON_IS_OCTEON2())
return 0;
clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
if (clk_rst_ctl.s.hrst) {
ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
ucmd &= ~CMD_RUN;
cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
mdelay(2);
ucmd |= CMD_RESET;
cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
ucmd |= CMD_RUN;
cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
}
return 0;
}
arch_initcall(octeon2_usb_reset);
static void octeon2_usb_clocks_start(struct device *dev)
{
u64 div;
union cvmx_uctlx_if_ena if_ena;
union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
int i;
unsigned long io_clk_64_to_ns;
u32 clock_rate = 12000000;
bool is_crystal_clock = false;
mutex_lock(&octeon2_usb_clocks_mutex);
octeon2_usb_clock_start_cnt++;
if (octeon2_usb_clock_start_cnt != 1)
goto exit;
io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
if (dev->of_node) {
struct device_node *uctl_node;
const char *clock_type;
uctl_node = of_get_parent(dev->of_node);
if (!uctl_node) {
dev_err(dev, "No UCTL device node\n");
goto exit;
}
i = of_property_read_u32(uctl_node,
"refclk-frequency", &clock_rate);
if (i) {
dev_err(dev, "No UCTL \"refclk-frequency\"\n");
goto exit;
}
i = of_property_read_string(uctl_node,
"refclk-type", &clock_type);
if (!i && strcmp("crystal", clock_type) == 0)
is_crystal_clock = true;
}
/*
* Step 1: Wait for voltages stable. That surely happened
* before starting the kernel.
*
* Step 2: Enable SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
*/
if_ena.u64 = 0;
if_ena.s.en = 1;
cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
for (i = 0; i <= 1; i++) {
port_ctl_status.u64 =
cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
port_ctl_status.s.txvreftune = 15;
port_ctl_status.s.txrisetune = 1;
port_ctl_status.s.txpreemphasistune = 1;
cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
port_ctl_status.u64);
}
/* Step 3: Configure the reference clock, PHY, and HCLK */
clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
/*
* If the UCTL looks like it has already been started, skip
* the initialization, otherwise bus errors are obtained.
*/
if (clk_rst_ctl.s.hrst)
goto end_clock;
/* 3a */
clk_rst_ctl.s.p_por = 1;
clk_rst_ctl.s.hrst = 0;
clk_rst_ctl.s.p_prst = 0;
clk_rst_ctl.s.h_clkdiv_rst = 0;
clk_rst_ctl.s.o_clkdiv_rst = 0;
clk_rst_ctl.s.h_clkdiv_en = 0;
clk_rst_ctl.s.o_clkdiv_en = 0;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* 3b */
clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
switch (clock_rate) {
default:
pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
clock_rate);
/* Fall through */
case 12000000:
clk_rst_ctl.s.p_refclk_div = 0;
break;
case 24000000:
clk_rst_ctl.s.p_refclk_div = 1;
break;
case 48000000:
clk_rst_ctl.s.p_refclk_div = 2;
break;
}
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* 3c */
div = octeon_get_io_clock_rate() / 130000000ull;
switch (div) {
case 0:
div = 1;
break;
case 1:
case 2:
case 3:
case 4:
break;
case 5:
div = 4;
break;
case 6:
case 7:
div = 6;
break;
case 8:
case 9:
case 10:
case 11:
div = 8;
break;
default:
div = 12;
break;
}
clk_rst_ctl.s.h_div = div;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* Read it back, */
clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
clk_rst_ctl.s.h_clkdiv_en = 1;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* 3d */
clk_rst_ctl.s.h_clkdiv_rst = 1;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* 3e: delay 64 io clocks */
ndelay(io_clk_64_to_ns);
/*
* Step 4: Program the power-on reset field in the UCTL
* clock-reset-control register.
*/
clk_rst_ctl.s.p_por = 0;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* Step 5: Wait 3 ms for the PHY clock to start. */
mdelay(3);
/* Steps 6..9 for ATE only, are skipped. */
/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
/* 10a */
clk_rst_ctl.s.o_clkdiv_rst = 1;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* 10b */
clk_rst_ctl.s.o_clkdiv_en = 1;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* 10c */
ndelay(io_clk_64_to_ns);
/*
* Step 11: Program the PHY reset field:
* UCTL0_CLK_RST_CTL[P_PRST] = 1
*/
clk_rst_ctl.s.p_prst = 1;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* Step 11b */
udelay(1);
/* Step 11c */
clk_rst_ctl.s.p_prst = 0;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* Step 11d */
mdelay(1);
/* Step 11e */
clk_rst_ctl.s.p_prst = 1;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
/* Step 12: Wait 1 uS. */
udelay(1);
/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
clk_rst_ctl.s.hrst = 1;
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
end_clock:
/* Set uSOF cycle period to 60,000 bits. */
cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
exit:
mutex_unlock(&octeon2_usb_clocks_mutex);
}
static void octeon2_usb_clocks_stop(void)
{
mutex_lock(&octeon2_usb_clocks_mutex);
octeon2_usb_clock_start_cnt--;
mutex_unlock(&octeon2_usb_clocks_mutex);
}
static int octeon_ehci_power_on(struct platform_device *pdev)
{
octeon2_usb_clocks_start(&pdev->dev);
return 0;
}
static void octeon_ehci_power_off(struct platform_device *pdev)
{
octeon2_usb_clocks_stop();
}
static struct usb_ehci_pdata octeon_ehci_pdata = {
/* Octeon EHCI matches CPU endianness. */
#ifdef __BIG_ENDIAN
.big_endian_mmio = 1,
#endif
/*
* We can DMA from anywhere. But the descriptors must be in
* the lower 4GB.
*/
.dma_mask_64 = 0,
.power_on = octeon_ehci_power_on,
.power_off = octeon_ehci_power_off,
};
static void __init octeon_ehci_hw_start(struct device *dev)
{
union cvmx_uctlx_ehci_ctl ehci_ctl;
octeon2_usb_clocks_start(dev);
ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
/* Use 64-bit addressing. */
ehci_ctl.s.ehci_64b_addr_en = 1;
ehci_ctl.s.l2c_addr_msb = 0;
#ifdef __BIG_ENDIAN
ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
#else
ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
ehci_ctl.s.inv_reg_a2 = 1;
#endif
cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
octeon2_usb_clocks_stop();
}
static int __init octeon_ehci_device_init(void)
{
struct platform_device *pd;
struct device_node *ehci_node;
int ret = 0;
ehci_node = of_find_node_by_name(NULL, "ehci");
if (!ehci_node)
return 0;
pd = of_find_device_by_node(ehci_node);
if (!pd)
return 0;
pd->dev.platform_data = &octeon_ehci_pdata;
octeon_ehci_hw_start(&pd->dev);
return ret;
}
device_initcall(octeon_ehci_device_init);
static int octeon_ohci_power_on(struct platform_device *pdev)
{
octeon2_usb_clocks_start(&pdev->dev);
return 0;
}
static void octeon_ohci_power_off(struct platform_device *pdev)
{
octeon2_usb_clocks_stop();
}
static struct usb_ohci_pdata octeon_ohci_pdata = {
/* Octeon OHCI matches CPU endianness. */
#ifdef __BIG_ENDIAN
.big_endian_mmio = 1,
#endif
.power_on = octeon_ohci_power_on,
.power_off = octeon_ohci_power_off,
};
static void __init octeon_ohci_hw_start(struct device *dev)
{
union cvmx_uctlx_ohci_ctl ohci_ctl;
octeon2_usb_clocks_start(dev);
ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
ohci_ctl.s.l2c_addr_msb = 0;
#ifdef __BIG_ENDIAN
ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
#else
ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
ohci_ctl.s.inv_reg_a2 = 1;
#endif
cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
octeon2_usb_clocks_stop();
}
static int __init octeon_ohci_device_init(void)
{
struct platform_device *pd;
struct device_node *ohci_node;
int ret = 0;
ohci_node = of_find_node_by_name(NULL, "ohci");
if (!ohci_node)
return 0;
pd = of_find_device_by_node(ohci_node);
if (!pd)
return 0;
pd->dev.platform_data = &octeon_ohci_pdata;
octeon_ohci_hw_start(&pd->dev);
return ret;
}
device_initcall(octeon_ohci_device_init);
#endif /* CONFIG_USB */
static struct of_device_id __initdata octeon_ids[] = {
{ .compatible = "simple-bus", },
{ .compatible = "cavium,octeon-6335-uctl", },
{ .compatible = "cavium,octeon-5750-usbn", },
{ .compatible = "cavium,octeon-3860-bootbus", },
{ .compatible = "cavium,mdio-mux", },
{ .compatible = "gpio-leds", },
{ .compatible = "cavium,octeon-7130-usb-uctl", },
{},
};
static bool __init octeon_has_88e1145(void)
{
return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
!OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
!OCTEON_IS_MODEL(OCTEON_CN56XX);
}
static void __init octeon_fdt_set_phy(int eth, int phy_addr)
{
const __be32 *phy_handle;
const __be32 *alt_phy_handle;
const __be32 *reg;
u32 phandle;
int phy;
int alt_phy;
const char *p;
int current_len;
char new_name[20];
phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
if (!phy_handle)
return;
phandle = be32_to_cpup(phy_handle);
phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
if (alt_phy_handle) {
u32 alt_phandle = be32_to_cpup(alt_phy_handle);
alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
} else {
alt_phy = -1;
}
if (phy_addr < 0 || phy < 0) {
/* Delete the PHY things */
fdt_nop_property(initial_boot_params, eth, "phy-handle");
/* This one may fail */
fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
if (phy >= 0)
fdt_nop_node(initial_boot_params, phy);
if (alt_phy >= 0)
fdt_nop_node(initial_boot_params, alt_phy);
return;
}
if (phy_addr >= 256 && alt_phy > 0) {
const struct fdt_property *phy_prop;
struct fdt_property *alt_prop;
u32 phy_handle_name;
/* Use the alt phy node instead.*/
phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
phy_handle_name = phy_prop->nameoff;
fdt_nop_node(initial_boot_params, phy);
fdt_nop_property(initial_boot_params, eth, "phy-handle");
alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
alt_prop->nameoff = phy_handle_name;
phy = alt_phy;
}
phy_addr &= 0xff;
if (octeon_has_88e1145()) {
fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
memset(new_name, 0, sizeof(new_name));
strcpy(new_name, "marvell,88e1145");
p = fdt_getprop(initial_boot_params, phy, "compatible",
&current_len);
if (p && current_len >= strlen(new_name))
fdt_setprop_inplace(initial_boot_params, phy,
"compatible", new_name, current_len);
}
reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
if (phy_addr == be32_to_cpup(reg))
return;
fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
p = fdt_get_name(initial_boot_params, phy, &current_len);
if (p && current_len == strlen(new_name))
fdt_set_name(initial_boot_params, phy, new_name);
else
pr_err("Error: could not rename ethernet phy: <%s>", p);
}
static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
{
const u8 *old_mac;
int old_len;
u8 new_mac[6];
u64 mac = *pmac;
int r;
old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
&old_len);
if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
return;
new_mac[0] = (mac >> 40) & 0xff;
new_mac[1] = (mac >> 32) & 0xff;
new_mac[2] = (mac >> 24) & 0xff;
new_mac[3] = (mac >> 16) & 0xff;
new_mac[4] = (mac >> 8) & 0xff;
new_mac[5] = mac & 0xff;
r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
new_mac, sizeof(new_mac));
if (r) {
pr_err("Setting \"local-mac-address\" failed %d", r);
return;
}
*pmac = mac + 1;
}
static void __init octeon_fdt_rm_ethernet(int node)
{
const __be32 *phy_handle;
phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
if (phy_handle) {
u32 ph = be32_to_cpup(phy_handle);
int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
if (p >= 0)
fdt_nop_node(initial_boot_params, p);
}
fdt_nop_node(initial_boot_params, node);
}
static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
{
char name_buffer[20];
int eth;
int phy_addr;
int ipd_port;
snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
if (eth < 0)
return;
if (p > max) {
pr_debug("Deleting port %x:%x\n", i, p);
octeon_fdt_rm_ethernet(eth);
return;
}
if (OCTEON_IS_MODEL(OCTEON_CN68XX))
ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
else
ipd_port = 16 * i + p;
phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
octeon_fdt_set_phy(eth, phy_addr);
}
static void __init octeon_fdt_pip_iface(int pip, int idx)
{
char name_buffer[20];
int iface;
int p;
int count = 0;
snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
if (iface < 0)
return;
if (cvmx_helper_interface_enumerate(idx) == 0)
count = cvmx_helper_ports_on_interface(idx);
for (p = 0; p < 16; p++)
octeon_fdt_pip_port(iface, idx, p, count - 1);
}
void __init octeon_fill_mac_addresses(void)
{
const char *alias_prop;
char name_buffer[20];
u64 mac_addr_base;
int aliases;
int pip;
int i;
aliases = fdt_path_offset(initial_boot_params, "/aliases");
if (aliases < 0)
return;
mac_addr_base =
((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
(octeon_bootinfo->mac_addr_base[5] & 0xffull);
for (i = 0; i < 2; i++) {
int mgmt;
snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
alias_prop = fdt_getprop(initial_boot_params, aliases,
name_buffer, NULL);
if (!alias_prop)
continue;
mgmt = fdt_path_offset(initial_boot_params, alias_prop);
if (mgmt < 0)
continue;
octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
}
alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
if (!alias_prop)
return;
pip = fdt_path_offset(initial_boot_params, alias_prop);
if (pip < 0)
return;
for (i = 0; i <= 4; i++) {
int iface;
int p;
snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
iface = fdt_subnode_offset(initial_boot_params, pip,
name_buffer);
if (iface < 0)
continue;
for (p = 0; p < 16; p++) {
int eth;
snprintf(name_buffer, sizeof(name_buffer),
"ethernet@%x", p);
eth = fdt_subnode_offset(initial_boot_params, iface,
name_buffer);
if (eth < 0)
continue;
octeon_fdt_set_mac_addr(eth, &mac_addr_base);
}
}
}
int __init octeon_prune_device_tree(void)
{
int i, max_port, uart_mask;
const char *pip_path;
const char *alias_prop;
char name_buffer[20];
int aliases;
if (fdt_check_header(initial_boot_params))
panic("Corrupt Device Tree.");
WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
"Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
cvmx_board_type_to_string(octeon_bootinfo->board_type));
aliases = fdt_path_offset(initial_boot_params, "/aliases");
if (aliases < 0) {
pr_err("Error: No /aliases node in device tree.");
return -EINVAL;
}
if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
max_port = 2;
else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
max_port = 1;
else
max_port = 0;
if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
max_port = 0;
for (i = 0; i < 2; i++) {
int mgmt;
snprintf(name_buffer, sizeof(name_buffer),
"mix%d", i);
alias_prop = fdt_getprop(initial_boot_params, aliases,
name_buffer, NULL);
if (alias_prop) {
mgmt = fdt_path_offset(initial_boot_params, alias_prop);
if (mgmt < 0)
continue;
if (i >= max_port) {
pr_debug("Deleting mix%d\n", i);
octeon_fdt_rm_ethernet(mgmt);
fdt_nop_property(initial_boot_params, aliases,
name_buffer);
} else {
int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
octeon_fdt_set_phy(mgmt, phy_addr);
}
}
}
pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
if (pip_path) {
int pip = fdt_path_offset(initial_boot_params, pip_path);
if (pip >= 0)
for (i = 0; i <= 4; i++)
octeon_fdt_pip_iface(pip, i);
}
/* I2C */
if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
OCTEON_IS_MODEL(OCTEON_CN63XX) ||
OCTEON_IS_MODEL(OCTEON_CN68XX) ||
OCTEON_IS_MODEL(OCTEON_CN56XX))
max_port = 2;
else
max_port = 1;
for (i = 0; i < 2; i++) {
int i2c;
snprintf(name_buffer, sizeof(name_buffer),
"twsi%d", i);
alias_prop = fdt_getprop(initial_boot_params, aliases,
name_buffer, NULL);
if (alias_prop) {
i2c = fdt_path_offset(initial_boot_params, alias_prop);
if (i2c < 0)
continue;
if (i >= max_port) {
pr_debug("Deleting twsi%d\n", i);
fdt_nop_node(initial_boot_params, i2c);
fdt_nop_property(initial_boot_params, aliases,
name_buffer);
}
}
}
/* SMI/MDIO */
if (OCTEON_IS_MODEL(OCTEON_CN68XX))
max_port = 4;
else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
OCTEON_IS_MODEL(OCTEON_CN63XX) ||
OCTEON_IS_MODEL(OCTEON_CN56XX))
max_port = 2;
else
max_port = 1;
for (i = 0; i < 2; i++) {
int i2c;
snprintf(name_buffer, sizeof(name_buffer),
"smi%d", i);
alias_prop = fdt_getprop(initial_boot_params, aliases,
name_buffer, NULL);
if (alias_prop) {
i2c = fdt_path_offset(initial_boot_params, alias_prop);
if (i2c < 0)
continue;
if (i >= max_port) {
pr_debug("Deleting smi%d\n", i);
fdt_nop_node(initial_boot_params, i2c);
fdt_nop_property(initial_boot_params, aliases,
name_buffer);
}
}
}
/* Serial */
uart_mask = 3;
/* Right now CN52XX is the only chip with a third uart */
if (OCTEON_IS_MODEL(OCTEON_CN52XX))
uart_mask |= 4; /* uart2 */
for (i = 0; i < 3; i++) {
int uart;
snprintf(name_buffer, sizeof(name_buffer),
"uart%d", i);
alias_prop = fdt_getprop(initial_boot_params, aliases,
name_buffer, NULL);
if (alias_prop) {
uart = fdt_path_offset(initial_boot_params, alias_prop);
if (uart_mask & (1 << i)) {
__be32 f;
f = cpu_to_be32(octeon_get_io_clock_rate());
fdt_setprop_inplace(initial_boot_params,
uart, "clock-frequency",
&f, sizeof(f));
continue;
}
pr_debug("Deleting uart%d\n", i);
fdt_nop_node(initial_boot_params, uart);
fdt_nop_property(initial_boot_params, aliases,
name_buffer);
}
}
/* Compact Flash */
alias_prop = fdt_getprop(initial_boot_params, aliases,
"cf0", NULL);
if (alias_prop) {
union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
unsigned long base_ptr, region_base, region_size;
unsigned long region1_base = 0;
unsigned long region1_size = 0;
int cs, bootbus;
bool is_16bit = false;
bool is_true_ide = false;
__be32 new_reg[6];
__be32 *ranges;
int len;
int cf = fdt_path_offset(initial_boot_params, alias_prop);
base_ptr = 0;
if (octeon_bootinfo->major_version == 1
&& octeon_bootinfo->minor_version >= 1) {
if (octeon_bootinfo->compact_flash_common_base_addr)
base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
} else {
base_ptr = 0x1d000800;
}
if (!base_ptr)
goto no_cf;
/* Find CS0 region. */
for (cs = 0; cs < 8; cs++) {
mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
region_base = mio_boot_reg_cfg.s.base << 16;
region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
&& base_ptr < region_base + region_size) {
is_16bit = mio_boot_reg_cfg.s.width;
break;
}
}
if (cs >= 7) {
/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
goto no_cf;
}
if (!(base_ptr & 0xfffful)) {
/*
* Boot loader signals availability of DMA (true_ide
* mode) by setting low order bits of base_ptr to
* zero.
*/
/* Asume that CS1 immediately follows. */
mio_boot_reg_cfg.u64 =
cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
region1_base = mio_boot_reg_cfg.s.base << 16;
region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
if (!mio_boot_reg_cfg.s.en)
goto no_cf;
is_true_ide = true;
} else {
fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
if (!is_16bit) {
__be32 width = cpu_to_be32(8);
fdt_setprop_inplace(initial_boot_params, cf,
"cavium,bus-width", &width, sizeof(width));
}
}
new_reg[0] = cpu_to_be32(cs);
new_reg[1] = cpu_to_be32(0);
new_reg[2] = cpu_to_be32(0x10000);
new_reg[3] = cpu_to_be32(cs + 1);
new_reg[4] = cpu_to_be32(0);
new_reg[5] = cpu_to_be32(0x10000);
fdt_setprop_inplace(initial_boot_params, cf,
"reg", new_reg, sizeof(new_reg));
bootbus = fdt_parent_offset(initial_boot_params, cf);
if (bootbus < 0)
goto no_cf;
ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
if (!ranges || len < (5 * 8 * sizeof(__be32)))
goto no_cf;
ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
if (is_true_ide) {
cs++;
ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
}
goto end_cf;
no_cf:
fdt_nop_node(initial_boot_params, cf);
end_cf:
;
}
/* 8 char LED */
alias_prop = fdt_getprop(initial_boot_params, aliases,
"led0", NULL);
if (alias_prop) {
union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
unsigned long base_ptr, region_base, region_size;
int cs, bootbus;
__be32 new_reg[6];
__be32 *ranges;
int len;
int led = fdt_path_offset(initial_boot_params, alias_prop);
base_ptr = octeon_bootinfo->led_display_base_addr;
if (base_ptr == 0)
goto no_led;
/* Find CS0 region. */
for (cs = 0; cs < 8; cs++) {
mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
region_base = mio_boot_reg_cfg.s.base << 16;
region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
&& base_ptr < region_base + region_size)
break;
}
if (cs > 7)
goto no_led;
new_reg[0] = cpu_to_be32(cs);
new_reg[1] = cpu_to_be32(0x20);
new_reg[2] = cpu_to_be32(0x20);
new_reg[3] = cpu_to_be32(cs);
new_reg[4] = cpu_to_be32(0);
new_reg[5] = cpu_to_be32(0x20);
fdt_setprop_inplace(initial_boot_params, led,
"reg", new_reg, sizeof(new_reg));
bootbus = fdt_parent_offset(initial_boot_params, led);
if (bootbus < 0)
goto no_led;
ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
if (!ranges || len < (5 * 8 * sizeof(__be32)))
goto no_led;
ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
goto end_led;
no_led:
fdt_nop_node(initial_boot_params, led);
end_led:
;
}
/* OHCI/UHCI USB */
alias_prop = fdt_getprop(initial_boot_params, aliases,
"uctl", NULL);
if (alias_prop) {
int uctl = fdt_path_offset(initial_boot_params, alias_prop);
if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
pr_debug("Deleting uctl\n");
fdt_nop_node(initial_boot_params, uctl);
fdt_nop_property(initial_boot_params, aliases, "uctl");
} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
/* Missing "refclk-type" defaults to crystal. */
fdt_nop_property(initial_boot_params, uctl, "refclk-type");
}
}
/* DWC2 USB */
alias_prop = fdt_getprop(initial_boot_params, aliases,
"usbn", NULL);
if (alias_prop) {
int usbn = fdt_path_offset(initial_boot_params, alias_prop);
if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
!octeon_has_feature(OCTEON_FEATURE_USB))) {
pr_debug("Deleting usbn\n");
fdt_nop_node(initial_boot_params, usbn);
fdt_nop_property(initial_boot_params, aliases, "usbn");
} else {
__be32 new_f[1];
enum cvmx_helper_board_usb_clock_types c;
c = __cvmx_helper_board_usb_get_clock_type();
switch (c) {
case USB_CLOCK_TYPE_REF_48:
new_f[0] = cpu_to_be32(48000000);
fdt_setprop_inplace(initial_boot_params, usbn,
"refclk-frequency", new_f, sizeof(new_f));
/* Fall through ...*/
case USB_CLOCK_TYPE_REF_12:
/* Missing "refclk-type" defaults to external. */
fdt_nop_property(initial_boot_params, usbn, "refclk-type");
break;
default:
break;
}
}
}
return 0;
}
static int __init octeon_publish_devices(void)
{
return of_platform_bus_probe(NULL, octeon_ids, NULL);
}
arch_initcall(octeon_publish_devices);