linux/arch/x86/xen/enlighten_pv.c
Juergen Gross 802600ebdf x86/xen: return a sane initial apic id when running as PV guest
With recent sanity checks for topology information added, there are now
warnings issued for APs when running as a Xen PV guest:

  [Firmware Bug]: CPU   1: APIC ID mismatch. CPUID: 0x0000 APIC: 0x0001

This is due to the initial APIC ID obtained via CPUID for PV guests is
always 0.

Avoid the warnings by synthesizing the CPUID data to contain the same
initial APIC ID as xen_pv_smp_config() is using for registering the
APIC IDs of all CPUs.

Fixes: 52128a7a21 ("86/cpu/topology: Make the APIC mismatch warnings complete")
Signed-off-by: Juergen Gross <jgross@suse.com>
2024-05-02 19:18:44 +02:00

1577 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Core of Xen paravirt_ops implementation.
*
* This file contains the xen_paravirt_ops structure itself, and the
* implementations for:
* - privileged instructions
* - interrupt flags
* - segment operations
* - booting and setup
*
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
*/
#include <linux/cpu.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/preempt.h>
#include <linux/hardirq.h>
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/start_kernel.h>
#include <linux/sched.h>
#include <linux/kprobes.h>
#include <linux/kstrtox.h>
#include <linux/memblock.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/edd.h>
#include <linux/reboot.h>
#include <linux/virtio_anchor.h>
#include <linux/stackprotector.h>
#include <xen/xen.h>
#include <xen/events.h>
#include <xen/interface/xen.h>
#include <xen/interface/version.h>
#include <xen/interface/physdev.h>
#include <xen/interface/vcpu.h>
#include <xen/interface/memory.h>
#include <xen/interface/nmi.h>
#include <xen/interface/xen-mca.h>
#include <xen/features.h>
#include <xen/page.h>
#include <xen/hvc-console.h>
#include <xen/acpi.h>
#include <asm/paravirt.h>
#include <asm/apic.h>
#include <asm/page.h>
#include <asm/xen/pci.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/xen/cpuid.h>
#include <asm/fixmap.h>
#include <asm/processor.h>
#include <asm/proto.h>
#include <asm/msr-index.h>
#include <asm/traps.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include <asm/reboot.h>
#include <asm/hypervisor.h>
#include <asm/mach_traps.h>
#include <asm/mtrr.h>
#include <asm/mwait.h>
#include <asm/pci_x86.h>
#include <asm/cpu.h>
#ifdef CONFIG_X86_IOPL_IOPERM
#include <asm/io_bitmap.h>
#endif
#ifdef CONFIG_ACPI
#include <linux/acpi.h>
#include <asm/acpi.h>
#include <acpi/proc_cap_intel.h>
#include <acpi/processor.h>
#include <xen/interface/platform.h>
#endif
#include "xen-ops.h"
#include "mmu.h"
#include "smp.h"
#include "multicalls.h"
#include "pmu.h"
#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
void *xen_initial_gdt;
static int xen_cpu_up_prepare_pv(unsigned int cpu);
static int xen_cpu_dead_pv(unsigned int cpu);
struct tls_descs {
struct desc_struct desc[3];
};
DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
DEFINE_PER_CPU(unsigned int, xen_lazy_nesting);
enum xen_lazy_mode xen_get_lazy_mode(void)
{
if (in_interrupt())
return XEN_LAZY_NONE;
return this_cpu_read(xen_lazy_mode);
}
/*
* Updating the 3 TLS descriptors in the GDT on every task switch is
* surprisingly expensive so we avoid updating them if they haven't
* changed. Since Xen writes different descriptors than the one
* passed in the update_descriptor hypercall we keep shadow copies to
* compare against.
*/
static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
static int __init parse_xen_msr_safe(char *str)
{
if (str)
return kstrtobool(str, &xen_msr_safe);
return -EINVAL;
}
early_param("xen_msr_safe", parse_xen_msr_safe);
/* Get MTRR settings from Xen and put them into mtrr_state. */
static void __init xen_set_mtrr_data(void)
{
#ifdef CONFIG_MTRR
struct xen_platform_op op = {
.cmd = XENPF_read_memtype,
.interface_version = XENPF_INTERFACE_VERSION,
};
unsigned int reg;
unsigned long mask;
uint32_t eax, width;
static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
/* Get physical address width (only 64-bit cpus supported). */
width = 36;
eax = cpuid_eax(0x80000000);
if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
eax = cpuid_eax(0x80000008);
width = eax & 0xff;
}
for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
op.u.read_memtype.reg = reg;
if (HYPERVISOR_platform_op(&op))
break;
/*
* Only called in dom0, which has all RAM PFNs mapped at
* RAM MFNs, and all PCI space etc. is identity mapped.
* This means we can treat MFN == PFN regarding MTRR settings.
*/
var[reg].base_lo = op.u.read_memtype.type;
var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
mask &= (1UL << width) - 1;
if (mask)
mask |= MTRR_PHYSMASK_V;
var[reg].mask_lo = mask;
var[reg].mask_hi = mask >> 32;
}
/* Only overwrite MTRR state if any MTRR could be got from Xen. */
if (reg)
mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE);
#endif
}
static void __init xen_pv_init_platform(void)
{
/* PV guests can't operate virtio devices without grants. */
if (IS_ENABLED(CONFIG_XEN_VIRTIO))
virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
xen_vcpu_info_reset(0);
/* pvclock is in shared info area */
xen_init_time_ops();
if (xen_initial_domain())
xen_set_mtrr_data();
else
mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
/* Adjust nr_cpu_ids before "enumeration" happens */
xen_smp_count_cpus();
}
static void __init xen_pv_guest_late_init(void)
{
#ifndef CONFIG_SMP
/* Setup shared vcpu info for non-smp configurations */
xen_setup_vcpu_info_placement();
#endif
}
static __read_mostly unsigned int cpuid_leaf5_ecx_val;
static __read_mostly unsigned int cpuid_leaf5_edx_val;
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
unsigned int *cx, unsigned int *dx)
{
unsigned int maskebx = ~0;
unsigned int or_ebx = 0;
/*
* Mask out inconvenient features, to try and disable as many
* unsupported kernel subsystems as possible.
*/
switch (*ax) {
case 0x1:
/* Replace initial APIC ID in bits 24-31 of EBX. */
/* See xen_pv_smp_config() for related topology preparations. */
maskebx = 0x00ffffff;
or_ebx = smp_processor_id() << 24;
break;
case CPUID_MWAIT_LEAF:
/* Synthesize the values.. */
*ax = 0;
*bx = 0;
*cx = cpuid_leaf5_ecx_val;
*dx = cpuid_leaf5_edx_val;
return;
case 0xb:
/* Suppress extended topology stuff */
maskebx = 0;
break;
}
asm(XEN_EMULATE_PREFIX "cpuid"
: "=a" (*ax),
"=b" (*bx),
"=c" (*cx),
"=d" (*dx)
: "0" (*ax), "2" (*cx));
*bx &= maskebx;
*bx |= or_ebx;
}
static bool __init xen_check_mwait(void)
{
#ifdef CONFIG_ACPI
struct xen_platform_op op = {
.cmd = XENPF_set_processor_pminfo,
.u.set_pminfo.id = -1,
.u.set_pminfo.type = XEN_PM_PDC,
};
uint32_t buf[3];
unsigned int ax, bx, cx, dx;
unsigned int mwait_mask;
/* We need to determine whether it is OK to expose the MWAIT
* capability to the kernel to harvest deeper than C3 states from ACPI
* _CST using the processor_harvest_xen.c module. For this to work, we
* need to gather the MWAIT_LEAF values (which the cstate.c code
* checks against). The hypervisor won't expose the MWAIT flag because
* it would break backwards compatibility; so we will find out directly
* from the hardware and hypercall.
*/
if (!xen_initial_domain())
return false;
/*
* When running under platform earlier than Xen4.2, do not expose
* mwait, to avoid the risk of loading native acpi pad driver
*/
if (!xen_running_on_version_or_later(4, 2))
return false;
ax = 1;
cx = 0;
native_cpuid(&ax, &bx, &cx, &dx);
mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
(1 << (X86_FEATURE_MWAIT % 32));
if ((cx & mwait_mask) != mwait_mask)
return false;
/* We need to emulate the MWAIT_LEAF and for that we need both
* ecx and edx. The hypercall provides only partial information.
*/
ax = CPUID_MWAIT_LEAF;
bx = 0;
cx = 0;
dx = 0;
native_cpuid(&ax, &bx, &cx, &dx);
/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
* don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
*/
buf[0] = ACPI_PDC_REVISION_ID;
buf[1] = 1;
buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
if ((HYPERVISOR_platform_op(&op) == 0) &&
(buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
cpuid_leaf5_ecx_val = cx;
cpuid_leaf5_edx_val = dx;
}
return true;
#else
return false;
#endif
}
static bool __init xen_check_xsave(void)
{
unsigned int cx, xsave_mask;
cx = cpuid_ecx(1);
xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
(1 << (X86_FEATURE_OSXSAVE % 32));
/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
return (cx & xsave_mask) == xsave_mask;
}
static void __init xen_init_capabilities(void)
{
setup_force_cpu_cap(X86_FEATURE_XENPV);
setup_clear_cpu_cap(X86_FEATURE_DCA);
setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
setup_clear_cpu_cap(X86_FEATURE_MTRR);
setup_clear_cpu_cap(X86_FEATURE_ACC);
setup_clear_cpu_cap(X86_FEATURE_X2APIC);
setup_clear_cpu_cap(X86_FEATURE_SME);
setup_clear_cpu_cap(X86_FEATURE_LKGS);
/*
* Xen PV would need some work to support PCID: CR3 handling as well
* as xen_flush_tlb_others() would need updating.
*/
setup_clear_cpu_cap(X86_FEATURE_PCID);
if (!xen_initial_domain())
setup_clear_cpu_cap(X86_FEATURE_ACPI);
if (xen_check_mwait())
setup_force_cpu_cap(X86_FEATURE_MWAIT);
else
setup_clear_cpu_cap(X86_FEATURE_MWAIT);
if (!xen_check_xsave()) {
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
}
}
static noinstr void xen_set_debugreg(int reg, unsigned long val)
{
HYPERVISOR_set_debugreg(reg, val);
}
static noinstr unsigned long xen_get_debugreg(int reg)
{
return HYPERVISOR_get_debugreg(reg);
}
static void xen_start_context_switch(struct task_struct *prev)
{
BUG_ON(preemptible());
if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
arch_leave_lazy_mmu_mode();
set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
}
enter_lazy(XEN_LAZY_CPU);
}
static void xen_end_context_switch(struct task_struct *next)
{
BUG_ON(preemptible());
xen_mc_flush();
leave_lazy(XEN_LAZY_CPU);
if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
arch_enter_lazy_mmu_mode();
}
static unsigned long xen_store_tr(void)
{
return 0;
}
/*
* Set the page permissions for a particular virtual address. If the
* address is a vmalloc mapping (or other non-linear mapping), then
* find the linear mapping of the page and also set its protections to
* match.
*/
static void set_aliased_prot(void *v, pgprot_t prot)
{
int level;
pte_t *ptep;
pte_t pte;
unsigned long pfn;
unsigned char dummy;
void *va;
ptep = lookup_address((unsigned long)v, &level);
BUG_ON(ptep == NULL);
pfn = pte_pfn(*ptep);
pte = pfn_pte(pfn, prot);
/*
* Careful: update_va_mapping() will fail if the virtual address
* we're poking isn't populated in the page tables. We don't
* need to worry about the direct map (that's always in the page
* tables), but we need to be careful about vmap space. In
* particular, the top level page table can lazily propagate
* entries between processes, so if we've switched mms since we
* vmapped the target in the first place, we might not have the
* top-level page table entry populated.
*
* We disable preemption because we want the same mm active when
* we probe the target and when we issue the hypercall. We'll
* have the same nominal mm, but if we're a kernel thread, lazy
* mm dropping could change our pgd.
*
* Out of an abundance of caution, this uses __get_user() to fault
* in the target address just in case there's some obscure case
* in which the target address isn't readable.
*/
preempt_disable();
copy_from_kernel_nofault(&dummy, v, 1);
if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
BUG();
va = __va(PFN_PHYS(pfn));
if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
BUG();
preempt_enable();
}
static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
{
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
int i;
/*
* We need to mark the all aliases of the LDT pages RO. We
* don't need to call vm_flush_aliases(), though, since that's
* only responsible for flushing aliases out the TLBs, not the
* page tables, and Xen will flush the TLB for us if needed.
*
* To avoid confusing future readers: none of this is necessary
* to load the LDT. The hypervisor only checks this when the
* LDT is faulted in due to subsequent descriptor access.
*/
for (i = 0; i < entries; i += entries_per_page)
set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
}
static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
{
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
int i;
for (i = 0; i < entries; i += entries_per_page)
set_aliased_prot(ldt + i, PAGE_KERNEL);
}
static void xen_set_ldt(const void *addr, unsigned entries)
{
struct mmuext_op *op;
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
trace_xen_cpu_set_ldt(addr, entries);
op = mcs.args;
op->cmd = MMUEXT_SET_LDT;
op->arg1.linear_addr = (unsigned long)addr;
op->arg2.nr_ents = entries;
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
xen_mc_issue(XEN_LAZY_CPU);
}
static void xen_load_gdt(const struct desc_ptr *dtr)
{
unsigned long va = dtr->address;
unsigned int size = dtr->size + 1;
unsigned long pfn, mfn;
int level;
pte_t *ptep;
void *virt;
/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
BUG_ON(size > PAGE_SIZE);
BUG_ON(va & ~PAGE_MASK);
/*
* The GDT is per-cpu and is in the percpu data area.
* That can be virtually mapped, so we need to do a
* page-walk to get the underlying MFN for the
* hypercall. The page can also be in the kernel's
* linear range, so we need to RO that mapping too.
*/
ptep = lookup_address(va, &level);
BUG_ON(ptep == NULL);
pfn = pte_pfn(*ptep);
mfn = pfn_to_mfn(pfn);
virt = __va(PFN_PHYS(pfn));
make_lowmem_page_readonly((void *)va);
make_lowmem_page_readonly(virt);
if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
BUG();
}
/*
* load_gdt for early boot, when the gdt is only mapped once
*/
static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
{
unsigned long va = dtr->address;
unsigned int size = dtr->size + 1;
unsigned long pfn, mfn;
pte_t pte;
/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
BUG_ON(size > PAGE_SIZE);
BUG_ON(va & ~PAGE_MASK);
pfn = virt_to_pfn((void *)va);
mfn = pfn_to_mfn(pfn);
pte = pfn_pte(pfn, PAGE_KERNEL_RO);
if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
BUG();
if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
BUG();
}
static inline bool desc_equal(const struct desc_struct *d1,
const struct desc_struct *d2)
{
return !memcmp(d1, d2, sizeof(*d1));
}
static void load_TLS_descriptor(struct thread_struct *t,
unsigned int cpu, unsigned int i)
{
struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
struct desc_struct *gdt;
xmaddr_t maddr;
struct multicall_space mc;
if (desc_equal(shadow, &t->tls_array[i]))
return;
*shadow = t->tls_array[i];
gdt = get_cpu_gdt_rw(cpu);
maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
mc = __xen_mc_entry(0);
MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
}
static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
{
/*
* In lazy mode we need to zero %fs, otherwise we may get an
* exception between the new %fs descriptor being loaded and
* %fs being effectively cleared at __switch_to().
*/
if (xen_get_lazy_mode() == XEN_LAZY_CPU)
loadsegment(fs, 0);
xen_mc_batch();
load_TLS_descriptor(t, cpu, 0);
load_TLS_descriptor(t, cpu, 1);
load_TLS_descriptor(t, cpu, 2);
xen_mc_issue(XEN_LAZY_CPU);
}
static void xen_load_gs_index(unsigned int idx)
{
if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
BUG();
}
static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
const void *ptr)
{
xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
u64 entry = *(u64 *)ptr;
trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
preempt_disable();
xen_mc_flush();
if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
BUG();
preempt_enable();
}
void noist_exc_debug(struct pt_regs *regs);
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
{
/* On Xen PV, NMI doesn't use IST. The C part is the same as native. */
exc_nmi(regs);
}
DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
{
/* On Xen PV, DF doesn't use IST. The C part is the same as native. */
exc_double_fault(regs, error_code);
}
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
{
/*
* There's no IST on Xen PV, but we still need to dispatch
* to the correct handler.
*/
if (user_mode(regs))
noist_exc_debug(regs);
else
exc_debug(regs);
}
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
{
/* This should never happen and there is no way to handle it. */
instrumentation_begin();
pr_err("Unknown trap in Xen PV mode.");
BUG();
instrumentation_end();
}
#ifdef CONFIG_X86_MCE
DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
{
/*
* There's no IST on Xen PV, but we still need to dispatch
* to the correct handler.
*/
if (user_mode(regs))
noist_exc_machine_check(regs);
else
exc_machine_check(regs);
}
#endif
struct trap_array_entry {
void (*orig)(void);
void (*xen)(void);
bool ist_okay;
};
#define TRAP_ENTRY(func, ist_ok) { \
.orig = asm_##func, \
.xen = xen_asm_##func, \
.ist_okay = ist_ok }
#define TRAP_ENTRY_REDIR(func, ist_ok) { \
.orig = asm_##func, \
.xen = xen_asm_xenpv_##func, \
.ist_okay = ist_ok }
static struct trap_array_entry trap_array[] = {
TRAP_ENTRY_REDIR(exc_debug, true ),
TRAP_ENTRY_REDIR(exc_double_fault, true ),
#ifdef CONFIG_X86_MCE
TRAP_ENTRY_REDIR(exc_machine_check, true ),
#endif
TRAP_ENTRY_REDIR(exc_nmi, true ),
TRAP_ENTRY(exc_int3, false ),
TRAP_ENTRY(exc_overflow, false ),
#ifdef CONFIG_IA32_EMULATION
TRAP_ENTRY(int80_emulation, false ),
#endif
TRAP_ENTRY(exc_page_fault, false ),
TRAP_ENTRY(exc_divide_error, false ),
TRAP_ENTRY(exc_bounds, false ),
TRAP_ENTRY(exc_invalid_op, false ),
TRAP_ENTRY(exc_device_not_available, false ),
TRAP_ENTRY(exc_coproc_segment_overrun, false ),
TRAP_ENTRY(exc_invalid_tss, false ),
TRAP_ENTRY(exc_segment_not_present, false ),
TRAP_ENTRY(exc_stack_segment, false ),
TRAP_ENTRY(exc_general_protection, false ),
TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
TRAP_ENTRY(exc_coprocessor_error, false ),
TRAP_ENTRY(exc_alignment_check, false ),
TRAP_ENTRY(exc_simd_coprocessor_error, false ),
#ifdef CONFIG_X86_CET
TRAP_ENTRY(exc_control_protection, false ),
#endif
};
static bool __ref get_trap_addr(void **addr, unsigned int ist)
{
unsigned int nr;
bool ist_okay = false;
bool found = false;
/*
* Replace trap handler addresses by Xen specific ones.
* Check for known traps using IST and whitelist them.
* The debugger ones are the only ones we care about.
* Xen will handle faults like double_fault, so we should never see
* them. Warn if there's an unexpected IST-using fault handler.
*/
for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
struct trap_array_entry *entry = trap_array + nr;
if (*addr == entry->orig) {
*addr = entry->xen;
ist_okay = entry->ist_okay;
found = true;
break;
}
}
if (nr == ARRAY_SIZE(trap_array) &&
*addr >= (void *)early_idt_handler_array[0] &&
*addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
nr = (*addr - (void *)early_idt_handler_array[0]) /
EARLY_IDT_HANDLER_SIZE;
*addr = (void *)xen_early_idt_handler_array[nr];
found = true;
}
if (!found)
*addr = (void *)xen_asm_exc_xen_unknown_trap;
if (WARN_ON(found && ist != 0 && !ist_okay))
return false;
return true;
}
static int cvt_gate_to_trap(int vector, const gate_desc *val,
struct trap_info *info)
{
unsigned long addr;
if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
return 0;
info->vector = vector;
addr = gate_offset(val);
if (!get_trap_addr((void **)&addr, val->bits.ist))
return 0;
info->address = addr;
info->cs = gate_segment(val);
info->flags = val->bits.dpl;
/* interrupt gates clear IF */
if (val->bits.type == GATE_INTERRUPT)
info->flags |= 1 << 2;
return 1;
}
/* Locations of each CPU's IDT */
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
/* Set an IDT entry. If the entry is part of the current IDT, then
also update Xen. */
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
{
unsigned long p = (unsigned long)&dt[entrynum];
unsigned long start, end;
trace_xen_cpu_write_idt_entry(dt, entrynum, g);
preempt_disable();
start = __this_cpu_read(idt_desc.address);
end = start + __this_cpu_read(idt_desc.size) + 1;
xen_mc_flush();
native_write_idt_entry(dt, entrynum, g);
if (p >= start && (p + 8) <= end) {
struct trap_info info[2];
info[1].address = 0;
if (cvt_gate_to_trap(entrynum, g, &info[0]))
if (HYPERVISOR_set_trap_table(info))
BUG();
}
preempt_enable();
}
static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
struct trap_info *traps, bool full)
{
unsigned in, out, count;
count = (desc->size+1) / sizeof(gate_desc);
BUG_ON(count > 256);
for (in = out = 0; in < count; in++) {
gate_desc *entry = (gate_desc *)(desc->address) + in;
if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
out++;
}
return out;
}
void xen_copy_trap_info(struct trap_info *traps)
{
const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
xen_convert_trap_info(desc, traps, true);
}
/* Load a new IDT into Xen. In principle this can be per-CPU, so we
hold a spinlock to protect the static traps[] array (static because
it avoids allocation, and saves stack space). */
static void xen_load_idt(const struct desc_ptr *desc)
{
static DEFINE_SPINLOCK(lock);
static struct trap_info traps[257];
static const struct trap_info zero = { };
unsigned out;
trace_xen_cpu_load_idt(desc);
spin_lock(&lock);
memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
out = xen_convert_trap_info(desc, traps, false);
traps[out] = zero;
xen_mc_flush();
if (HYPERVISOR_set_trap_table(traps))
BUG();
spin_unlock(&lock);
}
/* Write a GDT descriptor entry. Ignore LDT descriptors, since
they're handled differently. */
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
const void *desc, int type)
{
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
preempt_disable();
switch (type) {
case DESC_LDT:
case DESC_TSS:
/* ignore */
break;
default: {
xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
xen_mc_flush();
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
BUG();
}
}
preempt_enable();
}
/*
* Version of write_gdt_entry for use at early boot-time needed to
* update an entry as simply as possible.
*/
static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
const void *desc, int type)
{
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
switch (type) {
case DESC_LDT:
case DESC_TSS:
/* ignore */
break;
default: {
xmaddr_t maddr = virt_to_machine(&dt[entry]);
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
dt[entry] = *(struct desc_struct *)desc;
}
}
}
static void xen_load_sp0(unsigned long sp0)
{
struct multicall_space mcs;
mcs = xen_mc_entry(0);
MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
xen_mc_issue(XEN_LAZY_CPU);
this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
}
#ifdef CONFIG_X86_IOPL_IOPERM
static void xen_invalidate_io_bitmap(void)
{
struct physdev_set_iobitmap iobitmap = {
.bitmap = NULL,
.nr_ports = 0,
};
native_tss_invalidate_io_bitmap();
HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
}
static void xen_update_io_bitmap(void)
{
struct physdev_set_iobitmap iobitmap;
struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
native_tss_update_io_bitmap();
iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
tss->x86_tss.io_bitmap_base;
if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
iobitmap.nr_ports = 0;
else
iobitmap.nr_ports = IO_BITMAP_BITS;
HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
}
#endif
static void xen_io_delay(void)
{
}
static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
static unsigned long xen_read_cr0(void)
{
unsigned long cr0 = this_cpu_read(xen_cr0_value);
if (unlikely(cr0 == 0)) {
cr0 = native_read_cr0();
this_cpu_write(xen_cr0_value, cr0);
}
return cr0;
}
static void xen_write_cr0(unsigned long cr0)
{
struct multicall_space mcs;
this_cpu_write(xen_cr0_value, cr0);
/* Only pay attention to cr0.TS; everything else is
ignored. */
mcs = xen_mc_entry(0);
MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
xen_mc_issue(XEN_LAZY_CPU);
}
static void xen_write_cr4(unsigned long cr4)
{
cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
native_write_cr4(cr4);
}
static u64 xen_do_read_msr(unsigned int msr, int *err)
{
u64 val = 0; /* Avoid uninitialized value for safe variant. */
if (pmu_msr_read(msr, &val, err))
return val;
if (err)
val = native_read_msr_safe(msr, err);
else
val = native_read_msr(msr);
switch (msr) {
case MSR_IA32_APICBASE:
val &= ~X2APIC_ENABLE;
break;
}
return val;
}
static void set_seg(unsigned int which, unsigned int low, unsigned int high,
int *err)
{
u64 base = ((u64)high << 32) | low;
if (HYPERVISOR_set_segment_base(which, base) == 0)
return;
if (err)
*err = -EIO;
else
WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
}
/*
* Support write_msr_safe() and write_msr() semantics.
* With err == NULL write_msr() semantics are selected.
* Supplying an err pointer requires err to be pre-initialized with 0.
*/
static void xen_do_write_msr(unsigned int msr, unsigned int low,
unsigned int high, int *err)
{
switch (msr) {
case MSR_FS_BASE:
set_seg(SEGBASE_FS, low, high, err);
break;
case MSR_KERNEL_GS_BASE:
set_seg(SEGBASE_GS_USER, low, high, err);
break;
case MSR_GS_BASE:
set_seg(SEGBASE_GS_KERNEL, low, high, err);
break;
case MSR_STAR:
case MSR_CSTAR:
case MSR_LSTAR:
case MSR_SYSCALL_MASK:
case MSR_IA32_SYSENTER_CS:
case MSR_IA32_SYSENTER_ESP:
case MSR_IA32_SYSENTER_EIP:
/* Fast syscall setup is all done in hypercalls, so
these are all ignored. Stub them out here to stop
Xen console noise. */
break;
default:
if (!pmu_msr_write(msr, low, high, err)) {
if (err)
*err = native_write_msr_safe(msr, low, high);
else
native_write_msr(msr, low, high);
}
}
}
static u64 xen_read_msr_safe(unsigned int msr, int *err)
{
return xen_do_read_msr(msr, err);
}
static int xen_write_msr_safe(unsigned int msr, unsigned int low,
unsigned int high)
{
int err = 0;
xen_do_write_msr(msr, low, high, &err);
return err;
}
static u64 xen_read_msr(unsigned int msr)
{
int err;
return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
}
static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
{
int err;
xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
}
/* This is called once we have the cpu_possible_mask */
void __init xen_setup_vcpu_info_placement(void)
{
int cpu;
for_each_possible_cpu(cpu) {
/* Set up direct vCPU id mapping for PV guests. */
per_cpu(xen_vcpu_id, cpu) = cpu;
xen_vcpu_setup(cpu);
}
pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
}
static const struct pv_info xen_info __initconst = {
.extra_user_64bit_cs = FLAT_USER_CS64,
.name = "Xen",
};
static const typeof(pv_ops) xen_cpu_ops __initconst = {
.cpu = {
.cpuid = xen_cpuid,
.set_debugreg = xen_set_debugreg,
.get_debugreg = xen_get_debugreg,
.read_cr0 = xen_read_cr0,
.write_cr0 = xen_write_cr0,
.write_cr4 = xen_write_cr4,
.wbinvd = pv_native_wbinvd,
.read_msr = xen_read_msr,
.write_msr = xen_write_msr,
.read_msr_safe = xen_read_msr_safe,
.write_msr_safe = xen_write_msr_safe,
.read_pmc = xen_read_pmc,
.load_tr_desc = paravirt_nop,
.set_ldt = xen_set_ldt,
.load_gdt = xen_load_gdt,
.load_idt = xen_load_idt,
.load_tls = xen_load_tls,
.load_gs_index = xen_load_gs_index,
.alloc_ldt = xen_alloc_ldt,
.free_ldt = xen_free_ldt,
.store_tr = xen_store_tr,
.write_ldt_entry = xen_write_ldt_entry,
.write_gdt_entry = xen_write_gdt_entry,
.write_idt_entry = xen_write_idt_entry,
.load_sp0 = xen_load_sp0,
#ifdef CONFIG_X86_IOPL_IOPERM
.invalidate_io_bitmap = xen_invalidate_io_bitmap,
.update_io_bitmap = xen_update_io_bitmap,
#endif
.io_delay = xen_io_delay,
.start_context_switch = xen_start_context_switch,
.end_context_switch = xen_end_context_switch,
},
};
static void xen_restart(char *msg)
{
xen_reboot(SHUTDOWN_reboot);
}
static void xen_machine_halt(void)
{
xen_reboot(SHUTDOWN_poweroff);
}
static void xen_machine_power_off(void)
{
do_kernel_power_off();
xen_reboot(SHUTDOWN_poweroff);
}
static void xen_crash_shutdown(struct pt_regs *regs)
{
xen_reboot(SHUTDOWN_crash);
}
static const struct machine_ops xen_machine_ops __initconst = {
.restart = xen_restart,
.halt = xen_machine_halt,
.power_off = xen_machine_power_off,
.shutdown = xen_machine_halt,
.crash_shutdown = xen_crash_shutdown,
.emergency_restart = xen_emergency_restart,
};
static unsigned char xen_get_nmi_reason(void)
{
unsigned char reason = 0;
/* Construct a value which looks like it came from port 0x61. */
if (test_bit(_XEN_NMIREASON_io_error,
&HYPERVISOR_shared_info->arch.nmi_reason))
reason |= NMI_REASON_IOCHK;
if (test_bit(_XEN_NMIREASON_pci_serr,
&HYPERVISOR_shared_info->arch.nmi_reason))
reason |= NMI_REASON_SERR;
return reason;
}
static void __init xen_boot_params_init_edd(void)
{
#if IS_ENABLED(CONFIG_EDD)
struct xen_platform_op op;
struct edd_info *edd_info;
u32 *mbr_signature;
unsigned nr;
int ret;
edd_info = boot_params.eddbuf;
mbr_signature = boot_params.edd_mbr_sig_buffer;
op.cmd = XENPF_firmware_info;
op.u.firmware_info.type = XEN_FW_DISK_INFO;
for (nr = 0; nr < EDDMAXNR; nr++) {
struct edd_info *info = edd_info + nr;
op.u.firmware_info.index = nr;
info->params.length = sizeof(info->params);
set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
&info->params);
ret = HYPERVISOR_platform_op(&op);
if (ret)
break;
#define C(x) info->x = op.u.firmware_info.u.disk_info.x
C(device);
C(version);
C(interface_support);
C(legacy_max_cylinder);
C(legacy_max_head);
C(legacy_sectors_per_track);
#undef C
}
boot_params.eddbuf_entries = nr;
op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
op.u.firmware_info.index = nr;
ret = HYPERVISOR_platform_op(&op);
if (ret)
break;
mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
}
boot_params.edd_mbr_sig_buf_entries = nr;
#endif
}
/*
* Set up the GDT and segment registers for -fstack-protector. Until
* we do this, we have to be careful not to call any stack-protected
* function, which is most of the kernel.
*/
static void __init xen_setup_gdt(int cpu)
{
pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
pv_ops.cpu.load_gdt = xen_load_gdt_boot;
switch_gdt_and_percpu_base(cpu);
pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
pv_ops.cpu.load_gdt = xen_load_gdt;
}
static void __init xen_dom0_set_legacy_features(void)
{
x86_platform.legacy.rtc = 1;
}
static void __init xen_domu_set_legacy_features(void)
{
x86_platform.legacy.rtc = 0;
}
extern void early_xen_iret_patch(void);
/* First C function to be called on Xen boot */
asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
{
struct physdev_set_iopl set_iopl;
unsigned long initrd_start = 0;
int rc;
if (!si)
return;
clear_bss();
xen_start_info = si;
__text_gen_insn(&early_xen_iret_patch,
JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
JMP32_INSN_SIZE);
xen_domain_type = XEN_PV_DOMAIN;
xen_start_flags = xen_start_info->flags;
xen_setup_features();
/* Install Xen paravirt ops */
pv_info = xen_info;
pv_ops.cpu = xen_cpu_ops.cpu;
xen_init_irq_ops();
/*
* Setup xen_vcpu early because it is needed for
* local_irq_disable(), irqs_disabled(), e.g. in printk().
*
* Don't do the full vcpu_info placement stuff until we have
* the cpu_possible_mask and a non-dummy shared_info.
*/
xen_vcpu_info_reset(0);
x86_platform.get_nmi_reason = xen_get_nmi_reason;
x86_platform.realmode_reserve = x86_init_noop;
x86_platform.realmode_init = x86_init_noop;
x86_init.resources.memory_setup = xen_memory_setup;
x86_init.irqs.intr_mode_select = x86_init_noop;
x86_init.irqs.intr_mode_init = x86_64_probe_apic;
x86_init.oem.arch_setup = xen_arch_setup;
x86_init.oem.banner = xen_banner;
x86_init.hyper.init_platform = xen_pv_init_platform;
x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
/*
* Set up some pagetable state before starting to set any ptes.
*/
xen_setup_machphys_mapping();
xen_init_mmu_ops();
/* Prevent unwanted bits from being set in PTEs. */
__supported_pte_mask &= ~_PAGE_GLOBAL;
__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
/* Get mfn list */
xen_build_dynamic_phys_to_machine();
/* Work out if we support NX */
get_cpu_cap(&boot_cpu_data);
x86_configure_nx();
/*
* Set up kernel GDT and segment registers, mainly so that
* -fstack-protector code can be executed.
*/
xen_setup_gdt(0);
/* Determine virtual and physical address sizes */
get_cpu_address_sizes(&boot_cpu_data);
/* Let's presume PV guests always boot on vCPU with id 0. */
per_cpu(xen_vcpu_id, 0) = 0;
idt_setup_early_handler();
xen_init_capabilities();
/*
* set up the basic apic ops.
*/
xen_init_apic();
machine_ops = xen_machine_ops;
/*
* The only reliable way to retain the initial address of the
* percpu gdt_page is to remember it here, so we can go and
* mark it RW later, when the initial percpu area is freed.
*/
xen_initial_gdt = &per_cpu(gdt_page, 0);
xen_smp_init();
#ifdef CONFIG_ACPI_NUMA
/*
* The pages we from Xen are not related to machine pages, so
* any NUMA information the kernel tries to get from ACPI will
* be meaningless. Prevent it from trying.
*/
disable_srat();
#endif
WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
local_irq_disable();
early_boot_irqs_disabled = true;
xen_raw_console_write("mapping kernel into physical memory\n");
xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
xen_start_info->nr_pages);
xen_reserve_special_pages();
/*
* We used to do this in xen_arch_setup, but that is too late
* on AMD were early_cpu_init (run before ->arch_setup()) calls
* early_amd_init which pokes 0xcf8 port.
*/
set_iopl.iopl = 1;
rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
if (rc != 0)
xen_raw_printk("physdev_op failed %d\n", rc);
if (xen_start_info->mod_start) {
if (xen_start_info->flags & SIF_MOD_START_PFN)
initrd_start = PFN_PHYS(xen_start_info->mod_start);
else
initrd_start = __pa(xen_start_info->mod_start);
}
/* Poke various useful things into boot_params */
boot_params.hdr.type_of_loader = (9 << 4) | 0;
boot_params.hdr.ramdisk_image = initrd_start;
boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
if (!xen_initial_domain()) {
if (pci_xen)
x86_init.pci.arch_init = pci_xen_init;
x86_platform.set_legacy_features =
xen_domu_set_legacy_features;
} else {
const struct dom0_vga_console_info *info =
(void *)((char *)xen_start_info +
xen_start_info->console.dom0.info_off);
struct xen_platform_op op = {
.cmd = XENPF_firmware_info,
.interface_version = XENPF_INTERFACE_VERSION,
.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
};
x86_platform.set_legacy_features =
xen_dom0_set_legacy_features;
xen_init_vga(info, xen_start_info->console.dom0.info_size,
&boot_params.screen_info);
xen_start_info->console.domU.mfn = 0;
xen_start_info->console.domU.evtchn = 0;
if (HYPERVISOR_platform_op(&op) == 0)
boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
/* Make sure ACS will be enabled */
pci_request_acs();
xen_acpi_sleep_register();
xen_boot_params_init_edd();
#ifdef CONFIG_ACPI
/*
* Disable selecting "Firmware First mode" for correctable
* memory errors, as this is the duty of the hypervisor to
* decide.
*/
acpi_disable_cmcff = 1;
#endif
}
xen_add_preferred_consoles();
#ifdef CONFIG_PCI
/* PCI BIOS service won't work from a PV guest. */
pci_probe &= ~PCI_PROBE_BIOS;
#endif
xen_raw_console_write("about to get started...\n");
/* We need this for printk timestamps */
xen_setup_runstate_info(0);
xen_efi_init(&boot_params);
/* Start the world */
cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
x86_64_start_reservations((char *)__pa_symbol(&boot_params));
}
static int xen_cpu_up_prepare_pv(unsigned int cpu)
{
int rc;
if (per_cpu(xen_vcpu, cpu) == NULL)
return -ENODEV;
xen_setup_timer(cpu);
rc = xen_smp_intr_init(cpu);
if (rc) {
WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
cpu, rc);
return rc;
}
rc = xen_smp_intr_init_pv(cpu);
if (rc) {
WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
cpu, rc);
return rc;
}
return 0;
}
static int xen_cpu_dead_pv(unsigned int cpu)
{
xen_smp_intr_free(cpu);
xen_smp_intr_free_pv(cpu);
xen_teardown_timer(cpu);
return 0;
}
static uint32_t __init xen_platform_pv(void)
{
if (xen_pv_domain())
return xen_cpuid_base();
return 0;
}
const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
.name = "Xen PV",
.detect = xen_platform_pv,
.type = X86_HYPER_XEN_PV,
.runtime.pin_vcpu = xen_pin_vcpu,
.ignore_nopv = true,
};