linux/io_uring/net.c
Jens Axboe a37ee9e117 io_uring/net: fix multishot accept overflow handling
If we hit CQ ring overflow when attempting to post a multishot accept
completion, we don't properly save the result or return code. This
results in losing the accepted fd value.

Instead, we return the result from the poll operation that triggered
the accept retry. This is generally POLLIN|POLLPRI|POLLRDNORM|POLLRDBAND
which is 0xc3, or 195, which looks like a valid file descriptor, but it
really has no connection to that.

Handle this like we do for other multishot completions - assign the
result, and return IOU_STOP_MULTISHOT to cancel any further completions
from this request when overflow is hit. This preserves the result, as we
should, and tells the application that the request needs to be re-armed.

Cc: stable@vger.kernel.org
Fixes: 515e269612 ("io_uring: revert "io_uring fix multishot accept ordering"")
Link: https://github.com/axboe/liburing/issues/1062
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-02-14 18:30:19 -07:00

1543 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/net.h>
#include <linux/compat.h>
#include <net/compat.h>
#include <linux/io_uring.h>
#include <uapi/linux/io_uring.h>
#include "io_uring.h"
#include "kbuf.h"
#include "alloc_cache.h"
#include "net.h"
#include "notif.h"
#include "rsrc.h"
#if defined(CONFIG_NET)
struct io_shutdown {
struct file *file;
int how;
};
struct io_accept {
struct file *file;
struct sockaddr __user *addr;
int __user *addr_len;
int flags;
u32 file_slot;
unsigned long nofile;
};
struct io_socket {
struct file *file;
int domain;
int type;
int protocol;
int flags;
u32 file_slot;
unsigned long nofile;
};
struct io_connect {
struct file *file;
struct sockaddr __user *addr;
int addr_len;
bool in_progress;
bool seen_econnaborted;
};
struct io_sr_msg {
struct file *file;
union {
struct compat_msghdr __user *umsg_compat;
struct user_msghdr __user *umsg;
void __user *buf;
};
unsigned len;
unsigned done_io;
unsigned msg_flags;
unsigned nr_multishot_loops;
u16 flags;
/* initialised and used only by !msg send variants */
u16 addr_len;
u16 buf_group;
void __user *addr;
void __user *msg_control;
/* used only for send zerocopy */
struct io_kiocb *notif;
};
/*
* Number of times we'll try and do receives if there's more data. If we
* exceed this limit, then add us to the back of the queue and retry from
* there. This helps fairness between flooding clients.
*/
#define MULTISHOT_MAX_RETRY 32
static inline bool io_check_multishot(struct io_kiocb *req,
unsigned int issue_flags)
{
/*
* When ->locked_cq is set we only allow to post CQEs from the original
* task context. Usual request completions will be handled in other
* generic paths but multipoll may decide to post extra cqes.
*/
return !(issue_flags & IO_URING_F_IOWQ) ||
!(issue_flags & IO_URING_F_MULTISHOT) ||
!req->ctx->task_complete;
}
int io_shutdown_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_shutdown *shutdown = io_kiocb_to_cmd(req, struct io_shutdown);
if (unlikely(sqe->off || sqe->addr || sqe->rw_flags ||
sqe->buf_index || sqe->splice_fd_in))
return -EINVAL;
shutdown->how = READ_ONCE(sqe->len);
req->flags |= REQ_F_FORCE_ASYNC;
return 0;
}
int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_shutdown *shutdown = io_kiocb_to_cmd(req, struct io_shutdown);
struct socket *sock;
int ret;
WARN_ON_ONCE(issue_flags & IO_URING_F_NONBLOCK);
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
ret = __sys_shutdown_sock(sock, shutdown->how);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
static bool io_net_retry(struct socket *sock, int flags)
{
if (!(flags & MSG_WAITALL))
return false;
return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
}
static void io_netmsg_recycle(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_async_msghdr *hdr = req->async_data;
if (!req_has_async_data(req) || issue_flags & IO_URING_F_UNLOCKED)
return;
/* Let normal cleanup path reap it if we fail adding to the cache */
if (io_alloc_cache_put(&req->ctx->netmsg_cache, &hdr->cache)) {
req->async_data = NULL;
req->flags &= ~REQ_F_ASYNC_DATA;
}
}
static struct io_async_msghdr *io_msg_alloc_async(struct io_kiocb *req,
unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_cache_entry *entry;
struct io_async_msghdr *hdr;
if (!(issue_flags & IO_URING_F_UNLOCKED)) {
entry = io_alloc_cache_get(&ctx->netmsg_cache);
if (entry) {
hdr = container_of(entry, struct io_async_msghdr, cache);
hdr->free_iov = NULL;
req->flags |= REQ_F_ASYNC_DATA;
req->async_data = hdr;
return hdr;
}
}
if (!io_alloc_async_data(req)) {
hdr = req->async_data;
hdr->free_iov = NULL;
return hdr;
}
return NULL;
}
static inline struct io_async_msghdr *io_msg_alloc_async_prep(struct io_kiocb *req)
{
/* ->prep_async is always called from the submission context */
return io_msg_alloc_async(req, 0);
}
static int io_setup_async_msg(struct io_kiocb *req,
struct io_async_msghdr *kmsg,
unsigned int issue_flags)
{
struct io_async_msghdr *async_msg;
if (req_has_async_data(req))
return -EAGAIN;
async_msg = io_msg_alloc_async(req, issue_flags);
if (!async_msg) {
kfree(kmsg->free_iov);
return -ENOMEM;
}
req->flags |= REQ_F_NEED_CLEANUP;
memcpy(async_msg, kmsg, sizeof(*kmsg));
if (async_msg->msg.msg_name)
async_msg->msg.msg_name = &async_msg->addr;
if ((req->flags & REQ_F_BUFFER_SELECT) && !async_msg->msg.msg_iter.nr_segs)
return -EAGAIN;
/* if were using fast_iov, set it to the new one */
if (iter_is_iovec(&kmsg->msg.msg_iter) && !kmsg->free_iov) {
size_t fast_idx = iter_iov(&kmsg->msg.msg_iter) - kmsg->fast_iov;
async_msg->msg.msg_iter.__iov = &async_msg->fast_iov[fast_idx];
}
return -EAGAIN;
}
static int io_sendmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
int ret;
iomsg->msg.msg_name = &iomsg->addr;
iomsg->free_iov = iomsg->fast_iov;
ret = sendmsg_copy_msghdr(&iomsg->msg, sr->umsg, sr->msg_flags,
&iomsg->free_iov);
/* save msg_control as sys_sendmsg() overwrites it */
sr->msg_control = iomsg->msg.msg_control_user;
return ret;
}
int io_send_prep_async(struct io_kiocb *req)
{
struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *io;
int ret;
if (!zc->addr || req_has_async_data(req))
return 0;
io = io_msg_alloc_async_prep(req);
if (!io)
return -ENOMEM;
ret = move_addr_to_kernel(zc->addr, zc->addr_len, &io->addr);
return ret;
}
static int io_setup_async_addr(struct io_kiocb *req,
struct sockaddr_storage *addr_storage,
unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *io;
if (!sr->addr || req_has_async_data(req))
return -EAGAIN;
io = io_msg_alloc_async(req, issue_flags);
if (!io)
return -ENOMEM;
memcpy(&io->addr, addr_storage, sizeof(io->addr));
return -EAGAIN;
}
int io_sendmsg_prep_async(struct io_kiocb *req)
{
int ret;
if (!io_msg_alloc_async_prep(req))
return -ENOMEM;
ret = io_sendmsg_copy_hdr(req, req->async_data);
if (!ret)
req->flags |= REQ_F_NEED_CLEANUP;
return ret;
}
void io_sendmsg_recvmsg_cleanup(struct io_kiocb *req)
{
struct io_async_msghdr *io = req->async_data;
kfree(io->free_iov);
}
int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
if (req->opcode == IORING_OP_SEND) {
if (READ_ONCE(sqe->__pad3[0]))
return -EINVAL;
sr->addr = u64_to_user_ptr(READ_ONCE(sqe->addr2));
sr->addr_len = READ_ONCE(sqe->addr_len);
} else if (sqe->addr2 || sqe->file_index) {
return -EINVAL;
}
sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
sr->len = READ_ONCE(sqe->len);
sr->flags = READ_ONCE(sqe->ioprio);
if (sr->flags & ~IORING_RECVSEND_POLL_FIRST)
return -EINVAL;
sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
if (sr->msg_flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
sr->msg_flags |= MSG_CMSG_COMPAT;
#endif
sr->done_io = 0;
return 0;
}
int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr iomsg, *kmsg;
struct socket *sock;
unsigned flags;
int min_ret = 0;
int ret;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (req_has_async_data(req)) {
kmsg = req->async_data;
kmsg->msg.msg_control_user = sr->msg_control;
} else {
ret = io_sendmsg_copy_hdr(req, &iomsg);
if (ret)
return ret;
kmsg = &iomsg;
}
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return io_setup_async_msg(req, kmsg, issue_flags);
flags = sr->msg_flags;
if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
if (ret < min_ret) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return io_setup_async_msg(req, kmsg, issue_flags);
if (ret > 0 && io_net_retry(sock, flags)) {
kmsg->msg.msg_controllen = 0;
kmsg->msg.msg_control = NULL;
sr->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return io_setup_async_msg(req, kmsg, issue_flags);
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
}
/* fast path, check for non-NULL to avoid function call */
if (kmsg->free_iov)
kfree(kmsg->free_iov);
req->flags &= ~REQ_F_NEED_CLEANUP;
io_netmsg_recycle(req, issue_flags);
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
io_req_set_res(req, ret, 0);
return IOU_OK;
}
int io_send(struct io_kiocb *req, unsigned int issue_flags)
{
struct sockaddr_storage __address;
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct msghdr msg;
struct socket *sock;
unsigned flags;
int min_ret = 0;
int ret;
msg.msg_name = NULL;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_namelen = 0;
msg.msg_ubuf = NULL;
if (sr->addr) {
if (req_has_async_data(req)) {
struct io_async_msghdr *io = req->async_data;
msg.msg_name = &io->addr;
} else {
ret = move_addr_to_kernel(sr->addr, sr->addr_len, &__address);
if (unlikely(ret < 0))
return ret;
msg.msg_name = (struct sockaddr *)&__address;
}
msg.msg_namelen = sr->addr_len;
}
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return io_setup_async_addr(req, &__address, issue_flags);
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
ret = import_ubuf(ITER_SOURCE, sr->buf, sr->len, &msg.msg_iter);
if (unlikely(ret))
return ret;
flags = sr->msg_flags;
if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&msg.msg_iter);
flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
msg.msg_flags = flags;
ret = sock_sendmsg(sock, &msg);
if (ret < min_ret) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return io_setup_async_addr(req, &__address, issue_flags);
if (ret > 0 && io_net_retry(sock, flags)) {
sr->len -= ret;
sr->buf += ret;
sr->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return io_setup_async_addr(req, &__address, issue_flags);
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
}
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
io_req_set_res(req, ret, 0);
return IOU_OK;
}
static bool io_recvmsg_multishot_overflow(struct io_async_msghdr *iomsg)
{
int hdr;
if (iomsg->namelen < 0)
return true;
if (check_add_overflow((int)sizeof(struct io_uring_recvmsg_out),
iomsg->namelen, &hdr))
return true;
if (check_add_overflow(hdr, (int)iomsg->controllen, &hdr))
return true;
return false;
}
static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct user_msghdr msg;
int ret;
if (copy_from_user(&msg, sr->umsg, sizeof(*sr->umsg)))
return -EFAULT;
ret = __copy_msghdr(&iomsg->msg, &msg, &iomsg->uaddr);
if (ret)
return ret;
if (req->flags & REQ_F_BUFFER_SELECT) {
if (msg.msg_iovlen == 0) {
sr->len = iomsg->fast_iov[0].iov_len = 0;
iomsg->fast_iov[0].iov_base = NULL;
iomsg->free_iov = NULL;
} else if (msg.msg_iovlen > 1) {
return -EINVAL;
} else {
if (copy_from_user(iomsg->fast_iov, msg.msg_iov, sizeof(*msg.msg_iov)))
return -EFAULT;
sr->len = iomsg->fast_iov[0].iov_len;
iomsg->free_iov = NULL;
}
if (req->flags & REQ_F_APOLL_MULTISHOT) {
iomsg->namelen = msg.msg_namelen;
iomsg->controllen = msg.msg_controllen;
if (io_recvmsg_multishot_overflow(iomsg))
return -EOVERFLOW;
}
} else {
iomsg->free_iov = iomsg->fast_iov;
ret = __import_iovec(ITER_DEST, msg.msg_iov, msg.msg_iovlen, UIO_FASTIOV,
&iomsg->free_iov, &iomsg->msg.msg_iter,
false);
if (ret > 0)
ret = 0;
}
return ret;
}
#ifdef CONFIG_COMPAT
static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct compat_msghdr msg;
struct compat_iovec __user *uiov;
int ret;
if (copy_from_user(&msg, sr->umsg_compat, sizeof(msg)))
return -EFAULT;
ret = __get_compat_msghdr(&iomsg->msg, &msg, &iomsg->uaddr);
if (ret)
return ret;
uiov = compat_ptr(msg.msg_iov);
if (req->flags & REQ_F_BUFFER_SELECT) {
compat_ssize_t clen;
iomsg->free_iov = NULL;
if (msg.msg_iovlen == 0) {
sr->len = 0;
} else if (msg.msg_iovlen > 1) {
return -EINVAL;
} else {
if (!access_ok(uiov, sizeof(*uiov)))
return -EFAULT;
if (__get_user(clen, &uiov->iov_len))
return -EFAULT;
if (clen < 0)
return -EINVAL;
sr->len = clen;
}
if (req->flags & REQ_F_APOLL_MULTISHOT) {
iomsg->namelen = msg.msg_namelen;
iomsg->controllen = msg.msg_controllen;
if (io_recvmsg_multishot_overflow(iomsg))
return -EOVERFLOW;
}
} else {
iomsg->free_iov = iomsg->fast_iov;
ret = __import_iovec(ITER_DEST, (struct iovec __user *)uiov, msg.msg_iovlen,
UIO_FASTIOV, &iomsg->free_iov,
&iomsg->msg.msg_iter, true);
if (ret < 0)
return ret;
}
return 0;
}
#endif
static int io_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
iomsg->msg.msg_name = &iomsg->addr;
iomsg->msg.msg_iter.nr_segs = 0;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
return __io_compat_recvmsg_copy_hdr(req, iomsg);
#endif
return __io_recvmsg_copy_hdr(req, iomsg);
}
int io_recvmsg_prep_async(struct io_kiocb *req)
{
int ret;
if (!io_msg_alloc_async_prep(req))
return -ENOMEM;
ret = io_recvmsg_copy_hdr(req, req->async_data);
if (!ret)
req->flags |= REQ_F_NEED_CLEANUP;
return ret;
}
#define RECVMSG_FLAGS (IORING_RECVSEND_POLL_FIRST | IORING_RECV_MULTISHOT)
int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
if (unlikely(sqe->file_index || sqe->addr2))
return -EINVAL;
sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
sr->len = READ_ONCE(sqe->len);
sr->flags = READ_ONCE(sqe->ioprio);
if (sr->flags & ~(RECVMSG_FLAGS))
return -EINVAL;
sr->msg_flags = READ_ONCE(sqe->msg_flags);
if (sr->msg_flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
if (sr->msg_flags & MSG_ERRQUEUE)
req->flags |= REQ_F_CLEAR_POLLIN;
if (sr->flags & IORING_RECV_MULTISHOT) {
if (!(req->flags & REQ_F_BUFFER_SELECT))
return -EINVAL;
if (sr->msg_flags & MSG_WAITALL)
return -EINVAL;
if (req->opcode == IORING_OP_RECV && sr->len)
return -EINVAL;
req->flags |= REQ_F_APOLL_MULTISHOT;
/*
* Store the buffer group for this multishot receive separately,
* as if we end up doing an io-wq based issue that selects a
* buffer, it has to be committed immediately and that will
* clear ->buf_list. This means we lose the link to the buffer
* list, and the eventual buffer put on completion then cannot
* restore it.
*/
sr->buf_group = req->buf_index;
}
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
sr->msg_flags |= MSG_CMSG_COMPAT;
#endif
sr->done_io = 0;
sr->nr_multishot_loops = 0;
return 0;
}
static inline void io_recv_prep_retry(struct io_kiocb *req)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
sr->done_io = 0;
sr->len = 0; /* get from the provided buffer */
req->buf_index = sr->buf_group;
}
/*
* Finishes io_recv and io_recvmsg.
*
* Returns true if it is actually finished, or false if it should run
* again (for multishot).
*/
static inline bool io_recv_finish(struct io_kiocb *req, int *ret,
struct msghdr *msg, bool mshot_finished,
unsigned issue_flags)
{
unsigned int cflags;
cflags = io_put_kbuf(req, issue_flags);
if (msg->msg_inq && msg->msg_inq != -1)
cflags |= IORING_CQE_F_SOCK_NONEMPTY;
if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
io_req_set_res(req, *ret, cflags);
*ret = IOU_OK;
return true;
}
if (mshot_finished)
goto finish;
/*
* Fill CQE for this receive and see if we should keep trying to
* receive from this socket.
*/
if (io_fill_cqe_req_aux(req, issue_flags & IO_URING_F_COMPLETE_DEFER,
*ret, cflags | IORING_CQE_F_MORE)) {
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
int mshot_retry_ret = IOU_ISSUE_SKIP_COMPLETE;
io_recv_prep_retry(req);
/* Known not-empty or unknown state, retry */
if (cflags & IORING_CQE_F_SOCK_NONEMPTY || msg->msg_inq == -1) {
if (sr->nr_multishot_loops++ < MULTISHOT_MAX_RETRY)
return false;
/* mshot retries exceeded, force a requeue */
sr->nr_multishot_loops = 0;
mshot_retry_ret = IOU_REQUEUE;
}
if (issue_flags & IO_URING_F_MULTISHOT)
*ret = mshot_retry_ret;
else
*ret = -EAGAIN;
return true;
}
/* Otherwise stop multishot but use the current result. */
finish:
io_req_set_res(req, *ret, cflags);
if (issue_flags & IO_URING_F_MULTISHOT)
*ret = IOU_STOP_MULTISHOT;
else
*ret = IOU_OK;
return true;
}
static int io_recvmsg_prep_multishot(struct io_async_msghdr *kmsg,
struct io_sr_msg *sr, void __user **buf,
size_t *len)
{
unsigned long ubuf = (unsigned long) *buf;
unsigned long hdr;
hdr = sizeof(struct io_uring_recvmsg_out) + kmsg->namelen +
kmsg->controllen;
if (*len < hdr)
return -EFAULT;
if (kmsg->controllen) {
unsigned long control = ubuf + hdr - kmsg->controllen;
kmsg->msg.msg_control_user = (void __user *) control;
kmsg->msg.msg_controllen = kmsg->controllen;
}
sr->buf = *buf; /* stash for later copy */
*buf = (void __user *) (ubuf + hdr);
kmsg->payloadlen = *len = *len - hdr;
return 0;
}
struct io_recvmsg_multishot_hdr {
struct io_uring_recvmsg_out msg;
struct sockaddr_storage addr;
};
static int io_recvmsg_multishot(struct socket *sock, struct io_sr_msg *io,
struct io_async_msghdr *kmsg,
unsigned int flags, bool *finished)
{
int err;
int copy_len;
struct io_recvmsg_multishot_hdr hdr;
if (kmsg->namelen)
kmsg->msg.msg_name = &hdr.addr;
kmsg->msg.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
kmsg->msg.msg_namelen = 0;
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;
err = sock_recvmsg(sock, &kmsg->msg, flags);
*finished = err <= 0;
if (err < 0)
return err;
hdr.msg = (struct io_uring_recvmsg_out) {
.controllen = kmsg->controllen - kmsg->msg.msg_controllen,
.flags = kmsg->msg.msg_flags & ~MSG_CMSG_COMPAT
};
hdr.msg.payloadlen = err;
if (err > kmsg->payloadlen)
err = kmsg->payloadlen;
copy_len = sizeof(struct io_uring_recvmsg_out);
if (kmsg->msg.msg_namelen > kmsg->namelen)
copy_len += kmsg->namelen;
else
copy_len += kmsg->msg.msg_namelen;
/*
* "fromlen shall refer to the value before truncation.."
* 1003.1g
*/
hdr.msg.namelen = kmsg->msg.msg_namelen;
/* ensure that there is no gap between hdr and sockaddr_storage */
BUILD_BUG_ON(offsetof(struct io_recvmsg_multishot_hdr, addr) !=
sizeof(struct io_uring_recvmsg_out));
if (copy_to_user(io->buf, &hdr, copy_len)) {
*finished = true;
return -EFAULT;
}
return sizeof(struct io_uring_recvmsg_out) + kmsg->namelen +
kmsg->controllen + err;
}
int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr iomsg, *kmsg;
struct socket *sock;
unsigned flags;
int ret, min_ret = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
bool mshot_finished = true;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (req_has_async_data(req)) {
kmsg = req->async_data;
} else {
ret = io_recvmsg_copy_hdr(req, &iomsg);
if (ret)
return ret;
kmsg = &iomsg;
}
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return io_setup_async_msg(req, kmsg, issue_flags);
if (!io_check_multishot(req, issue_flags))
return io_setup_async_msg(req, kmsg, issue_flags);
retry_multishot:
if (io_do_buffer_select(req)) {
void __user *buf;
size_t len = sr->len;
buf = io_buffer_select(req, &len, issue_flags);
if (!buf)
return -ENOBUFS;
if (req->flags & REQ_F_APOLL_MULTISHOT) {
ret = io_recvmsg_prep_multishot(kmsg, sr, &buf, &len);
if (ret) {
io_kbuf_recycle(req, issue_flags);
return ret;
}
}
iov_iter_ubuf(&kmsg->msg.msg_iter, ITER_DEST, buf, len);
}
flags = sr->msg_flags;
if (force_nonblock)
flags |= MSG_DONTWAIT;
kmsg->msg.msg_get_inq = 1;
kmsg->msg.msg_inq = -1;
if (req->flags & REQ_F_APOLL_MULTISHOT) {
ret = io_recvmsg_multishot(sock, sr, kmsg, flags,
&mshot_finished);
} else {
/* disable partial retry for recvmsg with cmsg attached */
if (flags & MSG_WAITALL && !kmsg->msg.msg_controllen)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
ret = __sys_recvmsg_sock(sock, &kmsg->msg, sr->umsg,
kmsg->uaddr, flags);
}
if (ret < min_ret) {
if (ret == -EAGAIN && force_nonblock) {
ret = io_setup_async_msg(req, kmsg, issue_flags);
if (ret == -EAGAIN && (issue_flags & IO_URING_F_MULTISHOT)) {
io_kbuf_recycle(req, issue_flags);
return IOU_ISSUE_SKIP_COMPLETE;
}
return ret;
}
if (ret > 0 && io_net_retry(sock, flags)) {
sr->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return io_setup_async_msg(req, kmsg, issue_flags);
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
req_set_fail(req);
}
if (ret > 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
else
io_kbuf_recycle(req, issue_flags);
if (!io_recv_finish(req, &ret, &kmsg->msg, mshot_finished, issue_flags))
goto retry_multishot;
if (mshot_finished) {
/* fast path, check for non-NULL to avoid function call */
if (kmsg->free_iov)
kfree(kmsg->free_iov);
io_netmsg_recycle(req, issue_flags);
req->flags &= ~REQ_F_NEED_CLEANUP;
}
return ret;
}
int io_recv(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct msghdr msg;
struct socket *sock;
unsigned flags;
int ret, min_ret = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
size_t len = sr->len;
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return -EAGAIN;
if (!io_check_multishot(req, issue_flags))
return -EAGAIN;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_control = NULL;
msg.msg_get_inq = 1;
msg.msg_controllen = 0;
msg.msg_iocb = NULL;
msg.msg_ubuf = NULL;
retry_multishot:
if (io_do_buffer_select(req)) {
void __user *buf;
buf = io_buffer_select(req, &len, issue_flags);
if (!buf)
return -ENOBUFS;
sr->buf = buf;
sr->len = len;
}
ret = import_ubuf(ITER_DEST, sr->buf, len, &msg.msg_iter);
if (unlikely(ret))
goto out_free;
msg.msg_inq = -1;
msg.msg_flags = 0;
flags = sr->msg_flags;
if (force_nonblock)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&msg.msg_iter);
ret = sock_recvmsg(sock, &msg, flags);
if (ret < min_ret) {
if (ret == -EAGAIN && force_nonblock) {
if (issue_flags & IO_URING_F_MULTISHOT) {
io_kbuf_recycle(req, issue_flags);
return IOU_ISSUE_SKIP_COMPLETE;
}
return -EAGAIN;
}
if (ret > 0 && io_net_retry(sock, flags)) {
sr->len -= ret;
sr->buf += ret;
sr->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return -EAGAIN;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
out_free:
req_set_fail(req);
}
if (ret > 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
else
io_kbuf_recycle(req, issue_flags);
if (!io_recv_finish(req, &ret, &msg, ret <= 0, issue_flags))
goto retry_multishot;
return ret;
}
void io_send_zc_cleanup(struct io_kiocb *req)
{
struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *io;
if (req_has_async_data(req)) {
io = req->async_data;
/* might be ->fast_iov if *msg_copy_hdr failed */
if (io->free_iov != io->fast_iov)
kfree(io->free_iov);
}
if (zc->notif) {
io_notif_flush(zc->notif);
zc->notif = NULL;
}
}
#define IO_ZC_FLAGS_COMMON (IORING_RECVSEND_POLL_FIRST | IORING_RECVSEND_FIXED_BUF)
#define IO_ZC_FLAGS_VALID (IO_ZC_FLAGS_COMMON | IORING_SEND_ZC_REPORT_USAGE)
int io_send_zc_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_ring_ctx *ctx = req->ctx;
struct io_kiocb *notif;
if (unlikely(READ_ONCE(sqe->__pad2[0]) || READ_ONCE(sqe->addr3)))
return -EINVAL;
/* we don't support IOSQE_CQE_SKIP_SUCCESS just yet */
if (req->flags & REQ_F_CQE_SKIP)
return -EINVAL;
notif = zc->notif = io_alloc_notif(ctx);
if (!notif)
return -ENOMEM;
notif->cqe.user_data = req->cqe.user_data;
notif->cqe.res = 0;
notif->cqe.flags = IORING_CQE_F_NOTIF;
req->flags |= REQ_F_NEED_CLEANUP;
zc->flags = READ_ONCE(sqe->ioprio);
if (unlikely(zc->flags & ~IO_ZC_FLAGS_COMMON)) {
if (zc->flags & ~IO_ZC_FLAGS_VALID)
return -EINVAL;
if (zc->flags & IORING_SEND_ZC_REPORT_USAGE) {
io_notif_set_extended(notif);
io_notif_to_data(notif)->zc_report = true;
}
}
if (zc->flags & IORING_RECVSEND_FIXED_BUF) {
unsigned idx = READ_ONCE(sqe->buf_index);
if (unlikely(idx >= ctx->nr_user_bufs))
return -EFAULT;
idx = array_index_nospec(idx, ctx->nr_user_bufs);
req->imu = READ_ONCE(ctx->user_bufs[idx]);
io_req_set_rsrc_node(notif, ctx, 0);
}
if (req->opcode == IORING_OP_SEND_ZC) {
if (READ_ONCE(sqe->__pad3[0]))
return -EINVAL;
zc->addr = u64_to_user_ptr(READ_ONCE(sqe->addr2));
zc->addr_len = READ_ONCE(sqe->addr_len);
} else {
if (unlikely(sqe->addr2 || sqe->file_index))
return -EINVAL;
if (unlikely(zc->flags & IORING_RECVSEND_FIXED_BUF))
return -EINVAL;
}
zc->buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
zc->len = READ_ONCE(sqe->len);
zc->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
if (zc->msg_flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
zc->done_io = 0;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
zc->msg_flags |= MSG_CMSG_COMPAT;
#endif
return 0;
}
static int io_sg_from_iter_iovec(struct sock *sk, struct sk_buff *skb,
struct iov_iter *from, size_t length)
{
skb_zcopy_downgrade_managed(skb);
return __zerocopy_sg_from_iter(NULL, sk, skb, from, length);
}
static int io_sg_from_iter(struct sock *sk, struct sk_buff *skb,
struct iov_iter *from, size_t length)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
int frag = shinfo->nr_frags;
int ret = 0;
struct bvec_iter bi;
ssize_t copied = 0;
unsigned long truesize = 0;
if (!frag)
shinfo->flags |= SKBFL_MANAGED_FRAG_REFS;
else if (unlikely(!skb_zcopy_managed(skb)))
return __zerocopy_sg_from_iter(NULL, sk, skb, from, length);
bi.bi_size = min(from->count, length);
bi.bi_bvec_done = from->iov_offset;
bi.bi_idx = 0;
while (bi.bi_size && frag < MAX_SKB_FRAGS) {
struct bio_vec v = mp_bvec_iter_bvec(from->bvec, bi);
copied += v.bv_len;
truesize += PAGE_ALIGN(v.bv_len + v.bv_offset);
__skb_fill_page_desc_noacc(shinfo, frag++, v.bv_page,
v.bv_offset, v.bv_len);
bvec_iter_advance_single(from->bvec, &bi, v.bv_len);
}
if (bi.bi_size)
ret = -EMSGSIZE;
shinfo->nr_frags = frag;
from->bvec += bi.bi_idx;
from->nr_segs -= bi.bi_idx;
from->count -= copied;
from->iov_offset = bi.bi_bvec_done;
skb->data_len += copied;
skb->len += copied;
skb->truesize += truesize;
if (sk && sk->sk_type == SOCK_STREAM) {
sk_wmem_queued_add(sk, truesize);
if (!skb_zcopy_pure(skb))
sk_mem_charge(sk, truesize);
} else {
refcount_add(truesize, &skb->sk->sk_wmem_alloc);
}
return ret;
}
int io_send_zc(struct io_kiocb *req, unsigned int issue_flags)
{
struct sockaddr_storage __address;
struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg);
struct msghdr msg;
struct socket *sock;
unsigned msg_flags;
int ret, min_ret = 0;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (!test_bit(SOCK_SUPPORT_ZC, &sock->flags))
return -EOPNOTSUPP;
msg.msg_name = NULL;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_namelen = 0;
if (zc->addr) {
if (req_has_async_data(req)) {
struct io_async_msghdr *io = req->async_data;
msg.msg_name = &io->addr;
} else {
ret = move_addr_to_kernel(zc->addr, zc->addr_len, &__address);
if (unlikely(ret < 0))
return ret;
msg.msg_name = (struct sockaddr *)&__address;
}
msg.msg_namelen = zc->addr_len;
}
if (!(req->flags & REQ_F_POLLED) &&
(zc->flags & IORING_RECVSEND_POLL_FIRST))
return io_setup_async_addr(req, &__address, issue_flags);
if (zc->flags & IORING_RECVSEND_FIXED_BUF) {
ret = io_import_fixed(ITER_SOURCE, &msg.msg_iter, req->imu,
(u64)(uintptr_t)zc->buf, zc->len);
if (unlikely(ret))
return ret;
msg.sg_from_iter = io_sg_from_iter;
} else {
io_notif_set_extended(zc->notif);
ret = import_ubuf(ITER_SOURCE, zc->buf, zc->len, &msg.msg_iter);
if (unlikely(ret))
return ret;
ret = io_notif_account_mem(zc->notif, zc->len);
if (unlikely(ret))
return ret;
msg.sg_from_iter = io_sg_from_iter_iovec;
}
msg_flags = zc->msg_flags | MSG_ZEROCOPY;
if (issue_flags & IO_URING_F_NONBLOCK)
msg_flags |= MSG_DONTWAIT;
if (msg_flags & MSG_WAITALL)
min_ret = iov_iter_count(&msg.msg_iter);
msg_flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
msg.msg_flags = msg_flags;
msg.msg_ubuf = &io_notif_to_data(zc->notif)->uarg;
ret = sock_sendmsg(sock, &msg);
if (unlikely(ret < min_ret)) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return io_setup_async_addr(req, &__address, issue_flags);
if (ret > 0 && io_net_retry(sock, msg.msg_flags)) {
zc->len -= ret;
zc->buf += ret;
zc->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return io_setup_async_addr(req, &__address, issue_flags);
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
}
if (ret >= 0)
ret += zc->done_io;
else if (zc->done_io)
ret = zc->done_io;
/*
* If we're in io-wq we can't rely on tw ordering guarantees, defer
* flushing notif to io_send_zc_cleanup()
*/
if (!(issue_flags & IO_URING_F_UNLOCKED)) {
io_notif_flush(zc->notif);
req->flags &= ~REQ_F_NEED_CLEANUP;
}
io_req_set_res(req, ret, IORING_CQE_F_MORE);
return IOU_OK;
}
int io_sendmsg_zc(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr iomsg, *kmsg;
struct socket *sock;
unsigned flags;
int ret, min_ret = 0;
io_notif_set_extended(sr->notif);
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (!test_bit(SOCK_SUPPORT_ZC, &sock->flags))
return -EOPNOTSUPP;
if (req_has_async_data(req)) {
kmsg = req->async_data;
} else {
ret = io_sendmsg_copy_hdr(req, &iomsg);
if (ret)
return ret;
kmsg = &iomsg;
}
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return io_setup_async_msg(req, kmsg, issue_flags);
flags = sr->msg_flags | MSG_ZEROCOPY;
if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
kmsg->msg.msg_ubuf = &io_notif_to_data(sr->notif)->uarg;
kmsg->msg.sg_from_iter = io_sg_from_iter_iovec;
ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
if (unlikely(ret < min_ret)) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return io_setup_async_msg(req, kmsg, issue_flags);
if (ret > 0 && io_net_retry(sock, flags)) {
sr->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return io_setup_async_msg(req, kmsg, issue_flags);
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
}
/* fast path, check for non-NULL to avoid function call */
if (kmsg->free_iov) {
kfree(kmsg->free_iov);
kmsg->free_iov = NULL;
}
io_netmsg_recycle(req, issue_flags);
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
/*
* If we're in io-wq we can't rely on tw ordering guarantees, defer
* flushing notif to io_send_zc_cleanup()
*/
if (!(issue_flags & IO_URING_F_UNLOCKED)) {
io_notif_flush(sr->notif);
req->flags &= ~REQ_F_NEED_CLEANUP;
}
io_req_set_res(req, ret, IORING_CQE_F_MORE);
return IOU_OK;
}
void io_sendrecv_fail(struct io_kiocb *req)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
if (req->flags & REQ_F_PARTIAL_IO)
req->cqe.res = sr->done_io;
if ((req->flags & REQ_F_NEED_CLEANUP) &&
(req->opcode == IORING_OP_SEND_ZC || req->opcode == IORING_OP_SENDMSG_ZC))
req->cqe.flags |= IORING_CQE_F_MORE;
}
int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_accept *accept = io_kiocb_to_cmd(req, struct io_accept);
unsigned flags;
if (sqe->len || sqe->buf_index)
return -EINVAL;
accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
accept->flags = READ_ONCE(sqe->accept_flags);
accept->nofile = rlimit(RLIMIT_NOFILE);
flags = READ_ONCE(sqe->ioprio);
if (flags & ~IORING_ACCEPT_MULTISHOT)
return -EINVAL;
accept->file_slot = READ_ONCE(sqe->file_index);
if (accept->file_slot) {
if (accept->flags & SOCK_CLOEXEC)
return -EINVAL;
if (flags & IORING_ACCEPT_MULTISHOT &&
accept->file_slot != IORING_FILE_INDEX_ALLOC)
return -EINVAL;
}
if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
if (flags & IORING_ACCEPT_MULTISHOT)
req->flags |= REQ_F_APOLL_MULTISHOT;
return 0;
}
int io_accept(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_accept *accept = io_kiocb_to_cmd(req, struct io_accept);
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
bool fixed = !!accept->file_slot;
struct file *file;
int ret, fd;
if (!io_check_multishot(req, issue_flags))
return -EAGAIN;
retry:
if (!fixed) {
fd = __get_unused_fd_flags(accept->flags, accept->nofile);
if (unlikely(fd < 0))
return fd;
}
file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
accept->flags);
if (IS_ERR(file)) {
if (!fixed)
put_unused_fd(fd);
ret = PTR_ERR(file);
if (ret == -EAGAIN && force_nonblock) {
/*
* if it's multishot and polled, we don't need to
* return EAGAIN to arm the poll infra since it
* has already been done
*/
if (issue_flags & IO_URING_F_MULTISHOT)
return IOU_ISSUE_SKIP_COMPLETE;
return ret;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if (!fixed) {
fd_install(fd, file);
ret = fd;
} else {
ret = io_fixed_fd_install(req, issue_flags, file,
accept->file_slot);
}
if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
io_req_set_res(req, ret, 0);
return IOU_OK;
}
if (ret < 0)
return ret;
if (io_fill_cqe_req_aux(req, issue_flags & IO_URING_F_COMPLETE_DEFER,
ret, IORING_CQE_F_MORE))
goto retry;
io_req_set_res(req, ret, 0);
return IOU_STOP_MULTISHOT;
}
int io_socket_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_socket *sock = io_kiocb_to_cmd(req, struct io_socket);
if (sqe->addr || sqe->rw_flags || sqe->buf_index)
return -EINVAL;
sock->domain = READ_ONCE(sqe->fd);
sock->type = READ_ONCE(sqe->off);
sock->protocol = READ_ONCE(sqe->len);
sock->file_slot = READ_ONCE(sqe->file_index);
sock->nofile = rlimit(RLIMIT_NOFILE);
sock->flags = sock->type & ~SOCK_TYPE_MASK;
if (sock->file_slot && (sock->flags & SOCK_CLOEXEC))
return -EINVAL;
if (sock->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
return 0;
}
int io_socket(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_socket *sock = io_kiocb_to_cmd(req, struct io_socket);
bool fixed = !!sock->file_slot;
struct file *file;
int ret, fd;
if (!fixed) {
fd = __get_unused_fd_flags(sock->flags, sock->nofile);
if (unlikely(fd < 0))
return fd;
}
file = __sys_socket_file(sock->domain, sock->type, sock->protocol);
if (IS_ERR(file)) {
if (!fixed)
put_unused_fd(fd);
ret = PTR_ERR(file);
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return -EAGAIN;
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if (!fixed) {
fd_install(fd, file);
ret = fd;
} else {
ret = io_fixed_fd_install(req, issue_flags, file,
sock->file_slot);
}
io_req_set_res(req, ret, 0);
return IOU_OK;
}
int io_connect_prep_async(struct io_kiocb *req)
{
struct io_async_connect *io = req->async_data;
struct io_connect *conn = io_kiocb_to_cmd(req, struct io_connect);
return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
}
int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_connect *conn = io_kiocb_to_cmd(req, struct io_connect);
if (sqe->len || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
conn->addr_len = READ_ONCE(sqe->addr2);
conn->in_progress = conn->seen_econnaborted = false;
return 0;
}
int io_connect(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_connect *connect = io_kiocb_to_cmd(req, struct io_connect);
struct io_async_connect __io, *io;
unsigned file_flags;
int ret;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
if (req_has_async_data(req)) {
io = req->async_data;
} else {
ret = move_addr_to_kernel(connect->addr,
connect->addr_len,
&__io.address);
if (ret)
goto out;
io = &__io;
}
file_flags = force_nonblock ? O_NONBLOCK : 0;
ret = __sys_connect_file(req->file, &io->address,
connect->addr_len, file_flags);
if ((ret == -EAGAIN || ret == -EINPROGRESS || ret == -ECONNABORTED)
&& force_nonblock) {
if (ret == -EINPROGRESS) {
connect->in_progress = true;
} else if (ret == -ECONNABORTED) {
if (connect->seen_econnaborted)
goto out;
connect->seen_econnaborted = true;
}
if (req_has_async_data(req))
return -EAGAIN;
if (io_alloc_async_data(req)) {
ret = -ENOMEM;
goto out;
}
memcpy(req->async_data, &__io, sizeof(__io));
return -EAGAIN;
}
if (connect->in_progress) {
/*
* At least bluetooth will return -EBADFD on a re-connect
* attempt, and it's (supposedly) also valid to get -EISCONN
* which means the previous result is good. For both of these,
* grab the sock_error() and use that for the completion.
*/
if (ret == -EBADFD || ret == -EISCONN)
ret = sock_error(sock_from_file(req->file)->sk);
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
out:
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
void io_netmsg_cache_free(struct io_cache_entry *entry)
{
kfree(container_of(entry, struct io_async_msghdr, cache));
}
#endif