/* * Budget Fair Queueing (BFQ) I/O scheduler. * * Based on ideas and code from CFQ: * Copyright (C) 2003 Jens Axboe * * Copyright (C) 2008 Fabio Checconi * Paolo Valente * * Copyright (C) 2010 Paolo Valente * Arianna Avanzini * * Copyright (C) 2017 Paolo Valente * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BFQ is a proportional-share I/O scheduler, with some extra * low-latency capabilities. BFQ also supports full hierarchical * scheduling through cgroups. Next paragraphs provide an introduction * on BFQ inner workings. Details on BFQ benefits, usage and * limitations can be found in Documentation/block/bfq-iosched.txt. * * BFQ is a proportional-share storage-I/O scheduling algorithm based * on the slice-by-slice service scheme of CFQ. But BFQ assigns * budgets, measured in number of sectors, to processes instead of * time slices. The device is not granted to the in-service process * for a given time slice, but until it has exhausted its assigned * budget. This change from the time to the service domain enables BFQ * to distribute the device throughput among processes as desired, * without any distortion due to throughput fluctuations, or to device * internal queueing. BFQ uses an ad hoc internal scheduler, called * B-WF2Q+, to schedule processes according to their budgets. More * precisely, BFQ schedules queues associated with processes. Each * process/queue is assigned a user-configurable weight, and B-WF2Q+ * guarantees that each queue receives a fraction of the throughput * proportional to its weight. Thanks to the accurate policy of * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound * processes issuing sequential requests (to boost the throughput), * and yet guarantee a low latency to interactive and soft real-time * applications. * * In particular, to provide these low-latency guarantees, BFQ * explicitly privileges the I/O of two classes of time-sensitive * applications: interactive and soft real-time. This feature enables * BFQ to provide applications in these classes with a very low * latency. Finally, BFQ also features additional heuristics for * preserving both a low latency and a high throughput on NCQ-capable, * rotational or flash-based devices, and to get the job done quickly * for applications consisting in many I/O-bound processes. * * BFQ is described in [1], where also a reference to the initial, more * theoretical paper on BFQ can be found. The interested reader can find * in the latter paper full details on the main algorithm, as well as * formulas of the guarantees and formal proofs of all the properties. * With respect to the version of BFQ presented in these papers, this * implementation adds a few more heuristics, such as the one that * guarantees a low latency to soft real-time applications, and a * hierarchical extension based on H-WF2Q+. * * B-WF2Q+ is based on WF2Q+, which is described in [2], together with * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ * with O(log N) complexity derives from the one introduced with EEVDF * in [3]. * * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O * Scheduler", Proceedings of the First Workshop on Mobile System * Technologies (MST-2015), May 2015. * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf * * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, * Oct 1997. * * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz * * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline * First: A Flexible and Accurate Mechanism for Proportional Share * Resource Allocation", technical report. * * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf */ #include #include #include #include #include #include #include #include #include #include #include "blk.h" #include "blk-mq.h" #include "blk-mq-tag.h" #include "blk-mq-sched.h" #include #include #include #define BFQ_IOPRIO_CLASSES 3 #define BFQ_CL_IDLE_TIMEOUT (HZ/5) #define BFQ_MIN_WEIGHT 1 #define BFQ_MAX_WEIGHT 1000 #define BFQ_WEIGHT_CONVERSION_COEFF 10 #define BFQ_DEFAULT_QUEUE_IOPRIO 4 #define BFQ_WEIGHT_LEGACY_DFL 100 #define BFQ_DEFAULT_GRP_IOPRIO 0 #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE struct bfq_entity; /** * struct bfq_service_tree - per ioprio_class service tree. * * Each service tree represents a B-WF2Q+ scheduler on its own. Each * ioprio_class has its own independent scheduler, and so its own * bfq_service_tree. All the fields are protected by the queue lock * of the containing bfqd. */ struct bfq_service_tree { /* tree for active entities (i.e., those backlogged) */ struct rb_root active; /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/ struct rb_root idle; /* idle entity with minimum F_i */ struct bfq_entity *first_idle; /* idle entity with maximum F_i */ struct bfq_entity *last_idle; /* scheduler virtual time */ u64 vtime; /* scheduler weight sum; active and idle entities contribute to it */ unsigned long wsum; }; /** * struct bfq_sched_data - multi-class scheduler. * * bfq_sched_data is the basic scheduler queue. It supports three * ioprio_classes, and can be used either as a toplevel queue or as an * intermediate queue on a hierarchical setup. @next_in_service * points to the active entity of the sched_data service trees that * will be scheduled next. It is used to reduce the number of steps * needed for each hierarchical-schedule update. * * The supported ioprio_classes are the same as in CFQ, in descending * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. * Requests from higher priority queues are served before all the * requests from lower priority queues; among requests of the same * queue requests are served according to B-WF2Q+. * All the fields are protected by the queue lock of the containing bfqd. */ struct bfq_sched_data { /* entity in service */ struct bfq_entity *in_service_entity; /* head-of-line entity (see comments above) */ struct bfq_entity *next_in_service; /* array of service trees, one per ioprio_class */ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; /* last time CLASS_IDLE was served */ unsigned long bfq_class_idle_last_service; }; /** * struct bfq_entity - schedulable entity. * * A bfq_entity is used to represent either a bfq_queue (leaf node in the * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each * entity belongs to the sched_data of the parent group in the cgroup * hierarchy. Non-leaf entities have also their own sched_data, stored * in @my_sched_data. * * Each entity stores independently its priority values; this would * allow different weights on different devices, but this * functionality is not exported to userspace by now. Priorities and * weights are updated lazily, first storing the new values into the * new_* fields, then setting the @prio_changed flag. As soon as * there is a transition in the entity state that allows the priority * update to take place the effective and the requested priority * values are synchronized. * * Unless cgroups are used, the weight value is calculated from the * ioprio to export the same interface as CFQ. When dealing with * ``well-behaved'' queues (i.e., queues that do not spend too much * time to consume their budget and have true sequential behavior, and * when there are no external factors breaking anticipation) the * relative weights at each level of the cgroups hierarchy should be * guaranteed. All the fields are protected by the queue lock of the * containing bfqd. */ struct bfq_entity { /* service_tree member */ struct rb_node rb_node; /* * Flag, true if the entity is on a tree (either the active or * the idle one of its service_tree) or is in service. */ bool on_st; /* B-WF2Q+ start and finish timestamps [sectors/weight] */ u64 start, finish; /* tree the entity is enqueued into; %NULL if not on a tree */ struct rb_root *tree; /* * minimum start time of the (active) subtree rooted at this * entity; used for O(log N) lookups into active trees */ u64 min_start; /* amount of service received during the last service slot */ int service; /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */ int budget; /* weight of the queue */ int weight; /* next weight if a change is in progress */ int new_weight; /* original weight, used to implement weight boosting */ int orig_weight; /* parent entity, for hierarchical scheduling */ struct bfq_entity *parent; /* * For non-leaf nodes in the hierarchy, the associated * scheduler queue, %NULL on leaf nodes. */ struct bfq_sched_data *my_sched_data; /* the scheduler queue this entity belongs to */ struct bfq_sched_data *sched_data; /* flag, set to request a weight, ioprio or ioprio_class change */ int prio_changed; }; struct bfq_group; /** * struct bfq_ttime - per process thinktime stats. */ struct bfq_ttime { /* completion time of the last request */ u64 last_end_request; /* total process thinktime */ u64 ttime_total; /* number of thinktime samples */ unsigned long ttime_samples; /* average process thinktime */ u64 ttime_mean; }; /** * struct bfq_queue - leaf schedulable entity. * * A bfq_queue is a leaf request queue; it can be associated with an * io_context or more, if it is async. @cgroup holds a reference to * the cgroup, to be sure that it does not disappear while a bfqq * still references it (mostly to avoid races between request issuing * and task migration followed by cgroup destruction). All the fields * are protected by the queue lock of the containing bfqd. */ struct bfq_queue { /* reference counter */ int ref; /* parent bfq_data */ struct bfq_data *bfqd; /* current ioprio and ioprio class */ unsigned short ioprio, ioprio_class; /* next ioprio and ioprio class if a change is in progress */ unsigned short new_ioprio, new_ioprio_class; /* sorted list of pending requests */ struct rb_root sort_list; /* if fifo isn't expired, next request to serve */ struct request *next_rq; /* number of sync and async requests queued */ int queued[2]; /* number of requests currently allocated */ int allocated; /* number of pending metadata requests */ int meta_pending; /* fifo list of requests in sort_list */ struct list_head fifo; /* entity representing this queue in the scheduler */ struct bfq_entity entity; /* maximum budget allowed from the feedback mechanism */ int max_budget; /* budget expiration (in jiffies) */ unsigned long budget_timeout; /* number of requests on the dispatch list or inside driver */ int dispatched; /* status flags */ unsigned long flags; /* node for active/idle bfqq list inside parent bfqd */ struct list_head bfqq_list; /* associated @bfq_ttime struct */ struct bfq_ttime ttime; /* bit vector: a 1 for each seeky requests in history */ u32 seek_history; /* position of the last request enqueued */ sector_t last_request_pos; /* Number of consecutive pairs of request completion and * arrival, such that the queue becomes idle after the * completion, but the next request arrives within an idle * time slice; used only if the queue's IO_bound flag has been * cleared. */ unsigned int requests_within_timer; /* pid of the process owning the queue, used for logging purposes */ pid_t pid; }; /** * struct bfq_io_cq - per (request_queue, io_context) structure. */ struct bfq_io_cq { /* associated io_cq structure */ struct io_cq icq; /* must be the first member */ /* array of two process queues, the sync and the async */ struct bfq_queue *bfqq[2]; /* per (request_queue, blkcg) ioprio */ int ioprio; #ifdef CONFIG_BFQ_GROUP_IOSCHED uint64_t blkcg_serial_nr; /* the current blkcg serial */ #endif }; /** * struct bfq_data - per-device data structure. * * All the fields are protected by @lock. */ struct bfq_data { /* device request queue */ struct request_queue *queue; /* dispatch queue */ struct list_head dispatch; /* root bfq_group for the device */ struct bfq_group *root_group; /* * Number of bfq_queues containing requests (including the * queue in service, even if it is idling). */ int busy_queues; /* number of queued requests */ int queued; /* number of requests dispatched and waiting for completion */ int rq_in_driver; /* * Maximum number of requests in driver in the last * @hw_tag_samples completed requests. */ int max_rq_in_driver; /* number of samples used to calculate hw_tag */ int hw_tag_samples; /* flag set to one if the driver is showing a queueing behavior */ int hw_tag; /* number of budgets assigned */ int budgets_assigned; /* * Timer set when idling (waiting) for the next request from * the queue in service. */ struct hrtimer idle_slice_timer; /* bfq_queue in service */ struct bfq_queue *in_service_queue; /* bfq_io_cq (bic) associated with the @in_service_queue */ struct bfq_io_cq *in_service_bic; /* on-disk position of the last served request */ sector_t last_position; /* beginning of the last budget */ ktime_t last_budget_start; /* beginning of the last idle slice */ ktime_t last_idling_start; /* number of samples used to calculate @peak_rate */ int peak_rate_samples; /* * Peak read/write rate, observed during the service of a * budget [BFQ_RATE_SHIFT * sectors/usec]. The value is * left-shifted by BFQ_RATE_SHIFT to increase precision in * fixed-point calculations. */ u64 peak_rate; /* maximum budget allotted to a bfq_queue before rescheduling */ int bfq_max_budget; /* list of all the bfq_queues active on the device */ struct list_head active_list; /* list of all the bfq_queues idle on the device */ struct list_head idle_list; /* * Timeout for async/sync requests; when it fires, requests * are served in fifo order. */ u64 bfq_fifo_expire[2]; /* weight of backward seeks wrt forward ones */ unsigned int bfq_back_penalty; /* maximum allowed backward seek */ unsigned int bfq_back_max; /* maximum idling time */ u32 bfq_slice_idle; /* user-configured max budget value (0 for auto-tuning) */ int bfq_user_max_budget; /* * Timeout for bfq_queues to consume their budget; used to * prevent seeky queues from imposing long latencies to * sequential or quasi-sequential ones (this also implies that * seeky queues cannot receive guarantees in the service * domain; after a timeout they are charged for the time they * have been in service, to preserve fairness among them, but * without service-domain guarantees). */ unsigned int bfq_timeout; /* * Number of consecutive requests that must be issued within * the idle time slice to set again idling to a queue which * was marked as non-I/O-bound (see the definition of the * IO_bound flag for further details). */ unsigned int bfq_requests_within_timer; /* * Force device idling whenever needed to provide accurate * service guarantees, without caring about throughput * issues. CAVEAT: this may even increase latencies, in case * of useless idling for processes that did stop doing I/O. */ bool strict_guarantees; /* fallback dummy bfqq for extreme OOM conditions */ struct bfq_queue oom_bfqq; spinlock_t lock; /* * bic associated with the task issuing current bio for * merging. This and the next field are used as a support to * be able to perform the bic lookup, needed by bio-merge * functions, before the scheduler lock is taken, and thus * avoid taking the request-queue lock while the scheduler * lock is being held. */ struct bfq_io_cq *bio_bic; /* bfqq associated with the task issuing current bio for merging */ struct bfq_queue *bio_bfqq; }; enum bfqq_state_flags { BFQQF_busy = 0, /* has requests or is in service */ BFQQF_wait_request, /* waiting for a request */ BFQQF_non_blocking_wait_rq, /* * waiting for a request * without idling the device */ BFQQF_fifo_expire, /* FIFO checked in this slice */ BFQQF_idle_window, /* slice idling enabled */ BFQQF_sync, /* synchronous queue */ BFQQF_budget_new, /* no completion with this budget */ BFQQF_IO_bound, /* * bfqq has timed-out at least once * having consumed at most 2/10 of * its budget */ }; #define BFQ_BFQQ_FNS(name) \ static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ { \ __set_bit(BFQQF_##name, &(bfqq)->flags); \ } \ static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ { \ __clear_bit(BFQQF_##name, &(bfqq)->flags); \ } \ static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ { \ return test_bit(BFQQF_##name, &(bfqq)->flags); \ } BFQ_BFQQ_FNS(busy); BFQ_BFQQ_FNS(wait_request); BFQ_BFQQ_FNS(non_blocking_wait_rq); BFQ_BFQQ_FNS(fifo_expire); BFQ_BFQQ_FNS(idle_window); BFQ_BFQQ_FNS(sync); BFQ_BFQQ_FNS(budget_new); BFQ_BFQQ_FNS(IO_bound); #undef BFQ_BFQQ_FNS /* Logging facilities. */ #ifdef CONFIG_BFQ_GROUP_IOSCHED static struct bfq_group *bfqq_group(struct bfq_queue *bfqq); static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg); #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ char __pbuf[128]; \ \ blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \ blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, (bfqq)->pid, \ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \ __pbuf, ##args); \ } while (0) #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \ char __pbuf[128]; \ \ blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \ blk_add_trace_msg((bfqd)->queue, "%s " fmt, __pbuf, ##args); \ } while (0) #else /* CONFIG_BFQ_GROUP_IOSCHED */ #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \ blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid, \ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \ ##args) #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0) #endif /* CONFIG_BFQ_GROUP_IOSCHED */ #define bfq_log(bfqd, fmt, args...) \ blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) /* Expiration reasons. */ enum bfqq_expiration { BFQQE_TOO_IDLE = 0, /* * queue has been idling for * too long */ BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */ BFQQE_BUDGET_EXHAUSTED, /* budget consumed */ BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */ BFQQE_PREEMPTED /* preemption in progress */ }; struct bfqg_stats { #ifdef CONFIG_BFQ_GROUP_IOSCHED /* number of ios merged */ struct blkg_rwstat merged; /* total time spent on device in ns, may not be accurate w/ queueing */ struct blkg_rwstat service_time; /* total time spent waiting in scheduler queue in ns */ struct blkg_rwstat wait_time; /* number of IOs queued up */ struct blkg_rwstat queued; /* total disk time and nr sectors dispatched by this group */ struct blkg_stat time; /* sum of number of ios queued across all samples */ struct blkg_stat avg_queue_size_sum; /* count of samples taken for average */ struct blkg_stat avg_queue_size_samples; /* how many times this group has been removed from service tree */ struct blkg_stat dequeue; /* total time spent waiting for it to be assigned a timeslice. */ struct blkg_stat group_wait_time; /* time spent idling for this blkcg_gq */ struct blkg_stat idle_time; /* total time with empty current active q with other requests queued */ struct blkg_stat empty_time; /* fields after this shouldn't be cleared on stat reset */ uint64_t start_group_wait_time; uint64_t start_idle_time; uint64_t start_empty_time; uint16_t flags; #endif /* CONFIG_BFQ_GROUP_IOSCHED */ }; #ifdef CONFIG_BFQ_GROUP_IOSCHED /* * struct bfq_group_data - per-blkcg storage for the blkio subsystem. * * @ps: @blkcg_policy_storage that this structure inherits * @weight: weight of the bfq_group */ struct bfq_group_data { /* must be the first member */ struct blkcg_policy_data pd; unsigned short weight; }; /** * struct bfq_group - per (device, cgroup) data structure. * @entity: schedulable entity to insert into the parent group sched_data. * @sched_data: own sched_data, to contain child entities (they may be * both bfq_queues and bfq_groups). * @bfqd: the bfq_data for the device this group acts upon. * @async_bfqq: array of async queues for all the tasks belonging to * the group, one queue per ioprio value per ioprio_class, * except for the idle class that has only one queue. * @async_idle_bfqq: async queue for the idle class (ioprio is ignored). * @my_entity: pointer to @entity, %NULL for the toplevel group; used * to avoid too many special cases during group creation/ * migration. * @stats: stats for this bfqg. * * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup * there is a set of bfq_groups, each one collecting the lower-level * entities belonging to the group that are acting on the same device. * * Locking works as follows: * o @bfqd is protected by the queue lock, RCU is used to access it * from the readers. * o All the other fields are protected by the @bfqd queue lock. */ struct bfq_group { /* must be the first member */ struct blkg_policy_data pd; struct bfq_entity entity; struct bfq_sched_data sched_data; void *bfqd; struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; struct bfq_queue *async_idle_bfqq; struct bfq_entity *my_entity; struct bfqg_stats stats; }; #else struct bfq_group { struct bfq_sched_data sched_data; struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; struct bfq_queue *async_idle_bfqq; struct rb_root rq_pos_tree; }; #endif static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); static unsigned int bfq_class_idx(struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); return bfqq ? bfqq->ioprio_class - 1 : BFQ_DEFAULT_GRP_CLASS - 1; } static struct bfq_service_tree * bfq_entity_service_tree(struct bfq_entity *entity) { struct bfq_sched_data *sched_data = entity->sched_data; unsigned int idx = bfq_class_idx(entity); return sched_data->service_tree + idx; } static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) { return bic->bfqq[is_sync]; } static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync) { bic->bfqq[is_sync] = bfqq; } static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) { return bic->icq.q->elevator->elevator_data; } static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio); static void bfq_put_queue(struct bfq_queue *bfqq); static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, struct bio *bio, bool is_sync, struct bfq_io_cq *bic); static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); /* Expiration time of sync (0) and async (1) requests, in ns. */ static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ static const int bfq_back_max = 16 * 1024; /* Penalty of a backwards seek, in number of sectors. */ static const int bfq_back_penalty = 2; /* Idling period duration, in ns. */ static u64 bfq_slice_idle = NSEC_PER_SEC / 125; /* Minimum number of assigned budgets for which stats are safe to compute. */ static const int bfq_stats_min_budgets = 194; /* Default maximum budget values, in sectors and number of requests. */ static const int bfq_default_max_budget = 16 * 1024; /* Default timeout values, in jiffies, approximating CFQ defaults. */ static const int bfq_timeout = HZ / 8; static struct kmem_cache *bfq_pool; /* Below this threshold (in ms), we consider thinktime immediate. */ #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) /* hw_tag detection: parallel requests threshold and min samples needed. */ #define BFQ_HW_QUEUE_THRESHOLD 4 #define BFQ_HW_QUEUE_SAMPLES 32 #define BFQQ_SEEK_THR (sector_t)(8 * 100) #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) /* Min samples used for peak rate estimation (for autotuning). */ #define BFQ_PEAK_RATE_SAMPLES 32 /* Shift used for peak rate fixed precision calculations. */ #define BFQ_RATE_SHIFT 16 #define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) #define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0]) #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) /** * icq_to_bic - convert iocontext queue structure to bfq_io_cq. * @icq: the iocontext queue. */ static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) { /* bic->icq is the first member, %NULL will convert to %NULL */ return container_of(icq, struct bfq_io_cq, icq); } /** * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. * @bfqd: the lookup key. * @ioc: the io_context of the process doing I/O. * @q: the request queue. */ static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, struct io_context *ioc, struct request_queue *q) { if (ioc) { unsigned long flags; struct bfq_io_cq *icq; spin_lock_irqsave(q->queue_lock, flags); icq = icq_to_bic(ioc_lookup_icq(ioc, q)); spin_unlock_irqrestore(q->queue_lock, flags); return icq; } return NULL; } /* * Scheduler run of queue, if there are requests pending and no one in the * driver that will restart queueing. */ static void bfq_schedule_dispatch(struct bfq_data *bfqd) { if (bfqd->queued != 0) { bfq_log(bfqd, "schedule dispatch"); blk_mq_run_hw_queues(bfqd->queue, true); } } /** * bfq_gt - compare two timestamps. * @a: first ts. * @b: second ts. * * Return @a > @b, dealing with wrapping correctly. */ static int bfq_gt(u64 a, u64 b) { return (s64)(a - b) > 0; } static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree) { struct rb_node *node = tree->rb_node; return rb_entry(node, struct bfq_entity, rb_node); } static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd); static bool bfq_update_parent_budget(struct bfq_entity *next_in_service); /** * bfq_update_next_in_service - update sd->next_in_service * @sd: sched_data for which to perform the update. * @new_entity: if not NULL, pointer to the entity whose activation, * requeueing or repositionig triggered the invocation of * this function. * * This function is called to update sd->next_in_service, which, in * its turn, may change as a consequence of the insertion or * extraction of an entity into/from one of the active trees of * sd. These insertions/extractions occur as a consequence of * activations/deactivations of entities, with some activations being * 'true' activations, and other activations being requeueings (i.e., * implementing the second, requeueing phase of the mechanism used to * reposition an entity in its active tree; see comments on * __bfq_activate_entity and __bfq_requeue_entity for details). In * both the last two activation sub-cases, new_entity points to the * just activated or requeued entity. * * Returns true if sd->next_in_service changes in such a way that * entity->parent may become the next_in_service for its parent * entity. */ static bool bfq_update_next_in_service(struct bfq_sched_data *sd, struct bfq_entity *new_entity) { struct bfq_entity *next_in_service = sd->next_in_service; bool parent_sched_may_change = false; /* * If this update is triggered by the activation, requeueing * or repositiong of an entity that does not coincide with * sd->next_in_service, then a full lookup in the active tree * can be avoided. In fact, it is enough to check whether the * just-modified entity has a higher priority than * sd->next_in_service, or, even if it has the same priority * as sd->next_in_service, is eligible and has a lower virtual * finish time than sd->next_in_service. If this compound * condition holds, then the new entity becomes the new * next_in_service. Otherwise no change is needed. */ if (new_entity && new_entity != sd->next_in_service) { /* * Flag used to decide whether to replace * sd->next_in_service with new_entity. Tentatively * set to true, and left as true if * sd->next_in_service is NULL. */ bool replace_next = true; /* * If there is already a next_in_service candidate * entity, then compare class priorities or timestamps * to decide whether to replace sd->service_tree with * new_entity. */ if (next_in_service) { unsigned int new_entity_class_idx = bfq_class_idx(new_entity); struct bfq_service_tree *st = sd->service_tree + new_entity_class_idx; /* * For efficiency, evaluate the most likely * sub-condition first. */ replace_next = (new_entity_class_idx == bfq_class_idx(next_in_service) && !bfq_gt(new_entity->start, st->vtime) && bfq_gt(next_in_service->finish, new_entity->finish)) || new_entity_class_idx < bfq_class_idx(next_in_service); } if (replace_next) next_in_service = new_entity; } else /* invoked because of a deactivation: lookup needed */ next_in_service = bfq_lookup_next_entity(sd); if (next_in_service) { parent_sched_may_change = !sd->next_in_service || bfq_update_parent_budget(next_in_service); } sd->next_in_service = next_in_service; if (!next_in_service) return parent_sched_may_change; return parent_sched_may_change; } #ifdef CONFIG_BFQ_GROUP_IOSCHED /* both next loops stop at one of the child entities of the root group */ #define for_each_entity(entity) \ for (; entity ; entity = entity->parent) /* * For each iteration, compute parent in advance, so as to be safe if * entity is deallocated during the iteration. Such a deallocation may * happen as a consequence of a bfq_put_queue that frees the bfq_queue * containing entity. */ #define for_each_entity_safe(entity, parent) \ for (; entity && ({ parent = entity->parent; 1; }); entity = parent) /* * Returns true if this budget changes may let next_in_service->parent * become the next_in_service entity for its parent entity. */ static bool bfq_update_parent_budget(struct bfq_entity *next_in_service) { struct bfq_entity *bfqg_entity; struct bfq_group *bfqg; struct bfq_sched_data *group_sd; bool ret = false; group_sd = next_in_service->sched_data; bfqg = container_of(group_sd, struct bfq_group, sched_data); /* * bfq_group's my_entity field is not NULL only if the group * is not the root group. We must not touch the root entity * as it must never become an in-service entity. */ bfqg_entity = bfqg->my_entity; if (bfqg_entity) { if (bfqg_entity->budget > next_in_service->budget) ret = true; bfqg_entity->budget = next_in_service->budget; } return ret; } /* * This function tells whether entity stops being a candidate for next * service, according to the following logic. * * This function is invoked for an entity that is about to be set in * service. If such an entity is a queue, then the entity is no longer * a candidate for next service (i.e, a candidate entity to serve * after the in-service entity is expired). The function then returns * true. */ static bool bfq_no_longer_next_in_service(struct bfq_entity *entity) { if (bfq_entity_to_bfqq(entity)) return true; return false; } #else /* CONFIG_BFQ_GROUP_IOSCHED */ /* * Next two macros are fake loops when cgroups support is not * enabled. I fact, in such a case, there is only one level to go up * (to reach the root group). */ #define for_each_entity(entity) \ for (; entity ; entity = NULL) #define for_each_entity_safe(entity, parent) \ for (parent = NULL; entity ; entity = parent) static bool bfq_update_parent_budget(struct bfq_entity *next_in_service) { return false; } static bool bfq_no_longer_next_in_service(struct bfq_entity *entity) { return true; } #endif /* CONFIG_BFQ_GROUP_IOSCHED */ /* * Shift for timestamp calculations. This actually limits the maximum * service allowed in one timestamp delta (small shift values increase it), * the maximum total weight that can be used for the queues in the system * (big shift values increase it), and the period of virtual time * wraparounds. */ #define WFQ_SERVICE_SHIFT 22 static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity) { struct bfq_queue *bfqq = NULL; if (!entity->my_sched_data) bfqq = container_of(entity, struct bfq_queue, entity); return bfqq; } /** * bfq_delta - map service into the virtual time domain. * @service: amount of service. * @weight: scale factor (weight of an entity or weight sum). */ static u64 bfq_delta(unsigned long service, unsigned long weight) { u64 d = (u64)service << WFQ_SERVICE_SHIFT; do_div(d, weight); return d; } /** * bfq_calc_finish - assign the finish time to an entity. * @entity: the entity to act upon. * @service: the service to be charged to the entity. */ static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); entity->finish = entity->start + bfq_delta(service, entity->weight); if (bfqq) { bfq_log_bfqq(bfqq->bfqd, bfqq, "calc_finish: serv %lu, w %d", service, entity->weight); bfq_log_bfqq(bfqq->bfqd, bfqq, "calc_finish: start %llu, finish %llu, delta %llu", entity->start, entity->finish, bfq_delta(service, entity->weight)); } } /** * bfq_entity_of - get an entity from a node. * @node: the node field of the entity. * * Convert a node pointer to the relative entity. This is used only * to simplify the logic of some functions and not as the generic * conversion mechanism because, e.g., in the tree walking functions, * the check for a %NULL value would be redundant. */ static struct bfq_entity *bfq_entity_of(struct rb_node *node) { struct bfq_entity *entity = NULL; if (node) entity = rb_entry(node, struct bfq_entity, rb_node); return entity; } /** * bfq_extract - remove an entity from a tree. * @root: the tree root. * @entity: the entity to remove. */ static void bfq_extract(struct rb_root *root, struct bfq_entity *entity) { entity->tree = NULL; rb_erase(&entity->rb_node, root); } /** * bfq_idle_extract - extract an entity from the idle tree. * @st: the service tree of the owning @entity. * @entity: the entity being removed. */ static void bfq_idle_extract(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct rb_node *next; if (entity == st->first_idle) { next = rb_next(&entity->rb_node); st->first_idle = bfq_entity_of(next); } if (entity == st->last_idle) { next = rb_prev(&entity->rb_node); st->last_idle = bfq_entity_of(next); } bfq_extract(&st->idle, entity); if (bfqq) list_del(&bfqq->bfqq_list); } /** * bfq_insert - generic tree insertion. * @root: tree root. * @entity: entity to insert. * * This is used for the idle and the active tree, since they are both * ordered by finish time. */ static void bfq_insert(struct rb_root *root, struct bfq_entity *entity) { struct bfq_entity *entry; struct rb_node **node = &root->rb_node; struct rb_node *parent = NULL; while (*node) { parent = *node; entry = rb_entry(parent, struct bfq_entity, rb_node); if (bfq_gt(entry->finish, entity->finish)) node = &parent->rb_left; else node = &parent->rb_right; } rb_link_node(&entity->rb_node, parent, node); rb_insert_color(&entity->rb_node, root); entity->tree = root; } /** * bfq_update_min - update the min_start field of a entity. * @entity: the entity to update. * @node: one of its children. * * This function is called when @entity may store an invalid value for * min_start due to updates to the active tree. The function assumes * that the subtree rooted at @node (which may be its left or its right * child) has a valid min_start value. */ static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node) { struct bfq_entity *child; if (node) { child = rb_entry(node, struct bfq_entity, rb_node); if (bfq_gt(entity->min_start, child->min_start)) entity->min_start = child->min_start; } } /** * bfq_update_active_node - recalculate min_start. * @node: the node to update. * * @node may have changed position or one of its children may have moved, * this function updates its min_start value. The left and right subtrees * are assumed to hold a correct min_start value. */ static void bfq_update_active_node(struct rb_node *node) { struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node); entity->min_start = entity->start; bfq_update_min(entity, node->rb_right); bfq_update_min(entity, node->rb_left); } /** * bfq_update_active_tree - update min_start for the whole active tree. * @node: the starting node. * * @node must be the deepest modified node after an update. This function * updates its min_start using the values held by its children, assuming * that they did not change, and then updates all the nodes that may have * changed in the path to the root. The only nodes that may have changed * are the ones in the path or their siblings. */ static void bfq_update_active_tree(struct rb_node *node) { struct rb_node *parent; up: bfq_update_active_node(node); parent = rb_parent(node); if (!parent) return; if (node == parent->rb_left && parent->rb_right) bfq_update_active_node(parent->rb_right); else if (parent->rb_left) bfq_update_active_node(parent->rb_left); node = parent; goto up; } /** * bfq_active_insert - insert an entity in the active tree of its * group/device. * @st: the service tree of the entity. * @entity: the entity being inserted. * * The active tree is ordered by finish time, but an extra key is kept * per each node, containing the minimum value for the start times of * its children (and the node itself), so it's possible to search for * the eligible node with the lowest finish time in logarithmic time. */ static void bfq_active_insert(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct rb_node *node = &entity->rb_node; #ifdef CONFIG_BFQ_GROUP_IOSCHED struct bfq_sched_data *sd = NULL; struct bfq_group *bfqg = NULL; struct bfq_data *bfqd = NULL; #endif bfq_insert(&st->active, entity); if (node->rb_left) node = node->rb_left; else if (node->rb_right) node = node->rb_right; bfq_update_active_tree(node); #ifdef CONFIG_BFQ_GROUP_IOSCHED sd = entity->sched_data; bfqg = container_of(sd, struct bfq_group, sched_data); bfqd = (struct bfq_data *)bfqg->bfqd; #endif if (bfqq) list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list); } /** * bfq_ioprio_to_weight - calc a weight from an ioprio. * @ioprio: the ioprio value to convert. */ static unsigned short bfq_ioprio_to_weight(int ioprio) { return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF; } /** * bfq_weight_to_ioprio - calc an ioprio from a weight. * @weight: the weight value to convert. * * To preserve as much as possible the old only-ioprio user interface, * 0 is used as an escape ioprio value for weights (numerically) equal or * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF. */ static unsigned short bfq_weight_to_ioprio(int weight) { return max_t(int, 0, IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight); } static void bfq_get_entity(struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); if (bfqq) { bfqq->ref++; bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d", bfqq, bfqq->ref); } } /** * bfq_find_deepest - find the deepest node that an extraction can modify. * @node: the node being removed. * * Do the first step of an extraction in an rb tree, looking for the * node that will replace @node, and returning the deepest node that * the following modifications to the tree can touch. If @node is the * last node in the tree return %NULL. */ static struct rb_node *bfq_find_deepest(struct rb_node *node) { struct rb_node *deepest; if (!node->rb_right && !node->rb_left) deepest = rb_parent(node); else if (!node->rb_right) deepest = node->rb_left; else if (!node->rb_left) deepest = node->rb_right; else { deepest = rb_next(node); if (deepest->rb_right) deepest = deepest->rb_right; else if (rb_parent(deepest) != node) deepest = rb_parent(deepest); } return deepest; } /** * bfq_active_extract - remove an entity from the active tree. * @st: the service_tree containing the tree. * @entity: the entity being removed. */ static void bfq_active_extract(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct rb_node *node; #ifdef CONFIG_BFQ_GROUP_IOSCHED struct bfq_sched_data *sd = NULL; struct bfq_group *bfqg = NULL; struct bfq_data *bfqd = NULL; #endif node = bfq_find_deepest(&entity->rb_node); bfq_extract(&st->active, entity); if (node) bfq_update_active_tree(node); #ifdef CONFIG_BFQ_GROUP_IOSCHED sd = entity->sched_data; bfqg = container_of(sd, struct bfq_group, sched_data); bfqd = (struct bfq_data *)bfqg->bfqd; #endif if (bfqq) list_del(&bfqq->bfqq_list); } /** * bfq_idle_insert - insert an entity into the idle tree. * @st: the service tree containing the tree. * @entity: the entity to insert. */ static void bfq_idle_insert(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct bfq_entity *first_idle = st->first_idle; struct bfq_entity *last_idle = st->last_idle; if (!first_idle || bfq_gt(first_idle->finish, entity->finish)) st->first_idle = entity; if (!last_idle || bfq_gt(entity->finish, last_idle->finish)) st->last_idle = entity; bfq_insert(&st->idle, entity); if (bfqq) list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list); } /** * bfq_forget_entity - do not consider entity any longer for scheduling * @st: the service tree. * @entity: the entity being removed. * @is_in_service: true if entity is currently the in-service entity. * * Forget everything about @entity. In addition, if entity represents * a queue, and the latter is not in service, then release the service * reference to the queue (the one taken through bfq_get_entity). In * fact, in this case, there is really no more service reference to * the queue, as the latter is also outside any service tree. If, * instead, the queue is in service, then __bfq_bfqd_reset_in_service * will take care of putting the reference when the queue finally * stops being served. */ static void bfq_forget_entity(struct bfq_service_tree *st, struct bfq_entity *entity, bool is_in_service) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); entity->on_st = false; st->wsum -= entity->weight; if (bfqq && !is_in_service) bfq_put_queue(bfqq); } /** * bfq_put_idle_entity - release the idle tree ref of an entity. * @st: service tree for the entity. * @entity: the entity being released. */ static void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity) { bfq_idle_extract(st, entity); bfq_forget_entity(st, entity, entity == entity->sched_data->in_service_entity); } /** * bfq_forget_idle - update the idle tree if necessary. * @st: the service tree to act upon. * * To preserve the global O(log N) complexity we only remove one entry here; * as the idle tree will not grow indefinitely this can be done safely. */ static void bfq_forget_idle(struct bfq_service_tree *st) { struct bfq_entity *first_idle = st->first_idle; struct bfq_entity *last_idle = st->last_idle; if (RB_EMPTY_ROOT(&st->active) && last_idle && !bfq_gt(last_idle->finish, st->vtime)) { /* * Forget the whole idle tree, increasing the vtime past * the last finish time of idle entities. */ st->vtime = last_idle->finish; } if (first_idle && !bfq_gt(first_idle->finish, st->vtime)) bfq_put_idle_entity(st, first_idle); } static struct bfq_service_tree * __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, struct bfq_entity *entity) { struct bfq_service_tree *new_st = old_st; if (entity->prio_changed) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); unsigned short prev_weight, new_weight; struct bfq_data *bfqd = NULL; #ifdef CONFIG_BFQ_GROUP_IOSCHED struct bfq_sched_data *sd; struct bfq_group *bfqg; #endif if (bfqq) bfqd = bfqq->bfqd; #ifdef CONFIG_BFQ_GROUP_IOSCHED else { sd = entity->my_sched_data; bfqg = container_of(sd, struct bfq_group, sched_data); bfqd = (struct bfq_data *)bfqg->bfqd; } #endif old_st->wsum -= entity->weight; if (entity->new_weight != entity->orig_weight) { if (entity->new_weight < BFQ_MIN_WEIGHT || entity->new_weight > BFQ_MAX_WEIGHT) { pr_crit("update_weight_prio: new_weight %d\n", entity->new_weight); if (entity->new_weight < BFQ_MIN_WEIGHT) entity->new_weight = BFQ_MIN_WEIGHT; else entity->new_weight = BFQ_MAX_WEIGHT; } entity->orig_weight = entity->new_weight; if (bfqq) bfqq->ioprio = bfq_weight_to_ioprio(entity->orig_weight); } if (bfqq) bfqq->ioprio_class = bfqq->new_ioprio_class; entity->prio_changed = 0; /* * NOTE: here we may be changing the weight too early, * this will cause unfairness. The correct approach * would have required additional complexity to defer * weight changes to the proper time instants (i.e., * when entity->finish <= old_st->vtime). */ new_st = bfq_entity_service_tree(entity); prev_weight = entity->weight; new_weight = entity->orig_weight; entity->weight = new_weight; new_st->wsum += entity->weight; if (new_st != old_st) entity->start = new_st->vtime; } return new_st; } static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg); static struct bfq_group *bfqq_group(struct bfq_queue *bfqq); /** * bfq_bfqq_served - update the scheduler status after selection for * service. * @bfqq: the queue being served. * @served: bytes to transfer. * * NOTE: this can be optimized, as the timestamps of upper level entities * are synchronized every time a new bfqq is selected for service. By now, * we keep it to better check consistency. */ static void bfq_bfqq_served(struct bfq_queue *bfqq, int served) { struct bfq_entity *entity = &bfqq->entity; struct bfq_service_tree *st; for_each_entity(entity) { st = bfq_entity_service_tree(entity); entity->service += served; st->vtime += bfq_delta(served, st->wsum); bfq_forget_idle(st); } bfqg_stats_set_start_empty_time(bfqq_group(bfqq)); bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served); } /** * bfq_bfqq_charge_full_budget - set the service to the entity budget. * @bfqq: the queue that needs a service update. * * When it's not possible to be fair in the service domain, because * a queue is not consuming its budget fast enough (the meaning of * fast depends on the timeout parameter), we charge it a full * budget. In this way we should obtain a sort of time-domain * fairness among all the seeky/slow queues. */ static void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq) { struct bfq_entity *entity = &bfqq->entity; bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget"); bfq_bfqq_served(bfqq, entity->budget - entity->service); } static void bfq_update_fin_time_enqueue(struct bfq_entity *entity, struct bfq_service_tree *st, bool backshifted) { st = __bfq_entity_update_weight_prio(st, entity); bfq_calc_finish(entity, entity->budget); /* * If some queues enjoy backshifting for a while, then their * (virtual) finish timestamps may happen to become lower and * lower than the system virtual time. In particular, if * these queues often happen to be idle for short time * periods, and during such time periods other queues with * higher timestamps happen to be busy, then the backshifted * timestamps of the former queues can become much lower than * the system virtual time. In fact, to serve the queues with * higher timestamps while the ones with lower timestamps are * idle, the system virtual time may be pushed-up to much * higher values than the finish timestamps of the idle * queues. As a consequence, the finish timestamps of all new * or newly activated queues may end up being much larger than * those of lucky queues with backshifted timestamps. The * latter queues may then monopolize the device for a lot of * time. This would simply break service guarantees. * * To reduce this problem, push up a little bit the * backshifted timestamps of the queue associated with this * entity (only a queue can happen to have the backshifted * flag set): just enough to let the finish timestamp of the * queue be equal to the current value of the system virtual * time. This may introduce a little unfairness among queues * with backshifted timestamps, but it does not break * worst-case fairness guarantees. */ if (backshifted && bfq_gt(st->vtime, entity->finish)) { unsigned long delta = st->vtime - entity->finish; entity->start += delta; entity->finish += delta; } bfq_active_insert(st, entity); } /** * __bfq_activate_entity - handle activation of entity. * @entity: the entity being activated. * @non_blocking_wait_rq: true if entity was waiting for a request * * Called for a 'true' activation, i.e., if entity is not active and * one of its children receives a new request. * * Basically, this function updates the timestamps of entity and * inserts entity into its active tree, ater possible extracting it * from its idle tree. */ static void __bfq_activate_entity(struct bfq_entity *entity, bool non_blocking_wait_rq) { struct bfq_service_tree *st = bfq_entity_service_tree(entity); bool backshifted = false; unsigned long long min_vstart; /* See comments on bfq_fqq_update_budg_for_activation */ if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) { backshifted = true; min_vstart = entity->finish; } else min_vstart = st->vtime; if (entity->tree == &st->idle) { /* * Must be on the idle tree, bfq_idle_extract() will * check for that. */ bfq_idle_extract(st, entity); entity->start = bfq_gt(min_vstart, entity->finish) ? min_vstart : entity->finish; } else { /* * The finish time of the entity may be invalid, and * it is in the past for sure, otherwise the queue * would have been on the idle tree. */ entity->start = min_vstart; st->wsum += entity->weight; /* * entity is about to be inserted into a service tree, * and then set in service: get a reference to make * sure entity does not disappear until it is no * longer in service or scheduled for service. */ bfq_get_entity(entity); entity->on_st = true; } bfq_update_fin_time_enqueue(entity, st, backshifted); } /** * __bfq_requeue_entity - handle requeueing or repositioning of an entity. * @entity: the entity being requeued or repositioned. * * Requeueing is needed if this entity stops being served, which * happens if a leaf descendant entity has expired. On the other hand, * repositioning is needed if the next_inservice_entity for the child * entity has changed. See the comments inside the function for * details. * * Basically, this function: 1) removes entity from its active tree if * present there, 2) updates the timestamps of entity and 3) inserts * entity back into its active tree (in the new, right position for * the new values of the timestamps). */ static void __bfq_requeue_entity(struct bfq_entity *entity) { struct bfq_sched_data *sd = entity->sched_data; struct bfq_service_tree *st = bfq_entity_service_tree(entity); if (entity == sd->in_service_entity) { /* * We are requeueing the current in-service entity, * which may have to be done for one of the following * reasons: * - entity represents the in-service queue, and the * in-service queue is being requeued after an * expiration; * - entity represents a group, and its budget has * changed because one of its child entities has * just been either activated or requeued for some * reason; the timestamps of the entity need then to * be updated, and the entity needs to be enqueued * or repositioned accordingly. * * In particular, before requeueing, the start time of * the entity must be moved forward to account for the * service that the entity has received while in * service. This is done by the next instructions. The * finish time will then be updated according to this * new value of the start time, and to the budget of * the entity. */ bfq_calc_finish(entity, entity->service); entity->start = entity->finish; /* * In addition, if the entity had more than one child * when set in service, then was not extracted from * the active tree. This implies that the position of * the entity in the active tree may need to be * changed now, because we have just updated the start * time of the entity, and we will update its finish * time in a moment (the requeueing is then, more * precisely, a repositioning in this case). To * implement this repositioning, we: 1) dequeue the * entity here, 2) update the finish time and * requeue the entity according to the new * timestamps below. */ if (entity->tree) bfq_active_extract(st, entity); } else { /* The entity is already active, and not in service */ /* * In this case, this function gets called only if the * next_in_service entity below this entity has * changed, and this change has caused the budget of * this entity to change, which, finally implies that * the finish time of this entity must be * updated. Such an update may cause the scheduling, * i.e., the position in the active tree, of this * entity to change. We handle this change by: 1) * dequeueing the entity here, 2) updating the finish * time and requeueing the entity according to the new * timestamps below. This is the same approach as the * non-extracted-entity sub-case above. */ bfq_active_extract(st, entity); } bfq_update_fin_time_enqueue(entity, st, false); } static void __bfq_activate_requeue_entity(struct bfq_entity *entity, struct bfq_sched_data *sd, bool non_blocking_wait_rq) { struct bfq_service_tree *st = bfq_entity_service_tree(entity); if (sd->in_service_entity == entity || entity->tree == &st->active) /* * in service or already queued on the active tree, * requeue or reposition */ __bfq_requeue_entity(entity); else /* * Not in service and not queued on its active tree: * the activity is idle and this is a true activation. */ __bfq_activate_entity(entity, non_blocking_wait_rq); } /** * bfq_activate_entity - activate or requeue an entity representing a bfq_queue, * and activate, requeue or reposition all ancestors * for which such an update becomes necessary. * @entity: the entity to activate. * @non_blocking_wait_rq: true if this entity was waiting for a request * @requeue: true if this is a requeue, which implies that bfqq is * being expired; thus ALL its ancestors stop being served and must * therefore be requeued */ static void bfq_activate_requeue_entity(struct bfq_entity *entity, bool non_blocking_wait_rq, bool requeue) { struct bfq_sched_data *sd; for_each_entity(entity) { sd = entity->sched_data; __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq); if (!bfq_update_next_in_service(sd, entity) && !requeue) break; } } /** * __bfq_deactivate_entity - deactivate an entity from its service tree. * @entity: the entity to deactivate. * @ins_into_idle_tree: if false, the entity will not be put into the * idle tree. * * Deactivates an entity, independently from its previous state. Must * be invoked only if entity is on a service tree. Extracts the entity * from that tree, and if necessary and allowed, puts it on the idle * tree. */ static bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree) { struct bfq_sched_data *sd = entity->sched_data; struct bfq_service_tree *st = bfq_entity_service_tree(entity); int is_in_service = entity == sd->in_service_entity; if (!entity->on_st) /* entity never activated, or already inactive */ return false; if (is_in_service) bfq_calc_finish(entity, entity->service); if (entity->tree == &st->active) bfq_active_extract(st, entity); else if (!is_in_service && entity->tree == &st->idle) bfq_idle_extract(st, entity); if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime)) bfq_forget_entity(st, entity, is_in_service); else bfq_idle_insert(st, entity); return true; } /** * bfq_deactivate_entity - deactivate an entity representing a bfq_queue. * @entity: the entity to deactivate. * @ins_into_idle_tree: true if the entity can be put on the idle tree */ static void bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree, bool expiration) { struct bfq_sched_data *sd; struct bfq_entity *parent = NULL; for_each_entity_safe(entity, parent) { sd = entity->sched_data; if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) { /* * entity is not in any tree any more, so * this deactivation is a no-op, and there is * nothing to change for upper-level entities * (in case of expiration, this can never * happen). */ return; } if (sd->next_in_service == entity) /* * entity was the next_in_service entity, * then, since entity has just been * deactivated, a new one must be found. */ bfq_update_next_in_service(sd, NULL); if (sd->next_in_service) /* * The parent entity is still backlogged, * because next_in_service is not NULL. So, no * further upwards deactivation must be * performed. Yet, next_in_service has * changed. Then the schedule does need to be * updated upwards. */ break; /* * If we get here, then the parent is no more * backlogged and we need to propagate the * deactivation upwards. Thus let the loop go on. */ /* * Also let parent be queued into the idle tree on * deactivation, to preserve service guarantees, and * assuming that who invoked this function does not * need parent entities too to be removed completely. */ ins_into_idle_tree = true; } /* * If the deactivation loop is fully executed, then there are * no more entities to touch and next loop is not executed at * all. Otherwise, requeue remaining entities if they are * about to stop receiving service, or reposition them if this * is not the case. */ entity = parent; for_each_entity(entity) { /* * Invoke __bfq_requeue_entity on entity, even if * already active, to requeue/reposition it in the * active tree (because sd->next_in_service has * changed) */ __bfq_requeue_entity(entity); sd = entity->sched_data; if (!bfq_update_next_in_service(sd, entity) && !expiration) /* * next_in_service unchanged or not causing * any change in entity->parent->sd, and no * requeueing needed for expiration: stop * here. */ break; } } /** * bfq_calc_vtime_jump - compute the value to which the vtime should jump, * if needed, to have at least one entity eligible. * @st: the service tree to act upon. * * Assumes that st is not empty. */ static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st) { struct bfq_entity *root_entity = bfq_root_active_entity(&st->active); if (bfq_gt(root_entity->min_start, st->vtime)) return root_entity->min_start; return st->vtime; } static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value) { if (new_value > st->vtime) { st->vtime = new_value; bfq_forget_idle(st); } } /** * bfq_first_active_entity - find the eligible entity with * the smallest finish time * @st: the service tree to select from. * @vtime: the system virtual to use as a reference for eligibility * * This function searches the first schedulable entity, starting from the * root of the tree and going on the left every time on this side there is * a subtree with at least one eligible (start >= vtime) entity. The path on * the right is followed only if a) the left subtree contains no eligible * entities and b) no eligible entity has been found yet. */ static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st, u64 vtime) { struct bfq_entity *entry, *first = NULL; struct rb_node *node = st->active.rb_node; while (node) { entry = rb_entry(node, struct bfq_entity, rb_node); left: if (!bfq_gt(entry->start, vtime)) first = entry; if (node->rb_left) { entry = rb_entry(node->rb_left, struct bfq_entity, rb_node); if (!bfq_gt(entry->min_start, vtime)) { node = node->rb_left; goto left; } } if (first) break; node = node->rb_right; } return first; } /** * __bfq_lookup_next_entity - return the first eligible entity in @st. * @st: the service tree. * * If there is no in-service entity for the sched_data st belongs to, * then return the entity that will be set in service if: * 1) the parent entity this st belongs to is set in service; * 2) no entity belonging to such parent entity undergoes a state change * that would influence the timestamps of the entity (e.g., becomes idle, * becomes backlogged, changes its budget, ...). * * In this first case, update the virtual time in @st too (see the * comments on this update inside the function). * * In constrast, if there is an in-service entity, then return the * entity that would be set in service if not only the above * conditions, but also the next one held true: the currently * in-service entity, on expiration, * 1) gets a finish time equal to the current one, or * 2) is not eligible any more, or * 3) is idle. */ static struct bfq_entity * __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service) { struct bfq_entity *entity; u64 new_vtime; if (RB_EMPTY_ROOT(&st->active)) return NULL; /* * Get the value of the system virtual time for which at * least one entity is eligible. */ new_vtime = bfq_calc_vtime_jump(st); /* * If there is no in-service entity for the sched_data this * active tree belongs to, then push the system virtual time * up to the value that guarantees that at least one entity is * eligible. If, instead, there is an in-service entity, then * do not make any such update, because there is already an * eligible entity, namely the in-service one (even if the * entity is not on st, because it was extracted when set in * service). */ if (!in_service) bfq_update_vtime(st, new_vtime); entity = bfq_first_active_entity(st, new_vtime); return entity; } /** * bfq_lookup_next_entity - return the first eligible entity in @sd. * @sd: the sched_data. * * This function is invoked when there has been a change in the trees * for sd, and we need know what is the new next entity after this * change. */ static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd) { struct bfq_service_tree *st = sd->service_tree; struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1); struct bfq_entity *entity = NULL; int class_idx = 0; /* * Choose from idle class, if needed to guarantee a minimum * bandwidth to this class (and if there is some active entity * in idle class). This should also mitigate * priority-inversion problems in case a low priority task is * holding file system resources. */ if (time_is_before_jiffies(sd->bfq_class_idle_last_service + BFQ_CL_IDLE_TIMEOUT)) { if (!RB_EMPTY_ROOT(&idle_class_st->active)) class_idx = BFQ_IOPRIO_CLASSES - 1; /* About to be served if backlogged, or not yet backlogged */ sd->bfq_class_idle_last_service = jiffies; } /* * Find the next entity to serve for the highest-priority * class, unless the idle class needs to be served. */ for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) { entity = __bfq_lookup_next_entity(st + class_idx, sd->in_service_entity); if (entity) break; } if (!entity) return NULL; return entity; } static bool next_queue_may_preempt(struct bfq_data *bfqd) { struct bfq_sched_data *sd = &bfqd->root_group->sched_data; return sd->next_in_service != sd->in_service_entity; } /* * Get next queue for service. */ static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd) { struct bfq_entity *entity = NULL; struct bfq_sched_data *sd; struct bfq_queue *bfqq; if (bfqd->busy_queues == 0) return NULL; /* * Traverse the path from the root to the leaf entity to * serve. Set in service all the entities visited along the * way. */ sd = &bfqd->root_group->sched_data; for (; sd ; sd = entity->my_sched_data) { /* * WARNING. We are about to set the in-service entity * to sd->next_in_service, i.e., to the (cached) value * returned by bfq_lookup_next_entity(sd) the last * time it was invoked, i.e., the last time when the * service order in sd changed as a consequence of the * activation or deactivation of an entity. In this * respect, if we execute bfq_lookup_next_entity(sd) * in this very moment, it may, although with low * probability, yield a different entity than that * pointed to by sd->next_in_service. This rare event * happens in case there was no CLASS_IDLE entity to * serve for sd when bfq_lookup_next_entity(sd) was * invoked for the last time, while there is now one * such entity. * * If the above event happens, then the scheduling of * such entity in CLASS_IDLE is postponed until the * service of the sd->next_in_service entity * finishes. In fact, when the latter is expired, * bfq_lookup_next_entity(sd) gets called again, * exactly to update sd->next_in_service. */ /* Make next_in_service entity become in_service_entity */ entity = sd->next_in_service; sd->in_service_entity = entity; /* * Reset the accumulator of the amount of service that * the entity is about to receive. */ entity->service = 0; /* * If entity is no longer a candidate for next * service, then we extract it from its active tree, * for the following reason. To further boost the * throughput in some special case, BFQ needs to know * which is the next candidate entity to serve, while * there is already an entity in service. In this * respect, to make it easy to compute/update the next * candidate entity to serve after the current * candidate has been set in service, there is a case * where it is necessary to extract the current * candidate from its service tree. Such a case is * when the entity just set in service cannot be also * a candidate for next service. Details about when * this conditions holds are reported in the comments * on the function bfq_no_longer_next_in_service() * invoked below. */ if (bfq_no_longer_next_in_service(entity)) bfq_active_extract(bfq_entity_service_tree(entity), entity); /* * For the same reason why we may have just extracted * entity from its active tree, we may need to update * next_in_service for the sched_data of entity too, * regardless of whether entity has been extracted. * In fact, even if entity has not been extracted, a * descendant entity may get extracted. Such an event * would cause a change in next_in_service for the * level of the descendant entity, and thus possibly * back to upper levels. * * We cannot perform the resulting needed update * before the end of this loop, because, to know which * is the correct next-to-serve candidate entity for * each level, we need first to find the leaf entity * to set in service. In fact, only after we know * which is the next-to-serve leaf entity, we can * discover whether the parent entity of the leaf * entity becomes the next-to-serve, and so on. */ } bfqq = bfq_entity_to_bfqq(entity); /* * We can finally update all next-to-serve entities along the * path from the leaf entity just set in service to the root. */ for_each_entity(entity) { struct bfq_sched_data *sd = entity->sched_data; if (!bfq_update_next_in_service(sd, NULL)) break; } return bfqq; } static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd) { struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue; struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity; struct bfq_entity *entity = in_serv_entity; if (bfqd->in_service_bic) { put_io_context(bfqd->in_service_bic->icq.ioc); bfqd->in_service_bic = NULL; } bfq_clear_bfqq_wait_request(in_serv_bfqq); hrtimer_try_to_cancel(&bfqd->idle_slice_timer); bfqd->in_service_queue = NULL; /* * When this function is called, all in-service entities have * been properly deactivated or requeued, so we can safely * execute the final step: reset in_service_entity along the * path from entity to the root. */ for_each_entity(entity) entity->sched_data->in_service_entity = NULL; /* * in_serv_entity is no longer in service, so, if it is in no * service tree either, then release the service reference to * the queue it represents (taken with bfq_get_entity). */ if (!in_serv_entity->on_st) bfq_put_queue(in_serv_bfqq); } static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, bool ins_into_idle_tree, bool expiration) { struct bfq_entity *entity = &bfqq->entity; bfq_deactivate_entity(entity, ins_into_idle_tree, expiration); } static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) { struct bfq_entity *entity = &bfqq->entity; bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq), false); bfq_clear_bfqq_non_blocking_wait_rq(bfqq); } static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) { struct bfq_entity *entity = &bfqq->entity; bfq_activate_requeue_entity(entity, false, bfqq == bfqd->in_service_queue); } static void bfqg_stats_update_dequeue(struct bfq_group *bfqg); /* * Called when the bfqq no longer has requests pending, remove it from * the service tree. As a special case, it can be invoked during an * expiration. */ static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, bool expiration) { bfq_log_bfqq(bfqd, bfqq, "del from busy"); bfq_clear_bfqq_busy(bfqq); bfqd->busy_queues--; bfqg_stats_update_dequeue(bfqq_group(bfqq)); bfq_deactivate_bfqq(bfqd, bfqq, true, expiration); } /* * Called when an inactive queue receives a new request. */ static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq) { bfq_log_bfqq(bfqd, bfqq, "add to busy"); bfq_activate_bfqq(bfqd, bfqq); bfq_mark_bfqq_busy(bfqq); bfqd->busy_queues++; } #ifdef CONFIG_BFQ_GROUP_IOSCHED /* bfqg stats flags */ enum bfqg_stats_flags { BFQG_stats_waiting = 0, BFQG_stats_idling, BFQG_stats_empty, }; #define BFQG_FLAG_FNS(name) \ static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \ { \ stats->flags |= (1 << BFQG_stats_##name); \ } \ static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \ { \ stats->flags &= ~(1 << BFQG_stats_##name); \ } \ static int bfqg_stats_##name(struct bfqg_stats *stats) \ { \ return (stats->flags & (1 << BFQG_stats_##name)) != 0; \ } \ BFQG_FLAG_FNS(waiting) BFQG_FLAG_FNS(idling) BFQG_FLAG_FNS(empty) #undef BFQG_FLAG_FNS /* This should be called with the queue_lock held. */ static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats) { unsigned long long now; if (!bfqg_stats_waiting(stats)) return; now = sched_clock(); if (time_after64(now, stats->start_group_wait_time)) blkg_stat_add(&stats->group_wait_time, now - stats->start_group_wait_time); bfqg_stats_clear_waiting(stats); } /* This should be called with the queue_lock held. */ static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg, struct bfq_group *curr_bfqg) { struct bfqg_stats *stats = &bfqg->stats; if (bfqg_stats_waiting(stats)) return; if (bfqg == curr_bfqg) return; stats->start_group_wait_time = sched_clock(); bfqg_stats_mark_waiting(stats); } /* This should be called with the queue_lock held. */ static void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { unsigned long long now; if (!bfqg_stats_empty(stats)) return; now = sched_clock(); if (time_after64(now, stats->start_empty_time)) blkg_stat_add(&stats->empty_time, now - stats->start_empty_time); bfqg_stats_clear_empty(stats); } static void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { blkg_stat_add(&bfqg->stats.dequeue, 1); } static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { struct bfqg_stats *stats = &bfqg->stats; if (blkg_rwstat_total(&stats->queued)) return; /* * group is already marked empty. This can happen if bfqq got new * request in parent group and moved to this group while being added * to service tree. Just ignore the event and move on. */ if (bfqg_stats_empty(stats)) return; stats->start_empty_time = sched_clock(); bfqg_stats_mark_empty(stats); } static void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { struct bfqg_stats *stats = &bfqg->stats; if (bfqg_stats_idling(stats)) { unsigned long long now = sched_clock(); if (time_after64(now, stats->start_idle_time)) blkg_stat_add(&stats->idle_time, now - stats->start_idle_time); bfqg_stats_clear_idling(stats); } } static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { struct bfqg_stats *stats = &bfqg->stats; stats->start_idle_time = sched_clock(); bfqg_stats_mark_idling(stats); } static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { struct bfqg_stats *stats = &bfqg->stats; blkg_stat_add(&stats->avg_queue_size_sum, blkg_rwstat_total(&stats->queued)); blkg_stat_add(&stats->avg_queue_size_samples, 1); bfqg_stats_update_group_wait_time(stats); } /* * blk-cgroup policy-related handlers * The following functions help in converting between blk-cgroup * internal structures and BFQ-specific structures. */ static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd) { return pd ? container_of(pd, struct bfq_group, pd) : NULL; } static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg) { return pd_to_blkg(&bfqg->pd); } static struct blkcg_policy blkcg_policy_bfq; static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg) { return pd_to_bfqg(blkg_to_pd(blkg, &blkcg_policy_bfq)); } /* * bfq_group handlers * The following functions help in navigating the bfq_group hierarchy * by allowing to find the parent of a bfq_group or the bfq_group * associated to a bfq_queue. */ static struct bfq_group *bfqg_parent(struct bfq_group *bfqg) { struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent; return pblkg ? blkg_to_bfqg(pblkg) : NULL; } static struct bfq_group *bfqq_group(struct bfq_queue *bfqq) { struct bfq_entity *group_entity = bfqq->entity.parent; return group_entity ? container_of(group_entity, struct bfq_group, entity) : bfqq->bfqd->root_group; } /* * The following two functions handle get and put of a bfq_group by * wrapping the related blk-cgroup hooks. */ static void bfqg_get(struct bfq_group *bfqg) { return blkg_get(bfqg_to_blkg(bfqg)); } static void bfqg_put(struct bfq_group *bfqg) { return blkg_put(bfqg_to_blkg(bfqg)); } static void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq, unsigned int op) { blkg_rwstat_add(&bfqg->stats.queued, op, 1); bfqg_stats_end_empty_time(&bfqg->stats); if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue)) bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq)); } static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { blkg_rwstat_add(&bfqg->stats.queued, op, -1); } static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { blkg_rwstat_add(&bfqg->stats.merged, op, 1); } static void bfqg_stats_update_completion(struct bfq_group *bfqg, uint64_t start_time, uint64_t io_start_time, unsigned int op) { struct bfqg_stats *stats = &bfqg->stats; unsigned long long now = sched_clock(); if (time_after64(now, io_start_time)) blkg_rwstat_add(&stats->service_time, op, now - io_start_time); if (time_after64(io_start_time, start_time)) blkg_rwstat_add(&stats->wait_time, op, io_start_time - start_time); } /* @stats = 0 */ static void bfqg_stats_reset(struct bfqg_stats *stats) { /* queued stats shouldn't be cleared */ blkg_rwstat_reset(&stats->merged); blkg_rwstat_reset(&stats->service_time); blkg_rwstat_reset(&stats->wait_time); blkg_stat_reset(&stats->time); blkg_stat_reset(&stats->avg_queue_size_sum); blkg_stat_reset(&stats->avg_queue_size_samples); blkg_stat_reset(&stats->dequeue); blkg_stat_reset(&stats->group_wait_time); blkg_stat_reset(&stats->idle_time); blkg_stat_reset(&stats->empty_time); } /* @to += @from */ static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from) { if (!to || !from) return; /* queued stats shouldn't be cleared */ blkg_rwstat_add_aux(&to->merged, &from->merged); blkg_rwstat_add_aux(&to->service_time, &from->service_time); blkg_rwstat_add_aux(&to->wait_time, &from->wait_time); blkg_stat_add_aux(&from->time, &from->time); blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum); blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples); blkg_stat_add_aux(&to->dequeue, &from->dequeue); blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time); blkg_stat_add_aux(&to->idle_time, &from->idle_time); blkg_stat_add_aux(&to->empty_time, &from->empty_time); } /* * Transfer @bfqg's stats to its parent's aux counts so that the ancestors' * recursive stats can still account for the amount used by this bfqg after * it's gone. */ static void bfqg_stats_xfer_dead(struct bfq_group *bfqg) { struct bfq_group *parent; if (!bfqg) /* root_group */ return; parent = bfqg_parent(bfqg); lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock); if (unlikely(!parent)) return; bfqg_stats_add_aux(&parent->stats, &bfqg->stats); bfqg_stats_reset(&bfqg->stats); } static void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); entity->weight = entity->new_weight; entity->orig_weight = entity->new_weight; if (bfqq) { bfqq->ioprio = bfqq->new_ioprio; bfqq->ioprio_class = bfqq->new_ioprio_class; bfqg_get(bfqg); } entity->parent = bfqg->my_entity; /* NULL for root group */ entity->sched_data = &bfqg->sched_data; } static void bfqg_stats_exit(struct bfqg_stats *stats) { blkg_rwstat_exit(&stats->merged); blkg_rwstat_exit(&stats->service_time); blkg_rwstat_exit(&stats->wait_time); blkg_rwstat_exit(&stats->queued); blkg_stat_exit(&stats->time); blkg_stat_exit(&stats->avg_queue_size_sum); blkg_stat_exit(&stats->avg_queue_size_samples); blkg_stat_exit(&stats->dequeue); blkg_stat_exit(&stats->group_wait_time); blkg_stat_exit(&stats->idle_time); blkg_stat_exit(&stats->empty_time); } static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp) { if (blkg_rwstat_init(&stats->merged, gfp) || blkg_rwstat_init(&stats->service_time, gfp) || blkg_rwstat_init(&stats->wait_time, gfp) || blkg_rwstat_init(&stats->queued, gfp) || blkg_stat_init(&stats->time, gfp) || blkg_stat_init(&stats->avg_queue_size_sum, gfp) || blkg_stat_init(&stats->avg_queue_size_samples, gfp) || blkg_stat_init(&stats->dequeue, gfp) || blkg_stat_init(&stats->group_wait_time, gfp) || blkg_stat_init(&stats->idle_time, gfp) || blkg_stat_init(&stats->empty_time, gfp)) { bfqg_stats_exit(stats); return -ENOMEM; } return 0; } static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd) { return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL; } static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg) { return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq)); } static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp) { struct bfq_group_data *bgd; bgd = kzalloc(sizeof(*bgd), gfp); if (!bgd) return NULL; return &bgd->pd; } static void bfq_cpd_init(struct blkcg_policy_data *cpd) { struct bfq_group_data *d = cpd_to_bfqgd(cpd); d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ? CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL; } static void bfq_cpd_free(struct blkcg_policy_data *cpd) { kfree(cpd_to_bfqgd(cpd)); } static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node) { struct bfq_group *bfqg; bfqg = kzalloc_node(sizeof(*bfqg), gfp, node); if (!bfqg) return NULL; if (bfqg_stats_init(&bfqg->stats, gfp)) { kfree(bfqg); return NULL; } return &bfqg->pd; } static void bfq_pd_init(struct blkg_policy_data *pd) { struct blkcg_gq *blkg = pd_to_blkg(pd); struct bfq_group *bfqg = blkg_to_bfqg(blkg); struct bfq_data *bfqd = blkg->q->elevator->elevator_data; struct bfq_entity *entity = &bfqg->entity; struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg); entity->orig_weight = entity->weight = entity->new_weight = d->weight; entity->my_sched_data = &bfqg->sched_data; bfqg->my_entity = entity; /* * the root_group's will be set to NULL * in bfq_init_queue() */ bfqg->bfqd = bfqd; } static void bfq_pd_free(struct blkg_policy_data *pd) { struct bfq_group *bfqg = pd_to_bfqg(pd); bfqg_stats_exit(&bfqg->stats); return kfree(bfqg); } static void bfq_pd_reset_stats(struct blkg_policy_data *pd) { struct bfq_group *bfqg = pd_to_bfqg(pd); bfqg_stats_reset(&bfqg->stats); } static void bfq_group_set_parent(struct bfq_group *bfqg, struct bfq_group *parent) { struct bfq_entity *entity; entity = &bfqg->entity; entity->parent = parent->my_entity; entity->sched_data = &parent->sched_data; } static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd, struct blkcg *blkcg) { struct blkcg_gq *blkg; blkg = blkg_lookup(blkcg, bfqd->queue); if (likely(blkg)) return blkg_to_bfqg(blkg); return NULL; } static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd, struct blkcg *blkcg) { struct bfq_group *bfqg, *parent; struct bfq_entity *entity; bfqg = bfq_lookup_bfqg(bfqd, blkcg); if (unlikely(!bfqg)) return NULL; /* * Update chain of bfq_groups as we might be handling a leaf group * which, along with some of its relatives, has not been hooked yet * to the private hierarchy of BFQ. */ entity = &bfqg->entity; for_each_entity(entity) { bfqg = container_of(entity, struct bfq_group, entity); if (bfqg != bfqd->root_group) { parent = bfqg_parent(bfqg); if (!parent) parent = bfqd->root_group; bfq_group_set_parent(bfqg, parent); } } return bfqg; } static void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq, bool compensate, enum bfqq_expiration reason); /** * bfq_bfqq_move - migrate @bfqq to @bfqg. * @bfqd: queue descriptor. * @bfqq: the queue to move. * @bfqg: the group to move to. * * Move @bfqq to @bfqg, deactivating it from its old group and reactivating * it on the new one. Avoid putting the entity on the old group idle tree. * * Must be called under the queue lock; the cgroup owning @bfqg must * not disappear (by now this just means that we are called under * rcu_read_lock()). */ static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct bfq_group *bfqg) { struct bfq_entity *entity = &bfqq->entity; /* If bfqq is empty, then bfq_bfqq_expire also invokes * bfq_del_bfqq_busy, thereby removing bfqq and its entity * from data structures related to current group. Otherwise we * need to remove bfqq explicitly with bfq_deactivate_bfqq, as * we do below. */ if (bfqq == bfqd->in_service_queue) bfq_bfqq_expire(bfqd, bfqd->in_service_queue, false, BFQQE_PREEMPTED); if (bfq_bfqq_busy(bfqq)) bfq_deactivate_bfqq(bfqd, bfqq, false, false); else if (entity->on_st) bfq_put_idle_entity(bfq_entity_service_tree(entity), entity); bfqg_put(bfqq_group(bfqq)); /* * Here we use a reference to bfqg. We don't need a refcounter * as the cgroup reference will not be dropped, so that its * destroy() callback will not be invoked. */ entity->parent = bfqg->my_entity; entity->sched_data = &bfqg->sched_data; bfqg_get(bfqg); if (bfq_bfqq_busy(bfqq)) bfq_activate_bfqq(bfqd, bfqq); if (!bfqd->in_service_queue && !bfqd->rq_in_driver) bfq_schedule_dispatch(bfqd); } /** * __bfq_bic_change_cgroup - move @bic to @cgroup. * @bfqd: the queue descriptor. * @bic: the bic to move. * @blkcg: the blk-cgroup to move to. * * Move bic to blkcg, assuming that bfqd->queue is locked; the caller * has to make sure that the reference to cgroup is valid across the call. * * NOTE: an alternative approach might have been to store the current * cgroup in bfqq and getting a reference to it, reducing the lookup * time here, at the price of slightly more complex code. */ static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd, struct bfq_io_cq *bic, struct blkcg *blkcg) { struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0); struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1); struct bfq_group *bfqg; struct bfq_entity *entity; bfqg = bfq_find_set_group(bfqd, blkcg); if (unlikely(!bfqg)) bfqg = bfqd->root_group; if (async_bfqq) { entity = &async_bfqq->entity; if (entity->sched_data != &bfqg->sched_data) { bic_set_bfqq(bic, NULL, 0); bfq_log_bfqq(bfqd, async_bfqq, "bic_change_group: %p %d", async_bfqq, async_bfqq->ref); bfq_put_queue(async_bfqq); } } if (sync_bfqq) { entity = &sync_bfqq->entity; if (entity->sched_data != &bfqg->sched_data) bfq_bfqq_move(bfqd, sync_bfqq, bfqg); } return bfqg; } static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) { struct bfq_data *bfqd = bic_to_bfqd(bic); struct bfq_group *bfqg = NULL; uint64_t serial_nr; rcu_read_lock(); serial_nr = bio_blkcg(bio)->css.serial_nr; /* * Check whether blkcg has changed. The condition may trigger * spuriously on a newly created cic but there's no harm. */ if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr)) goto out; bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio)); bic->blkcg_serial_nr = serial_nr; out: rcu_read_unlock(); } /** * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st. * @st: the service tree being flushed. */ static void bfq_flush_idle_tree(struct bfq_service_tree *st) { struct bfq_entity *entity = st->first_idle; for (; entity ; entity = st->first_idle) __bfq_deactivate_entity(entity, false); } /** * bfq_reparent_leaf_entity - move leaf entity to the root_group. * @bfqd: the device data structure with the root group. * @entity: the entity to move. */ static void bfq_reparent_leaf_entity(struct bfq_data *bfqd, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); } /** * bfq_reparent_active_entities - move to the root group all active * entities. * @bfqd: the device data structure with the root group. * @bfqg: the group to move from. * @st: the service tree with the entities. * * Needs queue_lock to be taken and reference to be valid over the call. */ static void bfq_reparent_active_entities(struct bfq_data *bfqd, struct bfq_group *bfqg, struct bfq_service_tree *st) { struct rb_root *active = &st->active; struct bfq_entity *entity = NULL; if (!RB_EMPTY_ROOT(&st->active)) entity = bfq_entity_of(rb_first(active)); for (; entity ; entity = bfq_entity_of(rb_first(active))) bfq_reparent_leaf_entity(bfqd, entity); if (bfqg->sched_data.in_service_entity) bfq_reparent_leaf_entity(bfqd, bfqg->sched_data.in_service_entity); } /** * bfq_pd_offline - deactivate the entity associated with @pd, * and reparent its children entities. * @pd: descriptor of the policy going offline. * * blkio already grabs the queue_lock for us, so no need to use * RCU-based magic */ static void bfq_pd_offline(struct blkg_policy_data *pd) { struct bfq_service_tree *st; struct bfq_group *bfqg = pd_to_bfqg(pd); struct bfq_data *bfqd = bfqg->bfqd; struct bfq_entity *entity = bfqg->my_entity; unsigned long flags; int i; if (!entity) /* root group */ return; spin_lock_irqsave(&bfqd->lock, flags); /* * Empty all service_trees belonging to this group before * deactivating the group itself. */ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) { st = bfqg->sched_data.service_tree + i; /* * The idle tree may still contain bfq_queues belonging * to exited task because they never migrated to a different * cgroup from the one being destroyed now. No one else * can access them so it's safe to act without any lock. */ bfq_flush_idle_tree(st); /* * It may happen that some queues are still active * (busy) upon group destruction (if the corresponding * processes have been forced to terminate). We move * all the leaf entities corresponding to these queues * to the root_group. * Also, it may happen that the group has an entity * in service, which is disconnected from the active * tree: it must be moved, too. * There is no need to put the sync queues, as the * scheduler has taken no reference. */ bfq_reparent_active_entities(bfqd, bfqg, st); } __bfq_deactivate_entity(entity, false); bfq_put_async_queues(bfqd, bfqg); spin_unlock_irqrestore(&bfqd->lock, flags); /* * @blkg is going offline and will be ignored by * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so * that they don't get lost. If IOs complete after this point, the * stats for them will be lost. Oh well... */ bfqg_stats_xfer_dead(bfqg); } static int bfq_io_show_weight(struct seq_file *sf, void *v) { struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg); unsigned int val = 0; if (bfqgd) val = bfqgd->weight; seq_printf(sf, "%u\n", val); return 0; } static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css, struct cftype *cftype, u64 val) { struct blkcg *blkcg = css_to_blkcg(css); struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg); struct blkcg_gq *blkg; int ret = -ERANGE; if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT) return ret; ret = 0; spin_lock_irq(&blkcg->lock); bfqgd->weight = (unsigned short)val; hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { struct bfq_group *bfqg = blkg_to_bfqg(blkg); if (!bfqg) continue; /* * Setting the prio_changed flag of the entity * to 1 with new_weight == weight would re-set * the value of the weight to its ioprio mapping. * Set the flag only if necessary. */ if ((unsigned short)val != bfqg->entity.new_weight) { bfqg->entity.new_weight = (unsigned short)val; /* * Make sure that the above new value has been * stored in bfqg->entity.new_weight before * setting the prio_changed flag. In fact, * this flag may be read asynchronously (in * critical sections protected by a different * lock than that held here), and finding this * flag set may cause the execution of the code * for updating parameters whose value may * depend also on bfqg->entity.new_weight (in * __bfq_entity_update_weight_prio). * This barrier makes sure that the new value * of bfqg->entity.new_weight is correctly * seen in that code. */ smp_wmb(); bfqg->entity.prio_changed = 1; } } spin_unlock_irq(&blkcg->lock); return ret; } static ssize_t bfq_io_set_weight(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { u64 weight; /* First unsigned long found in the file is used */ int ret = kstrtoull(strim(buf), 0, &weight); if (ret) return ret; return bfq_io_set_weight_legacy(of_css(of), NULL, weight); } static int bfqg_print_stat(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, &blkcg_policy_bfq, seq_cft(sf)->private, false); return 0; } static int bfqg_print_rwstat(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, &blkcg_policy_bfq, seq_cft(sf)->private, true); return 0; } static u64 bfqg_prfill_stat_recursive(struct seq_file *sf, struct blkg_policy_data *pd, int off) { u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off); return __blkg_prfill_u64(sf, pd, sum); } static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off); return __blkg_prfill_rwstat(sf, pd, &sum); } static int bfqg_print_stat_recursive(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_stat_recursive, &blkcg_policy_bfq, seq_cft(sf)->private, false); return 0; } static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq, seq_cft(sf)->private, true); return 0; } static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd, int off) { u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes); return __blkg_prfill_u64(sf, pd, sum >> 9); } static int bfqg_print_stat_sectors(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false); return 0; } static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL, offsetof(struct blkcg_gq, stat_bytes)); u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) + atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]); return __blkg_prfill_u64(sf, pd, sum >> 9); } static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0, false); return 0; } static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct bfq_group *bfqg = pd_to_bfqg(pd); u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples); u64 v = 0; if (samples) { v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum); v = div64_u64(v, samples); } __blkg_prfill_u64(sf, pd, v); return 0; } /* print avg_queue_size */ static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_avg_queue_size, &blkcg_policy_bfq, 0, false); return 0; } static struct bfq_group * bfq_create_group_hierarchy(struct bfq_data *bfqd, int node) { int ret; ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq); if (ret) return NULL; return blkg_to_bfqg(bfqd->queue->root_blkg); } static struct cftype bfq_blkcg_legacy_files[] = { { .name = "bfq.weight", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = bfq_io_show_weight, .write_u64 = bfq_io_set_weight_legacy, }, /* statistics, covers only the tasks in the bfqg */ { .name = "bfq.time", .private = offsetof(struct bfq_group, stats.time), .seq_show = bfqg_print_stat, }, { .name = "bfq.sectors", .seq_show = bfqg_print_stat_sectors, }, { .name = "bfq.io_service_bytes", .private = (unsigned long)&blkcg_policy_bfq, .seq_show = blkg_print_stat_bytes, }, { .name = "bfq.io_serviced", .private = (unsigned long)&blkcg_policy_bfq, .seq_show = blkg_print_stat_ios, }, { .name = "bfq.io_service_time", .private = offsetof(struct bfq_group, stats.service_time), .seq_show = bfqg_print_rwstat, }, { .name = "bfq.io_wait_time", .private = offsetof(struct bfq_group, stats.wait_time), .seq_show = bfqg_print_rwstat, }, { .name = "bfq.io_merged", .private = offsetof(struct bfq_group, stats.merged), .seq_show = bfqg_print_rwstat, }, { .name = "bfq.io_queued", .private = offsetof(struct bfq_group, stats.queued), .seq_show = bfqg_print_rwstat, }, /* the same statictics which cover the bfqg and its descendants */ { .name = "bfq.time_recursive", .private = offsetof(struct bfq_group, stats.time), .seq_show = bfqg_print_stat_recursive, }, { .name = "bfq.sectors_recursive", .seq_show = bfqg_print_stat_sectors_recursive, }, { .name = "bfq.io_service_bytes_recursive", .private = (unsigned long)&blkcg_policy_bfq, .seq_show = blkg_print_stat_bytes_recursive, }, { .name = "bfq.io_serviced_recursive", .private = (unsigned long)&blkcg_policy_bfq, .seq_show = blkg_print_stat_ios_recursive, }, { .name = "bfq.io_service_time_recursive", .private = offsetof(struct bfq_group, stats.service_time), .seq_show = bfqg_print_rwstat_recursive, }, { .name = "bfq.io_wait_time_recursive", .private = offsetof(struct bfq_group, stats.wait_time), .seq_show = bfqg_print_rwstat_recursive, }, { .name = "bfq.io_merged_recursive", .private = offsetof(struct bfq_group, stats.merged), .seq_show = bfqg_print_rwstat_recursive, }, { .name = "bfq.io_queued_recursive", .private = offsetof(struct bfq_group, stats.queued), .seq_show = bfqg_print_rwstat_recursive, }, { .name = "bfq.avg_queue_size", .seq_show = bfqg_print_avg_queue_size, }, { .name = "bfq.group_wait_time", .private = offsetof(struct bfq_group, stats.group_wait_time), .seq_show = bfqg_print_stat, }, { .name = "bfq.idle_time", .private = offsetof(struct bfq_group, stats.idle_time), .seq_show = bfqg_print_stat, }, { .name = "bfq.empty_time", .private = offsetof(struct bfq_group, stats.empty_time), .seq_show = bfqg_print_stat, }, { .name = "bfq.dequeue", .private = offsetof(struct bfq_group, stats.dequeue), .seq_show = bfqg_print_stat, }, { } /* terminate */ }; static struct cftype bfq_blkg_files[] = { { .name = "bfq.weight", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = bfq_io_show_weight, .write = bfq_io_set_weight, }, {} /* terminate */ }; #else /* CONFIG_BFQ_GROUP_IOSCHED */ static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq, unsigned int op) { } static inline void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { } static inline void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { } static inline void bfqg_stats_update_completion(struct bfq_group *bfqg, uint64_t start_time, uint64_t io_start_time, unsigned int op) { } static inline void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg, struct bfq_group *curr_bfqg) { } static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { } static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { } static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { } static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { } static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { } static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { } static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct bfq_group *bfqg) {} static void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); entity->weight = entity->new_weight; entity->orig_weight = entity->new_weight; if (bfqq) { bfqq->ioprio = bfqq->new_ioprio; bfqq->ioprio_class = bfqq->new_ioprio_class; } entity->sched_data = &bfqg->sched_data; } static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {} static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd, struct blkcg *blkcg) { return bfqd->root_group; } static struct bfq_group *bfqq_group(struct bfq_queue *bfqq) { return bfqq->bfqd->root_group; } static struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node) { struct bfq_group *bfqg; int i; bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node); if (!bfqg) return NULL; for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; return bfqg; } #endif /* CONFIG_BFQ_GROUP_IOSCHED */ #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) #define bfq_sample_valid(samples) ((samples) > 80) /* * Lifted from AS - choose which of rq1 and rq2 that is best served now. * We choose the request that is closesr to the head right now. Distance * behind the head is penalized and only allowed to a certain extent. */ static struct request *bfq_choose_req(struct bfq_data *bfqd, struct request *rq1, struct request *rq2, sector_t last) { sector_t s1, s2, d1 = 0, d2 = 0; unsigned long back_max; #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ if (!rq1 || rq1 == rq2) return rq2; if (!rq2) return rq1; if (rq_is_sync(rq1) && !rq_is_sync(rq2)) return rq1; else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) return rq2; if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) return rq1; else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) return rq2; s1 = blk_rq_pos(rq1); s2 = blk_rq_pos(rq2); /* * By definition, 1KiB is 2 sectors. */ back_max = bfqd->bfq_back_max * 2; /* * Strict one way elevator _except_ in the case where we allow * short backward seeks which are biased as twice the cost of a * similar forward seek. */ if (s1 >= last) d1 = s1 - last; else if (s1 + back_max >= last) d1 = (last - s1) * bfqd->bfq_back_penalty; else wrap |= BFQ_RQ1_WRAP; if (s2 >= last) d2 = s2 - last; else if (s2 + back_max >= last) d2 = (last - s2) * bfqd->bfq_back_penalty; else wrap |= BFQ_RQ2_WRAP; /* Found required data */ /* * By doing switch() on the bit mask "wrap" we avoid having to * check two variables for all permutations: --> faster! */ switch (wrap) { case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ if (d1 < d2) return rq1; else if (d2 < d1) return rq2; if (s1 >= s2) return rq1; else return rq2; case BFQ_RQ2_WRAP: return rq1; case BFQ_RQ1_WRAP: return rq2; case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ default: /* * Since both rqs are wrapped, * start with the one that's further behind head * (--> only *one* back seek required), * since back seek takes more time than forward. */ if (s1 <= s2) return rq1; else return rq2; } } /* * Return expired entry, or NULL to just start from scratch in rbtree. */ static struct request *bfq_check_fifo(struct bfq_queue *bfqq, struct request *last) { struct request *rq; if (bfq_bfqq_fifo_expire(bfqq)) return NULL; bfq_mark_bfqq_fifo_expire(bfqq); rq = rq_entry_fifo(bfqq->fifo.next); if (rq == last || ktime_get_ns() < rq->fifo_time) return NULL; bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); return rq; } static struct request *bfq_find_next_rq(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct request *last) { struct rb_node *rbnext = rb_next(&last->rb_node); struct rb_node *rbprev = rb_prev(&last->rb_node); struct request *next, *prev = NULL; /* Follow expired path, else get first next available. */ next = bfq_check_fifo(bfqq, last); if (next) return next; if (rbprev) prev = rb_entry_rq(rbprev); if (rbnext) next = rb_entry_rq(rbnext); else { rbnext = rb_first(&bfqq->sort_list); if (rbnext && rbnext != &last->rb_node) next = rb_entry_rq(rbnext); } return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); } static unsigned long bfq_serv_to_charge(struct request *rq, struct bfq_queue *bfqq) { return blk_rq_sectors(rq); } /** * bfq_updated_next_req - update the queue after a new next_rq selection. * @bfqd: the device data the queue belongs to. * @bfqq: the queue to update. * * If the first request of a queue changes we make sure that the queue * has enough budget to serve at least its first request (if the * request has grown). We do this because if the queue has not enough * budget for its first request, it has to go through two dispatch * rounds to actually get it dispatched. */ static void bfq_updated_next_req(struct bfq_data *bfqd, struct bfq_queue *bfqq) { struct bfq_entity *entity = &bfqq->entity; struct request *next_rq = bfqq->next_rq; unsigned long new_budget; if (!next_rq) return; if (bfqq == bfqd->in_service_queue) /* * In order not to break guarantees, budgets cannot be * changed after an entity has been selected. */ return; new_budget = max_t(unsigned long, bfqq->max_budget, bfq_serv_to_charge(next_rq, bfqq)); if (entity->budget != new_budget) { entity->budget = new_budget; bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", new_budget); bfq_requeue_bfqq(bfqd, bfqq); } } static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) { struct bfq_entity *entity = &bfqq->entity; return entity->budget - entity->service; } /* * If enough samples have been computed, return the current max budget * stored in bfqd, which is dynamically updated according to the * estimated disk peak rate; otherwise return the default max budget */ static int bfq_max_budget(struct bfq_data *bfqd) { if (bfqd->budgets_assigned < bfq_stats_min_budgets) return bfq_default_max_budget; else return bfqd->bfq_max_budget; } /* * Return min budget, which is a fraction of the current or default * max budget (trying with 1/32) */ static int bfq_min_budget(struct bfq_data *bfqd) { if (bfqd->budgets_assigned < bfq_stats_min_budgets) return bfq_default_max_budget / 32; else return bfqd->bfq_max_budget / 32; } static void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq, bool compensate, enum bfqq_expiration reason); /* * The next function, invoked after the input queue bfqq switches from * idle to busy, updates the budget of bfqq. The function also tells * whether the in-service queue should be expired, by returning * true. The purpose of expiring the in-service queue is to give bfqq * the chance to possibly preempt the in-service queue, and the reason * for preempting the in-service queue is to achieve the following * goal: guarantee to bfqq its reserved bandwidth even if bfqq has * expired because it has remained idle. * * In particular, bfqq may have expired for one of the following two * reasons: * * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling * and did not make it to issue a new request before its last * request was served; * * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue * a new request before the expiration of the idling-time. * * Even if bfqq has expired for one of the above reasons, the process * associated with the queue may be however issuing requests greedily, * and thus be sensitive to the bandwidth it receives (bfqq may have * remained idle for other reasons: CPU high load, bfqq not enjoying * idling, I/O throttling somewhere in the path from the process to * the I/O scheduler, ...). But if, after every expiration for one of * the above two reasons, bfqq has to wait for the service of at least * one full budget of another queue before being served again, then * bfqq is likely to get a much lower bandwidth or resource time than * its reserved ones. To address this issue, two countermeasures need * to be taken. * * First, the budget and the timestamps of bfqq need to be updated in * a special way on bfqq reactivation: they need to be updated as if * bfqq did not remain idle and did not expire. In fact, if they are * computed as if bfqq expired and remained idle until reactivation, * then the process associated with bfqq is treated as if, instead of * being greedy, it stopped issuing requests when bfqq remained idle, * and restarts issuing requests only on this reactivation. In other * words, the scheduler does not help the process recover the "service * hole" between bfqq expiration and reactivation. As a consequence, * the process receives a lower bandwidth than its reserved one. In * contrast, to recover this hole, the budget must be updated as if * bfqq was not expired at all before this reactivation, i.e., it must * be set to the value of the remaining budget when bfqq was * expired. Along the same line, timestamps need to be assigned the * value they had the last time bfqq was selected for service, i.e., * before last expiration. Thus timestamps need to be back-shifted * with respect to their normal computation (see [1] for more details * on this tricky aspect). * * Secondly, to allow the process to recover the hole, the in-service * queue must be expired too, to give bfqq the chance to preempt it * immediately. In fact, if bfqq has to wait for a full budget of the * in-service queue to be completed, then it may become impossible to * let the process recover the hole, even if the back-shifted * timestamps of bfqq are lower than those of the in-service queue. If * this happens for most or all of the holes, then the process may not * receive its reserved bandwidth. In this respect, it is worth noting * that, being the service of outstanding requests unpreemptible, a * little fraction of the holes may however be unrecoverable, thereby * causing a little loss of bandwidth. * * The last important point is detecting whether bfqq does need this * bandwidth recovery. In this respect, the next function deems the * process associated with bfqq greedy, and thus allows it to recover * the hole, if: 1) the process is waiting for the arrival of a new * request (which implies that bfqq expired for one of the above two * reasons), and 2) such a request has arrived soon. The first * condition is controlled through the flag non_blocking_wait_rq, * while the second through the flag arrived_in_time. If both * conditions hold, then the function computes the budget in the * above-described special way, and signals that the in-service queue * should be expired. Timestamp back-shifting is done later in * __bfq_activate_entity. */ static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, struct bfq_queue *bfqq, bool arrived_in_time) { struct bfq_entity *entity = &bfqq->entity; if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { /* * We do not clear the flag non_blocking_wait_rq here, as * the latter is used in bfq_activate_bfqq to signal * that timestamps need to be back-shifted (and is * cleared right after). */ /* * In next assignment we rely on that either * entity->service or entity->budget are not updated * on expiration if bfqq is empty (see * __bfq_bfqq_recalc_budget). Thus both quantities * remain unchanged after such an expiration, and the * following statement therefore assigns to * entity->budget the remaining budget on such an * expiration. For clarity, entity->service is not * updated on expiration in any case, and, in normal * operation, is reset only when bfqq is selected for * service (see bfq_get_next_queue). */ entity->budget = min_t(unsigned long, bfq_bfqq_budget_left(bfqq), bfqq->max_budget); return true; } entity->budget = max_t(unsigned long, bfqq->max_budget, bfq_serv_to_charge(bfqq->next_rq, bfqq)); bfq_clear_bfqq_non_blocking_wait_rq(bfqq); return false; } static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct request *rq) { bool bfqq_wants_to_preempt, /* * See the comments on * bfq_bfqq_update_budg_for_activation for * details on the usage of the next variable. */ arrived_in_time = ktime_get_ns() <= bfqq->ttime.last_end_request + bfqd->bfq_slice_idle * 3; bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags); /* * Update budget and check whether bfqq may want to preempt * the in-service queue. */ bfqq_wants_to_preempt = bfq_bfqq_update_budg_for_activation(bfqd, bfqq, arrived_in_time); if (!bfq_bfqq_IO_bound(bfqq)) { if (arrived_in_time) { bfqq->requests_within_timer++; if (bfqq->requests_within_timer >= bfqd->bfq_requests_within_timer) bfq_mark_bfqq_IO_bound(bfqq); } else bfqq->requests_within_timer = 0; } bfq_add_bfqq_busy(bfqd, bfqq); /* * Expire in-service queue only if preemption may be needed * for guarantees. In this respect, the function * next_queue_may_preempt just checks a simple, necessary * condition, and not a sufficient condition based on * timestamps. In fact, for the latter condition to be * evaluated, timestamps would need first to be updated, and * this operation is quite costly (see the comments on the * function bfq_bfqq_update_budg_for_activation). */ if (bfqd->in_service_queue && bfqq_wants_to_preempt && next_queue_may_preempt(bfqd)) bfq_bfqq_expire(bfqd, bfqd->in_service_queue, false, BFQQE_PREEMPTED); } static void bfq_add_request(struct request *rq) { struct bfq_queue *bfqq = RQ_BFQQ(rq); struct bfq_data *bfqd = bfqq->bfqd; struct request *next_rq, *prev; bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); bfqq->queued[rq_is_sync(rq)]++; bfqd->queued++; elv_rb_add(&bfqq->sort_list, rq); /* * Check if this request is a better next-serve candidate. */ prev = bfqq->next_rq; next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); bfqq->next_rq = next_rq; if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, rq); else if (prev != bfqq->next_rq) bfq_updated_next_req(bfqd, bfqq); } static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, struct bio *bio, struct request_queue *q) { struct bfq_queue *bfqq = bfqd->bio_bfqq; if (bfqq) return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); return NULL; } #if 0 /* Still not clear if we can do without next two functions */ static void bfq_activate_request(struct request_queue *q, struct request *rq) { struct bfq_data *bfqd = q->elevator->elevator_data; bfqd->rq_in_driver++; bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); bfq_log(bfqd, "activate_request: new bfqd->last_position %llu", (unsigned long long)bfqd->last_position); } static void bfq_deactivate_request(struct request_queue *q, struct request *rq) { struct bfq_data *bfqd = q->elevator->elevator_data; bfqd->rq_in_driver--; } #endif static void bfq_remove_request(struct request_queue *q, struct request *rq) { struct bfq_queue *bfqq = RQ_BFQQ(rq); struct bfq_data *bfqd = bfqq->bfqd; const int sync = rq_is_sync(rq); if (bfqq->next_rq == rq) { bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); bfq_updated_next_req(bfqd, bfqq); } if (rq->queuelist.prev != &rq->queuelist) list_del_init(&rq->queuelist); bfqq->queued[sync]--; bfqd->queued--; elv_rb_del(&bfqq->sort_list, rq); elv_rqhash_del(q, rq); if (q->last_merge == rq) q->last_merge = NULL; if (RB_EMPTY_ROOT(&bfqq->sort_list)) { bfqq->next_rq = NULL; if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { bfq_del_bfqq_busy(bfqd, bfqq, false); /* * bfqq emptied. In normal operation, when * bfqq is empty, bfqq->entity.service and * bfqq->entity.budget must contain, * respectively, the service received and the * budget used last time bfqq emptied. These * facts do not hold in this case, as at least * this last removal occurred while bfqq is * not in service. To avoid inconsistencies, * reset both bfqq->entity.service and * bfqq->entity.budget, if bfqq has still a * process that may issue I/O requests to it. */ bfqq->entity.budget = bfqq->entity.service = 0; } } if (rq->cmd_flags & REQ_META) bfqq->meta_pending--; bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags); } static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) { struct request_queue *q = hctx->queue; struct bfq_data *bfqd = q->elevator->elevator_data; struct request *free = NULL; /* * bfq_bic_lookup grabs the queue_lock: invoke it now and * store its return value for later use, to avoid nesting * queue_lock inside the bfqd->lock. We assume that the bic * returned by bfq_bic_lookup does not go away before * bfqd->lock is taken. */ struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); bool ret; spin_lock_irq(&bfqd->lock); if (bic) bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); else bfqd->bio_bfqq = NULL; bfqd->bio_bic = bic; ret = blk_mq_sched_try_merge(q, bio, &free); if (free) blk_mq_free_request(free); spin_unlock_irq(&bfqd->lock); return ret; } static int bfq_request_merge(struct request_queue *q, struct request **req, struct bio *bio) { struct bfq_data *bfqd = q->elevator->elevator_data; struct request *__rq; __rq = bfq_find_rq_fmerge(bfqd, bio, q); if (__rq && elv_bio_merge_ok(__rq, bio)) { *req = __rq; return ELEVATOR_FRONT_MERGE; } return ELEVATOR_NO_MERGE; } static void bfq_request_merged(struct request_queue *q, struct request *req, enum elv_merge type) { if (type == ELEVATOR_FRONT_MERGE && rb_prev(&req->rb_node) && blk_rq_pos(req) < blk_rq_pos(container_of(rb_prev(&req->rb_node), struct request, rb_node))) { struct bfq_queue *bfqq = RQ_BFQQ(req); struct bfq_data *bfqd = bfqq->bfqd; struct request *prev, *next_rq; /* Reposition request in its sort_list */ elv_rb_del(&bfqq->sort_list, req); elv_rb_add(&bfqq->sort_list, req); /* Choose next request to be served for bfqq */ prev = bfqq->next_rq; next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, bfqd->last_position); bfqq->next_rq = next_rq; /* * If next_rq changes, update the queue's budget to fit * the new request. */ if (prev != bfqq->next_rq) bfq_updated_next_req(bfqd, bfqq); } } static void bfq_requests_merged(struct request_queue *q, struct request *rq, struct request *next) { struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); if (!RB_EMPTY_NODE(&rq->rb_node)) goto end; spin_lock_irq(&bfqq->bfqd->lock); /* * If next and rq belong to the same bfq_queue and next is older * than rq, then reposition rq in the fifo (by substituting next * with rq). Otherwise, if next and rq belong to different * bfq_queues, never reposition rq: in fact, we would have to * reposition it with respect to next's position in its own fifo, * which would most certainly be too expensive with respect to * the benefits. */ if (bfqq == next_bfqq && !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && next->fifo_time < rq->fifo_time) { list_del_init(&rq->queuelist); list_replace_init(&next->queuelist, &rq->queuelist); rq->fifo_time = next->fifo_time; } if (bfqq->next_rq == next) bfqq->next_rq = rq; bfq_remove_request(q, next); spin_unlock_irq(&bfqq->bfqd->lock); end: bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags); } static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, struct bio *bio) { struct bfq_data *bfqd = q->elevator->elevator_data; bool is_sync = op_is_sync(bio->bi_opf); struct bfq_queue *bfqq = bfqd->bio_bfqq; /* * Disallow merge of a sync bio into an async request. */ if (is_sync && !rq_is_sync(rq)) return false; /* * Lookup the bfqq that this bio will be queued with. Allow * merge only if rq is queued there. */ if (!bfqq) return false; return bfqq == RQ_BFQQ(rq); } static void __bfq_set_in_service_queue(struct bfq_data *bfqd, struct bfq_queue *bfqq) { if (bfqq) { bfqg_stats_update_avg_queue_size(bfqq_group(bfqq)); bfq_mark_bfqq_budget_new(bfqq); bfq_clear_bfqq_fifo_expire(bfqq); bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; bfq_log_bfqq(bfqd, bfqq, "set_in_service_queue, cur-budget = %d", bfqq->entity.budget); } bfqd->in_service_queue = bfqq; } /* * Get and set a new queue for service. */ static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) { struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); __bfq_set_in_service_queue(bfqd, bfqq); return bfqq; } static void bfq_arm_slice_timer(struct bfq_data *bfqd) { struct bfq_queue *bfqq = bfqd->in_service_queue; struct bfq_io_cq *bic; u32 sl; /* Processes have exited, don't wait. */ bic = bfqd->in_service_bic; if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0) return; bfq_mark_bfqq_wait_request(bfqq); /* * We don't want to idle for seeks, but we do want to allow * fair distribution of slice time for a process doing back-to-back * seeks. So allow a little bit of time for him to submit a new rq. */ sl = bfqd->bfq_slice_idle; /* * Grant only minimum idle time if the queue is seeky. */ if (BFQQ_SEEKY(bfqq)) sl = min_t(u64, sl, BFQ_MIN_TT); bfqd->last_idling_start = ktime_get(); hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), HRTIMER_MODE_REL); bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); } /* * Set the maximum time for the in-service queue to consume its * budget. This prevents seeky processes from lowering the disk * throughput (always guaranteed with a time slice scheme as in CFQ). */ static void bfq_set_budget_timeout(struct bfq_data *bfqd) { struct bfq_queue *bfqq = bfqd->in_service_queue; unsigned int timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight; bfqd->last_budget_start = ktime_get(); bfq_clear_bfqq_budget_new(bfqq); bfqq->budget_timeout = jiffies + bfqd->bfq_timeout * timeout_coeff; bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u", jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff)); } /* * Remove request from internal lists. */ static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) { struct bfq_queue *bfqq = RQ_BFQQ(rq); /* * For consistency, the next instruction should have been * executed after removing the request from the queue and * dispatching it. We execute instead this instruction before * bfq_remove_request() (and hence introduce a temporary * inconsistency), for efficiency. In fact, should this * dispatch occur for a non in-service bfqq, this anticipated * increment prevents two counters related to bfqq->dispatched * from risking to be, first, uselessly decremented, and then * incremented again when the (new) value of bfqq->dispatched * happens to be taken into account. */ bfqq->dispatched++; bfq_remove_request(q, rq); } static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) { if (RB_EMPTY_ROOT(&bfqq->sort_list)) bfq_del_bfqq_busy(bfqd, bfqq, true); else bfq_requeue_bfqq(bfqd, bfqq); /* * All in-service entities must have been properly deactivated * or requeued before executing the next function, which * resets all in-service entites as no more in service. */ __bfq_bfqd_reset_in_service(bfqd); } /** * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. * @bfqd: device data. * @bfqq: queue to update. * @reason: reason for expiration. * * Handle the feedback on @bfqq budget at queue expiration. * See the body for detailed comments. */ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, struct bfq_queue *bfqq, enum bfqq_expiration reason) { struct request *next_rq; int budget, min_budget; budget = bfqq->max_budget; min_budget = bfq_min_budget(bfqd); bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", budget, bfq_min_budget(bfqd)); bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); if (bfq_bfqq_sync(bfqq)) { switch (reason) { /* * Caveat: in all the following cases we trade latency * for throughput. */ case BFQQE_TOO_IDLE: /* * This is the only case where we may reduce * the budget: if there is no request of the * process still waiting for completion, then * we assume (tentatively) that the timer has * expired because the batch of requests of * the process could have been served with a * smaller budget. Hence, betting that * process will behave in the same way when it * becomes backlogged again, we reduce its * next budget. As long as we guess right, * this budget cut reduces the latency * experienced by the process. * * However, if there are still outstanding * requests, then the process may have not yet * issued its next request just because it is * still waiting for the completion of some of * the still outstanding ones. So in this * subcase we do not reduce its budget, on the * contrary we increase it to possibly boost * the throughput, as discussed in the * comments to the BUDGET_TIMEOUT case. */ if (bfqq->dispatched > 0) /* still outstanding reqs */ budget = min(budget * 2, bfqd->bfq_max_budget); else { if (budget > 5 * min_budget) budget -= 4 * min_budget; else budget = min_budget; } break; case BFQQE_BUDGET_TIMEOUT: /* * We double the budget here because it gives * the chance to boost the throughput if this * is not a seeky process (and has bumped into * this timeout because of, e.g., ZBR). */ budget = min(budget * 2, bfqd->bfq_max_budget); break; case BFQQE_BUDGET_EXHAUSTED: /* * The process still has backlog, and did not * let either the budget timeout or the disk * idling timeout expire. Hence it is not * seeky, has a short thinktime and may be * happy with a higher budget too. So * definitely increase the budget of this good * candidate to boost the disk throughput. */ budget = min(budget * 4, bfqd->bfq_max_budget); break; case BFQQE_NO_MORE_REQUESTS: /* * For queues that expire for this reason, it * is particularly important to keep the * budget close to the actual service they * need. Doing so reduces the timestamp * misalignment problem described in the * comments in the body of * __bfq_activate_entity. In fact, suppose * that a queue systematically expires for * BFQQE_NO_MORE_REQUESTS and presents a * new request in time to enjoy timestamp * back-shifting. The larger the budget of the * queue is with respect to the service the * queue actually requests in each service * slot, the more times the queue can be * reactivated with the same virtual finish * time. It follows that, even if this finish * time is pushed to the system virtual time * to reduce the consequent timestamp * misalignment, the queue unjustly enjoys for * many re-activations a lower finish time * than all newly activated queues. * * The service needed by bfqq is measured * quite precisely by bfqq->entity.service. * Since bfqq does not enjoy device idling, * bfqq->entity.service is equal to the number * of sectors that the process associated with * bfqq requested to read/write before waiting * for request completions, or blocking for * other reasons. */ budget = max_t(int, bfqq->entity.service, min_budget); break; default: return; } } else { /* * Async queues get always the maximum possible * budget, as for them we do not care about latency * (in addition, their ability to dispatch is limited * by the charging factor). */ budget = bfqd->bfq_max_budget; } bfqq->max_budget = budget; if (bfqd->budgets_assigned >= bfq_stats_min_budgets && !bfqd->bfq_user_max_budget) bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); /* * If there is still backlog, then assign a new budget, making * sure that it is large enough for the next request. Since * the finish time of bfqq must be kept in sync with the * budget, be sure to call __bfq_bfqq_expire() *after* this * update. * * If there is no backlog, then no need to update the budget; * it will be updated on the arrival of a new request. */ next_rq = bfqq->next_rq; if (next_rq) bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, bfq_serv_to_charge(next_rq, bfqq)); bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", next_rq ? blk_rq_sectors(next_rq) : 0, bfqq->entity.budget); } static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout) { unsigned long max_budget; /* * The max_budget calculated when autotuning is equal to the * amount of sectors transferred in timeout at the estimated * peak rate. To get this value, peak_rate is, first, * multiplied by 1000, because timeout is measured in ms, * while peak_rate is measured in sectors/usecs. Then the * result of this multiplication is right-shifted by * BFQ_RATE_SHIFT, because peak_rate is equal to the value of * the peak rate left-shifted by BFQ_RATE_SHIFT. */ max_budget = (unsigned long)(peak_rate * 1000 * timeout >> BFQ_RATE_SHIFT); return max_budget; } /* * In addition to updating the peak rate, checks whether the process * is "slow", and returns 1 if so. This slow flag is used, in addition * to the budget timeout, to reduce the amount of service provided to * seeky processes, and hence reduce their chances to lower the * throughput. See the code for more details. */ static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq, bool compensate) { u64 bw, usecs, expected, timeout; ktime_t delta; int update = 0; if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq)) return false; if (compensate) delta = bfqd->last_idling_start; else delta = ktime_get(); delta = ktime_sub(delta, bfqd->last_budget_start); usecs = ktime_to_us(delta); /* don't use too short time intervals */ if (usecs < 1000) return false; /* * Calculate the bandwidth for the last slice. We use a 64 bit * value to store the peak rate, in sectors per usec in fixed * point math. We do so to have enough precision in the estimate * and to avoid overflows. */ bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT; do_div(bw, (unsigned long)usecs); timeout = jiffies_to_msecs(bfqd->bfq_timeout); /* * Use only long (> 20ms) intervals to filter out spikes for * the peak rate estimation. */ if (usecs > 20000) { if (bw > bfqd->peak_rate) { bfqd->peak_rate = bw; update = 1; bfq_log(bfqd, "new peak_rate=%llu", bw); } update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1; if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES) bfqd->peak_rate_samples++; if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES && update && bfqd->bfq_user_max_budget == 0) { bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd->peak_rate, timeout); bfq_log(bfqd, "new max_budget=%d", bfqd->bfq_max_budget); } } /* * A process is considered ``slow'' (i.e., seeky, so that we * cannot treat it fairly in the service domain, as it would * slow down too much the other processes) if, when a slice * ends for whatever reason, it has received service at a * rate that would not be high enough to complete the budget * before the budget timeout expiration. */ expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT; /* * Caveat: processes doing IO in the slower disk zones will * tend to be slow(er) even if not seeky. And the estimated * peak rate will actually be an average over the disk * surface. Hence, to not be too harsh with unlucky processes, * we keep a budget/3 margin of safety before declaring a * process slow. */ return expected > (4 * bfqq->entity.budget) / 3; } /* * Return the farthest past time instant according to jiffies * macros. */ static unsigned long bfq_smallest_from_now(void) { return jiffies - MAX_JIFFY_OFFSET; } /** * bfq_bfqq_expire - expire a queue. * @bfqd: device owning the queue. * @bfqq: the queue to expire. * @compensate: if true, compensate for the time spent idling. * @reason: the reason causing the expiration. * * * If the process associated with the queue is slow (i.e., seeky), or * in case of budget timeout, or, finally, if it is async, we * artificially charge it an entire budget (independently of the * actual service it received). As a consequence, the queue will get * higher timestamps than the correct ones upon reactivation, and * hence it will be rescheduled as if it had received more service * than what it actually received. In the end, this class of processes * will receive less service in proportion to how slowly they consume * their budgets (and hence how seriously they tend to lower the * throughput). * * In contrast, when a queue expires because it has been idling for * too much or because it exhausted its budget, we do not touch the * amount of service it has received. Hence when the queue will be * reactivated and its timestamps updated, the latter will be in sync * with the actual service received by the queue until expiration. * * Charging a full budget to the first type of queues and the exact * service to the others has the effect of using the WF2Q+ policy to * schedule the former on a timeslice basis, without violating the * service domain guarantees of the latter. */ static void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq, bool compensate, enum bfqq_expiration reason) { bool slow; int ref; /* * Update device peak rate for autotuning and check whether the * process is slow (see bfq_update_peak_rate). */ slow = bfq_update_peak_rate(bfqd, bfqq, compensate); /* * As above explained, 'punish' slow (i.e., seeky), timed-out * and async queues, to favor sequential sync workloads. */ if (slow || reason == BFQQE_BUDGET_TIMEOUT) bfq_bfqq_charge_full_budget(bfqq); if (reason == BFQQE_TOO_IDLE && bfqq->entity.service <= 2 * bfqq->entity.budget / 10) bfq_clear_bfqq_IO_bound(bfqq); bfq_log_bfqq(bfqd, bfqq, "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq)); /* * Increase, decrease or leave budget unchanged according to * reason. */ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); ref = bfqq->ref; __bfq_bfqq_expire(bfqd, bfqq); /* mark bfqq as waiting a request only if a bic still points to it */ if (ref > 1 && !bfq_bfqq_busy(bfqq) && reason != BFQQE_BUDGET_TIMEOUT && reason != BFQQE_BUDGET_EXHAUSTED) bfq_mark_bfqq_non_blocking_wait_rq(bfqq); } /* * Budget timeout is not implemented through a dedicated timer, but * just checked on request arrivals and completions, as well as on * idle timer expirations. */ static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) { if (bfq_bfqq_budget_new(bfqq) || time_is_after_jiffies(bfqq->budget_timeout)) return false; return true; } /* * If we expire a queue that is actively waiting (i.e., with the * device idled) for the arrival of a new request, then we may incur * the timestamp misalignment problem described in the body of the * function __bfq_activate_entity. Hence we return true only if this * condition does not hold, or if the queue is slow enough to deserve * only to be kicked off for preserving a high throughput. */ static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) { bfq_log_bfqq(bfqq->bfqd, bfqq, "may_budget_timeout: wait_request %d left %d timeout %d", bfq_bfqq_wait_request(bfqq), bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, bfq_bfqq_budget_timeout(bfqq)); return (!bfq_bfqq_wait_request(bfqq) || bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) && bfq_bfqq_budget_timeout(bfqq); } /* * For a queue that becomes empty, device idling is allowed only if * this function returns true for the queue. And this function returns * true only if idling is beneficial for throughput. */ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) { struct bfq_data *bfqd = bfqq->bfqd; bool idling_boosts_thr; if (bfqd->strict_guarantees) return true; /* * The value of the next variable is computed considering that * idling is usually beneficial for the throughput if: * (a) the device is not NCQ-capable, or * (b) regardless of the presence of NCQ, the request pattern * for bfqq is I/O-bound (possible throughput losses * caused by granting idling to seeky queues are mitigated * by the fact that, in all scenarios where boosting * throughput is the best thing to do, i.e., in all * symmetric scenarios, only a minimal idle time is * allowed to seeky queues). */ idling_boosts_thr = !bfqd->hw_tag || bfq_bfqq_IO_bound(bfqq); /* * We have now the components we need to compute the return * value of the function, which is true only if both the * following conditions hold: * 1) bfqq is sync, because idling make sense only for sync queues; * 2) idling boosts the throughput. */ return bfq_bfqq_sync(bfqq) && idling_boosts_thr; } /* * If the in-service queue is empty but the function bfq_bfqq_may_idle * returns true, then: * 1) the queue must remain in service and cannot be expired, and * 2) the device must be idled to wait for the possible arrival of a new * request for the queue. * See the comments on the function bfq_bfqq_may_idle for the reasons * why performing device idling is the best choice to boost the throughput * and preserve service guarantees when bfq_bfqq_may_idle itself * returns true. */ static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) { struct bfq_data *bfqd = bfqq->bfqd; return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 && bfq_bfqq_may_idle(bfqq); } /* * Select a queue for service. If we have a current queue in service, * check whether to continue servicing it, or retrieve and set a new one. */ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) { struct bfq_queue *bfqq; struct request *next_rq; enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; bfqq = bfqd->in_service_queue; if (!bfqq) goto new_queue; bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); if (bfq_may_expire_for_budg_timeout(bfqq) && !bfq_bfqq_wait_request(bfqq) && !bfq_bfqq_must_idle(bfqq)) goto expire; check_queue: /* * This loop is rarely executed more than once. Even when it * happens, it is much more convenient to re-execute this loop * than to return NULL and trigger a new dispatch to get a * request served. */ next_rq = bfqq->next_rq; /* * If bfqq has requests queued and it has enough budget left to * serve them, keep the queue, otherwise expire it. */ if (next_rq) { if (bfq_serv_to_charge(next_rq, bfqq) > bfq_bfqq_budget_left(bfqq)) { /* * Expire the queue for budget exhaustion, * which makes sure that the next budget is * enough to serve the next request, even if * it comes from the fifo expired path. */ reason = BFQQE_BUDGET_EXHAUSTED; goto expire; } else { /* * The idle timer may be pending because we may * not disable disk idling even when a new request * arrives. */ if (bfq_bfqq_wait_request(bfqq)) { /* * If we get here: 1) at least a new request * has arrived but we have not disabled the * timer because the request was too small, * 2) then the block layer has unplugged * the device, causing the dispatch to be * invoked. * * Since the device is unplugged, now the * requests are probably large enough to * provide a reasonable throughput. * So we disable idling. */ bfq_clear_bfqq_wait_request(bfqq); hrtimer_try_to_cancel(&bfqd->idle_slice_timer); bfqg_stats_update_idle_time(bfqq_group(bfqq)); } goto keep_queue; } } /* * No requests pending. However, if the in-service queue is idling * for a new request, or has requests waiting for a completion and * may idle after their completion, then keep it anyway. */ if (bfq_bfqq_wait_request(bfqq) || (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { bfqq = NULL; goto keep_queue; } reason = BFQQE_NO_MORE_REQUESTS; expire: bfq_bfqq_expire(bfqd, bfqq, false, reason); new_queue: bfqq = bfq_set_in_service_queue(bfqd); if (bfqq) { bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); goto check_queue; } keep_queue: if (bfqq) bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); else bfq_log(bfqd, "select_queue: no queue returned"); return bfqq; } /* * Dispatch next request from bfqq. */ static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) { struct request *rq = bfqq->next_rq; unsigned long service_to_charge; service_to_charge = bfq_serv_to_charge(rq, bfqq); bfq_bfqq_served(bfqq, service_to_charge); bfq_dispatch_remove(bfqd->queue, rq); if (!bfqd->in_service_bic) { atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount); bfqd->in_service_bic = RQ_BIC(rq); } /* * Expire bfqq, pretending that its budget expired, if bfqq * belongs to CLASS_IDLE and other queues are waiting for * service. */ if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) goto expire; return rq; expire: bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); return rq; } static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) { struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; /* * Avoiding lock: a race on bfqd->busy_queues should cause at * most a call to dispatch for nothing */ return !list_empty_careful(&bfqd->dispatch) || bfqd->busy_queues > 0; } static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) { struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; struct request *rq = NULL; struct bfq_queue *bfqq = NULL; if (!list_empty(&bfqd->dispatch)) { rq = list_first_entry(&bfqd->dispatch, struct request, queuelist); list_del_init(&rq->queuelist); bfqq = RQ_BFQQ(rq); if (bfqq) { /* * Increment counters here, because this * dispatch does not follow the standard * dispatch flow (where counters are * incremented) */ bfqq->dispatched++; goto inc_in_driver_start_rq; } /* * We exploit the put_rq_private hook to decrement * rq_in_driver, but put_rq_private will not be * invoked on this request. So, to avoid unbalance, * just start this request, without incrementing * rq_in_driver. As a negative consequence, * rq_in_driver is deceptively lower than it should be * while this request is in service. This may cause * bfq_schedule_dispatch to be invoked uselessly. * * As for implementing an exact solution, the * put_request hook, if defined, is probably invoked * also on this request. So, by exploiting this hook, * we could 1) increment rq_in_driver here, and 2) * decrement it in put_request. Such a solution would * let the value of the counter be always accurate, * but it would entail using an extra interface * function. This cost seems higher than the benefit, * being the frequency of non-elevator-private * requests very low. */ goto start_rq; } bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); if (bfqd->busy_queues == 0) goto exit; /* * Force device to serve one request at a time if * strict_guarantees is true. Forcing this service scheme is * currently the ONLY way to guarantee that the request * service order enforced by the scheduler is respected by a * queueing device. Otherwise the device is free even to make * some unlucky request wait for as long as the device * wishes. * * Of course, serving one request at at time may cause loss of * throughput. */ if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) goto exit; bfqq = bfq_select_queue(bfqd); if (!bfqq) goto exit; rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); if (rq) { inc_in_driver_start_rq: bfqd->rq_in_driver++; start_rq: rq->rq_flags |= RQF_STARTED; } exit: return rq; } static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) { struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; struct request *rq; spin_lock_irq(&bfqd->lock); rq = __bfq_dispatch_request(hctx); spin_unlock_irq(&bfqd->lock); return rq; } /* * Task holds one reference to the queue, dropped when task exits. Each rq * in-flight on this queue also holds a reference, dropped when rq is freed. * * Scheduler lock must be held here. Recall not to use bfqq after calling * this function on it. */ static void bfq_put_queue(struct bfq_queue *bfqq) { #ifdef CONFIG_BFQ_GROUP_IOSCHED struct bfq_group *bfqg = bfqq_group(bfqq); #endif if (bfqq->bfqd) bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref); bfqq->ref--; if (bfqq->ref) return; bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p freed", bfqq); kmem_cache_free(bfq_pool, bfqq); #ifdef CONFIG_BFQ_GROUP_IOSCHED bfqg_put(bfqg); #endif } static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) { if (bfqq == bfqd->in_service_queue) { __bfq_bfqq_expire(bfqd, bfqq); bfq_schedule_dispatch(bfqd); } bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); bfq_put_queue(bfqq); /* release process reference */ } static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) { struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); struct bfq_data *bfqd; if (bfqq) bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ if (bfqq && bfqd) { unsigned long flags; spin_lock_irqsave(&bfqd->lock, flags); bfq_exit_bfqq(bfqd, bfqq); bic_set_bfqq(bic, NULL, is_sync); spin_unlock_irq(&bfqd->lock); } } static void bfq_exit_icq(struct io_cq *icq) { struct bfq_io_cq *bic = icq_to_bic(icq); bfq_exit_icq_bfqq(bic, true); bfq_exit_icq_bfqq(bic, false); } /* * Update the entity prio values; note that the new values will not * be used until the next (re)activation. */ static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) { struct task_struct *tsk = current; int ioprio_class; struct bfq_data *bfqd = bfqq->bfqd; if (!bfqd) return; ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); switch (ioprio_class) { default: dev_err(bfqq->bfqd->queue->backing_dev_info->dev, "bfq: bad prio class %d\n", ioprio_class); case IOPRIO_CLASS_NONE: /* * No prio set, inherit CPU scheduling settings. */ bfqq->new_ioprio = task_nice_ioprio(tsk); bfqq->new_ioprio_class = task_nice_ioclass(tsk); break; case IOPRIO_CLASS_RT: bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); bfqq->new_ioprio_class = IOPRIO_CLASS_RT; break; case IOPRIO_CLASS_BE: bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); bfqq->new_ioprio_class = IOPRIO_CLASS_BE; break; case IOPRIO_CLASS_IDLE: bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; bfqq->new_ioprio = 7; bfq_clear_bfqq_idle_window(bfqq); break; } if (bfqq->new_ioprio >= IOPRIO_BE_NR) { pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", bfqq->new_ioprio); bfqq->new_ioprio = IOPRIO_BE_NR; } bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); bfqq->entity.prio_changed = 1; } static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) { struct bfq_data *bfqd = bic_to_bfqd(bic); struct bfq_queue *bfqq; int ioprio = bic->icq.ioc->ioprio; /* * This condition may trigger on a newly created bic, be sure to * drop the lock before returning. */ if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) return; bic->ioprio = ioprio; bfqq = bic_to_bfqq(bic, false); if (bfqq) { /* release process reference on this queue */ bfq_put_queue(bfqq); bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); bic_set_bfqq(bic, bfqq, false); } bfqq = bic_to_bfqq(bic, true); if (bfqq) bfq_set_next_ioprio_data(bfqq, bic); } static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct bfq_io_cq *bic, pid_t pid, int is_sync) { RB_CLEAR_NODE(&bfqq->entity.rb_node); INIT_LIST_HEAD(&bfqq->fifo); bfqq->ref = 0; bfqq->bfqd = bfqd; if (bic) bfq_set_next_ioprio_data(bfqq, bic); if (is_sync) { if (!bfq_class_idle(bfqq)) bfq_mark_bfqq_idle_window(bfqq); bfq_mark_bfqq_sync(bfqq); } else bfq_clear_bfqq_sync(bfqq); /* set end request to minus infinity from now */ bfqq->ttime.last_end_request = ktime_get_ns() + 1; bfq_mark_bfqq_IO_bound(bfqq); bfqq->pid = pid; /* Tentative initial value to trade off between thr and lat */ bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3; bfqq->budget_timeout = bfq_smallest_from_now(); /* first request is almost certainly seeky */ bfqq->seek_history = 1; } static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, struct bfq_group *bfqg, int ioprio_class, int ioprio) { switch (ioprio_class) { case IOPRIO_CLASS_RT: return &bfqg->async_bfqq[0][ioprio]; case IOPRIO_CLASS_NONE: ioprio = IOPRIO_NORM; /* fall through */ case IOPRIO_CLASS_BE: return &bfqg->async_bfqq[1][ioprio]; case IOPRIO_CLASS_IDLE: return &bfqg->async_idle_bfqq; default: return NULL; } } static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, struct bio *bio, bool is_sync, struct bfq_io_cq *bic) { const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); struct bfq_queue **async_bfqq = NULL; struct bfq_queue *bfqq; struct bfq_group *bfqg; rcu_read_lock(); bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio)); if (!bfqg) { bfqq = &bfqd->oom_bfqq; goto out; } if (!is_sync) { async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class, ioprio); bfqq = *async_bfqq; if (bfqq) goto out; } bfqq = kmem_cache_alloc_node(bfq_pool, GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, bfqd->queue->node); if (bfqq) { bfq_init_bfqq(bfqd, bfqq, bic, current->pid, is_sync); bfq_init_entity(&bfqq->entity, bfqg); bfq_log_bfqq(bfqd, bfqq, "allocated"); } else { bfqq = &bfqd->oom_bfqq; bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); goto out; } /* * Pin the queue now that it's allocated, scheduler exit will * prune it. */ if (async_bfqq) { bfqq->ref++; /* * Extra group reference, w.r.t. sync * queue. This extra reference is removed * only if bfqq->bfqg disappears, to * guarantee that this queue is not freed * until its group goes away. */ bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", bfqq, bfqq->ref); *async_bfqq = bfqq; } out: bfqq->ref++; /* get a process reference to this queue */ bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); rcu_read_unlock(); return bfqq; } static void bfq_update_io_thinktime(struct bfq_data *bfqd, struct bfq_queue *bfqq) { struct bfq_ttime *ttime = &bfqq->ttime; u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, ttime->ttime_samples); } static void bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct request *rq) { sector_t sdist = 0; if (bfqq->last_request_pos) { if (bfqq->last_request_pos < blk_rq_pos(rq)) sdist = blk_rq_pos(rq) - bfqq->last_request_pos; else sdist = bfqq->last_request_pos - blk_rq_pos(rq); } bfqq->seek_history <<= 1; bfqq->seek_history |= sdist > BFQQ_SEEK_THR && (!blk_queue_nonrot(bfqd->queue) || blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); } /* * Disable idle window if the process thinks too long or seeks so much that * it doesn't matter. */ static void bfq_update_idle_window(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct bfq_io_cq *bic) { int enable_idle; /* Don't idle for async or idle io prio class. */ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq)) return; enable_idle = bfq_bfqq_idle_window(bfqq); if (atomic_read(&bic->icq.ioc->active_ref) == 0 || bfqd->bfq_slice_idle == 0 || (bfqd->hw_tag && BFQQ_SEEKY(bfqq))) enable_idle = 0; else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) { if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle) enable_idle = 0; else enable_idle = 1; } bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d", enable_idle); if (enable_idle) bfq_mark_bfqq_idle_window(bfqq); else bfq_clear_bfqq_idle_window(bfqq); } /* * Called when a new fs request (rq) is added to bfqq. Check if there's * something we should do about it. */ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct request *rq) { struct bfq_io_cq *bic = RQ_BIC(rq); if (rq->cmd_flags & REQ_META) bfqq->meta_pending++; bfq_update_io_thinktime(bfqd, bfqq); bfq_update_io_seektime(bfqd, bfqq, rq); if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 || !BFQQ_SEEKY(bfqq)) bfq_update_idle_window(bfqd, bfqq, bic); bfq_log_bfqq(bfqd, bfqq, "rq_enqueued: idle_window=%d (seeky %d)", bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq)); bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && blk_rq_sectors(rq) < 32; bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); /* * There is just this request queued: if the request * is small and the queue is not to be expired, then * just exit. * * In this way, if the device is being idled to wait * for a new request from the in-service queue, we * avoid unplugging the device and committing the * device to serve just a small request. On the * contrary, we wait for the block layer to decide * when to unplug the device: hopefully, new requests * will be merged to this one quickly, then the device * will be unplugged and larger requests will be * dispatched. */ if (small_req && !budget_timeout) return; /* * A large enough request arrived, or the queue is to * be expired: in both cases disk idling is to be * stopped, so clear wait_request flag and reset * timer. */ bfq_clear_bfqq_wait_request(bfqq); hrtimer_try_to_cancel(&bfqd->idle_slice_timer); bfqg_stats_update_idle_time(bfqq_group(bfqq)); /* * The queue is not empty, because a new request just * arrived. Hence we can safely expire the queue, in * case of budget timeout, without risking that the * timestamps of the queue are not updated correctly. * See [1] for more details. */ if (budget_timeout) bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_TIMEOUT); } } static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) { struct bfq_queue *bfqq = RQ_BFQQ(rq); bfq_add_request(rq); rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; list_add_tail(&rq->queuelist, &bfqq->fifo); bfq_rq_enqueued(bfqd, bfqq, rq); } static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, bool at_head) { struct request_queue *q = hctx->queue; struct bfq_data *bfqd = q->elevator->elevator_data; spin_lock_irq(&bfqd->lock); if (blk_mq_sched_try_insert_merge(q, rq)) { spin_unlock_irq(&bfqd->lock); return; } spin_unlock_irq(&bfqd->lock); blk_mq_sched_request_inserted(rq); spin_lock_irq(&bfqd->lock); if (at_head || blk_rq_is_passthrough(rq)) { if (at_head) list_add(&rq->queuelist, &bfqd->dispatch); else list_add_tail(&rq->queuelist, &bfqd->dispatch); } else { __bfq_insert_request(bfqd, rq); if (rq_mergeable(rq)) { elv_rqhash_add(q, rq); if (!q->last_merge) q->last_merge = rq; } } spin_unlock_irq(&bfqd->lock); } static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, struct list_head *list, bool at_head) { while (!list_empty(list)) { struct request *rq; rq = list_first_entry(list, struct request, queuelist); list_del_init(&rq->queuelist); bfq_insert_request(hctx, rq, at_head); } } static void bfq_update_hw_tag(struct bfq_data *bfqd) { bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, bfqd->rq_in_driver); if (bfqd->hw_tag == 1) return; /* * This sample is valid if the number of outstanding requests * is large enough to allow a queueing behavior. Note that the * sum is not exact, as it's not taking into account deactivated * requests. */ if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) return; if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) return; bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; bfqd->max_rq_in_driver = 0; bfqd->hw_tag_samples = 0; } static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) { bfq_update_hw_tag(bfqd); bfqd->rq_in_driver--; bfqq->dispatched--; bfqq->ttime.last_end_request = ktime_get_ns(); /* * If this is the in-service queue, check if it needs to be expired, * or if we want to idle in case it has no pending requests. */ if (bfqd->in_service_queue == bfqq) { if (bfq_bfqq_budget_new(bfqq)) bfq_set_budget_timeout(bfqd); if (bfq_bfqq_must_idle(bfqq)) { bfq_arm_slice_timer(bfqd); return; } else if (bfq_may_expire_for_budg_timeout(bfqq)) bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_TIMEOUT); else if (RB_EMPTY_ROOT(&bfqq->sort_list) && (bfqq->dispatched == 0 || !bfq_bfqq_may_idle(bfqq))) bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_NO_MORE_REQUESTS); } } static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) { bfqq->allocated--; bfq_put_queue(bfqq); } static void bfq_put_rq_private(struct request_queue *q, struct request *rq) { struct bfq_queue *bfqq = RQ_BFQQ(rq); struct bfq_data *bfqd = bfqq->bfqd; if (rq->rq_flags & RQF_STARTED) bfqg_stats_update_completion(bfqq_group(bfqq), rq_start_time_ns(rq), rq_io_start_time_ns(rq), rq->cmd_flags); if (likely(rq->rq_flags & RQF_STARTED)) { unsigned long flags; spin_lock_irqsave(&bfqd->lock, flags); bfq_completed_request(bfqq, bfqd); bfq_put_rq_priv_body(bfqq); spin_unlock_irqrestore(&bfqd->lock, flags); } else { /* * Request rq may be still/already in the scheduler, * in which case we need to remove it. And we cannot * defer such a check and removal, to avoid * inconsistencies in the time interval from the end * of this function to the start of the deferred work. * This situation seems to occur only in process * context, as a consequence of a merge. In the * current version of the code, this implies that the * lock is held. */ if (!RB_EMPTY_NODE(&rq->rb_node)) bfq_remove_request(q, rq); bfq_put_rq_priv_body(bfqq); } rq->elv.priv[0] = NULL; rq->elv.priv[1] = NULL; } /* * Allocate bfq data structures associated with this request. */ static int bfq_get_rq_private(struct request_queue *q, struct request *rq, struct bio *bio) { struct bfq_data *bfqd = q->elevator->elevator_data; struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq); const int is_sync = rq_is_sync(rq); struct bfq_queue *bfqq; spin_lock_irq(&bfqd->lock); bfq_check_ioprio_change(bic, bio); if (!bic) goto queue_fail; bfq_bic_update_cgroup(bic, bio); bfqq = bic_to_bfqq(bic, is_sync); if (!bfqq || bfqq == &bfqd->oom_bfqq) { if (bfqq) bfq_put_queue(bfqq); bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); bic_set_bfqq(bic, bfqq, is_sync); } bfqq->allocated++; bfqq->ref++; bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", rq, bfqq, bfqq->ref); rq->elv.priv[0] = bic; rq->elv.priv[1] = bfqq; spin_unlock_irq(&bfqd->lock); return 0; queue_fail: spin_unlock_irq(&bfqd->lock); return 1; } static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) { struct bfq_data *bfqd = bfqq->bfqd; enum bfqq_expiration reason; unsigned long flags; spin_lock_irqsave(&bfqd->lock, flags); bfq_clear_bfqq_wait_request(bfqq); if (bfqq != bfqd->in_service_queue) { spin_unlock_irqrestore(&bfqd->lock, flags); return; } if (bfq_bfqq_budget_timeout(bfqq)) /* * Also here the queue can be safely expired * for budget timeout without wasting * guarantees */ reason = BFQQE_BUDGET_TIMEOUT; else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) /* * The queue may not be empty upon timer expiration, * because we may not disable the timer when the * first request of the in-service queue arrives * during disk idling. */ reason = BFQQE_TOO_IDLE; else goto schedule_dispatch; bfq_bfqq_expire(bfqd, bfqq, true, reason); schedule_dispatch: spin_unlock_irqrestore(&bfqd->lock, flags); bfq_schedule_dispatch(bfqd); } /* * Handler of the expiration of the timer running if the in-service queue * is idling inside its time slice. */ static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) { struct bfq_data *bfqd = container_of(timer, struct bfq_data, idle_slice_timer); struct bfq_queue *bfqq = bfqd->in_service_queue; /* * Theoretical race here: the in-service queue can be NULL or * different from the queue that was idling if a new request * arrives for the current queue and there is a full dispatch * cycle that changes the in-service queue. This can hardly * happen, but in the worst case we just expire a queue too * early. */ if (bfqq) bfq_idle_slice_timer_body(bfqq); return HRTIMER_NORESTART; } static void __bfq_put_async_bfqq(struct bfq_data *bfqd, struct bfq_queue **bfqq_ptr) { struct bfq_queue *bfqq = *bfqq_ptr; bfq_log(bfqd, "put_async_bfqq: %p", bfqq); if (bfqq) { bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", bfqq, bfqq->ref); bfq_put_queue(bfqq); *bfqq_ptr = NULL; } } /* * Release all the bfqg references to its async queues. If we are * deallocating the group these queues may still contain requests, so * we reparent them to the root cgroup (i.e., the only one that will * exist for sure until all the requests on a device are gone). */ static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg) { int i, j; for (i = 0; i < 2; i++) for (j = 0; j < IOPRIO_BE_NR; j++) __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]); __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq); } static void bfq_exit_queue(struct elevator_queue *e) { struct bfq_data *bfqd = e->elevator_data; struct bfq_queue *bfqq, *n; hrtimer_cancel(&bfqd->idle_slice_timer); spin_lock_irq(&bfqd->lock); list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) bfq_deactivate_bfqq(bfqd, bfqq, false, false); spin_unlock_irq(&bfqd->lock); hrtimer_cancel(&bfqd->idle_slice_timer); #ifdef CONFIG_BFQ_GROUP_IOSCHED blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq); #else spin_lock_irq(&bfqd->lock); bfq_put_async_queues(bfqd, bfqd->root_group); kfree(bfqd->root_group); spin_unlock_irq(&bfqd->lock); #endif kfree(bfqd); } static void bfq_init_root_group(struct bfq_group *root_group, struct bfq_data *bfqd) { int i; #ifdef CONFIG_BFQ_GROUP_IOSCHED root_group->entity.parent = NULL; root_group->my_entity = NULL; root_group->bfqd = bfqd; #endif for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; root_group->sched_data.bfq_class_idle_last_service = jiffies; } static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) { struct bfq_data *bfqd; struct elevator_queue *eq; eq = elevator_alloc(q, e); if (!eq) return -ENOMEM; bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); if (!bfqd) { kobject_put(&eq->kobj); return -ENOMEM; } eq->elevator_data = bfqd; spin_lock_irq(q->queue_lock); q->elevator = eq; spin_unlock_irq(q->queue_lock); /* * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. * Grab a permanent reference to it, so that the normal code flow * will not attempt to free it. */ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); bfqd->oom_bfqq.ref++; bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; bfqd->oom_bfqq.entity.new_weight = bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); /* * Trigger weight initialization, according to ioprio, at the * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio * class won't be changed any more. */ bfqd->oom_bfqq.entity.prio_changed = 1; bfqd->queue = q; INIT_LIST_HEAD(&bfqd->dispatch); hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); bfqd->idle_slice_timer.function = bfq_idle_slice_timer; INIT_LIST_HEAD(&bfqd->active_list); INIT_LIST_HEAD(&bfqd->idle_list); bfqd->hw_tag = -1; bfqd->bfq_max_budget = bfq_default_max_budget; bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; bfqd->bfq_back_max = bfq_back_max; bfqd->bfq_back_penalty = bfq_back_penalty; bfqd->bfq_slice_idle = bfq_slice_idle; bfqd->bfq_timeout = bfq_timeout; bfqd->bfq_requests_within_timer = 120; spin_lock_init(&bfqd->lock); /* * The invocation of the next bfq_create_group_hierarchy * function is the head of a chain of function calls * (bfq_create_group_hierarchy->blkcg_activate_policy-> * blk_mq_freeze_queue) that may lead to the invocation of the * has_work hook function. For this reason, * bfq_create_group_hierarchy is invoked only after all * scheduler data has been initialized, apart from the fields * that can be initialized only after invoking * bfq_create_group_hierarchy. This, in particular, enables * has_work to correctly return false. Of course, to avoid * other inconsistencies, the blk-mq stack must then refrain * from invoking further scheduler hooks before this init * function is finished. */ bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node); if (!bfqd->root_group) goto out_free; bfq_init_root_group(bfqd->root_group, bfqd); bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group); return 0; out_free: kfree(bfqd); kobject_put(&eq->kobj); return -ENOMEM; } static void bfq_slab_kill(void) { kmem_cache_destroy(bfq_pool); } static int __init bfq_slab_setup(void) { bfq_pool = KMEM_CACHE(bfq_queue, 0); if (!bfq_pool) return -ENOMEM; return 0; } static ssize_t bfq_var_show(unsigned int var, char *page) { return sprintf(page, "%u\n", var); } static ssize_t bfq_var_store(unsigned long *var, const char *page, size_t count) { unsigned long new_val; int ret = kstrtoul(page, 10, &new_val); if (ret == 0) *var = new_val; return count; } #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ static ssize_t __FUNC(struct elevator_queue *e, char *page) \ { \ struct bfq_data *bfqd = e->elevator_data; \ u64 __data = __VAR; \ if (__CONV == 1) \ __data = jiffies_to_msecs(__data); \ else if (__CONV == 2) \ __data = div_u64(__data, NSEC_PER_MSEC); \ return bfq_var_show(__data, (page)); \ } SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); #undef SHOW_FUNCTION #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ static ssize_t __FUNC(struct elevator_queue *e, char *page) \ { \ struct bfq_data *bfqd = e->elevator_data; \ u64 __data = __VAR; \ __data = div_u64(__data, NSEC_PER_USEC); \ return bfq_var_show(__data, (page)); \ } USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); #undef USEC_SHOW_FUNCTION #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ static ssize_t \ __FUNC(struct elevator_queue *e, const char *page, size_t count) \ { \ struct bfq_data *bfqd = e->elevator_data; \ unsigned long uninitialized_var(__data); \ int ret = bfq_var_store(&__data, (page), count); \ if (__data < (MIN)) \ __data = (MIN); \ else if (__data > (MAX)) \ __data = (MAX); \ if (__CONV == 1) \ *(__PTR) = msecs_to_jiffies(__data); \ else if (__CONV == 2) \ *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ else \ *(__PTR) = __data; \ return ret; \ } STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, INT_MAX, 2); STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, INT_MAX, 2); STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, INT_MAX, 0); STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); #undef STORE_FUNCTION #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ { \ struct bfq_data *bfqd = e->elevator_data; \ unsigned long uninitialized_var(__data); \ int ret = bfq_var_store(&__data, (page), count); \ if (__data < (MIN)) \ __data = (MIN); \ else if (__data > (MAX)) \ __data = (MAX); \ *(__PTR) = (u64)__data * NSEC_PER_USEC; \ return ret; \ } USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, UINT_MAX); #undef USEC_STORE_FUNCTION static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd) { u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout); if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES) return bfq_calc_max_budget(bfqd->peak_rate, timeout); else return bfq_default_max_budget; } static ssize_t bfq_max_budget_store(struct elevator_queue *e, const char *page, size_t count) { struct bfq_data *bfqd = e->elevator_data; unsigned long uninitialized_var(__data); int ret = bfq_var_store(&__data, (page), count); if (__data == 0) bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); else { if (__data > INT_MAX) __data = INT_MAX; bfqd->bfq_max_budget = __data; } bfqd->bfq_user_max_budget = __data; return ret; } /* * Leaving this name to preserve name compatibility with cfq * parameters, but this timeout is used for both sync and async. */ static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, const char *page, size_t count) { struct bfq_data *bfqd = e->elevator_data; unsigned long uninitialized_var(__data); int ret = bfq_var_store(&__data, (page), count); if (__data < 1) __data = 1; else if (__data > INT_MAX) __data = INT_MAX; bfqd->bfq_timeout = msecs_to_jiffies(__data); if (bfqd->bfq_user_max_budget == 0) bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); return ret; } static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, const char *page, size_t count) { struct bfq_data *bfqd = e->elevator_data; unsigned long uninitialized_var(__data); int ret = bfq_var_store(&__data, (page), count); if (__data > 1) __data = 1; if (!bfqd->strict_guarantees && __data == 1 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; bfqd->strict_guarantees = __data; return ret; } #define BFQ_ATTR(name) \ __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) static struct elv_fs_entry bfq_attrs[] = { BFQ_ATTR(fifo_expire_sync), BFQ_ATTR(fifo_expire_async), BFQ_ATTR(back_seek_max), BFQ_ATTR(back_seek_penalty), BFQ_ATTR(slice_idle), BFQ_ATTR(slice_idle_us), BFQ_ATTR(max_budget), BFQ_ATTR(timeout_sync), BFQ_ATTR(strict_guarantees), __ATTR_NULL }; static struct elevator_type iosched_bfq_mq = { .ops.mq = { .get_rq_priv = bfq_get_rq_private, .put_rq_priv = bfq_put_rq_private, .exit_icq = bfq_exit_icq, .insert_requests = bfq_insert_requests, .dispatch_request = bfq_dispatch_request, .next_request = elv_rb_latter_request, .former_request = elv_rb_former_request, .allow_merge = bfq_allow_bio_merge, .bio_merge = bfq_bio_merge, .request_merge = bfq_request_merge, .requests_merged = bfq_requests_merged, .request_merged = bfq_request_merged, .has_work = bfq_has_work, .init_sched = bfq_init_queue, .exit_sched = bfq_exit_queue, }, .uses_mq = true, .icq_size = sizeof(struct bfq_io_cq), .icq_align = __alignof__(struct bfq_io_cq), .elevator_attrs = bfq_attrs, .elevator_name = "bfq", .elevator_owner = THIS_MODULE, }; #ifdef CONFIG_BFQ_GROUP_IOSCHED static struct blkcg_policy blkcg_policy_bfq = { .dfl_cftypes = bfq_blkg_files, .legacy_cftypes = bfq_blkcg_legacy_files, .cpd_alloc_fn = bfq_cpd_alloc, .cpd_init_fn = bfq_cpd_init, .cpd_bind_fn = bfq_cpd_init, .cpd_free_fn = bfq_cpd_free, .pd_alloc_fn = bfq_pd_alloc, .pd_init_fn = bfq_pd_init, .pd_offline_fn = bfq_pd_offline, .pd_free_fn = bfq_pd_free, .pd_reset_stats_fn = bfq_pd_reset_stats, }; #endif static int __init bfq_init(void) { int ret; #ifdef CONFIG_BFQ_GROUP_IOSCHED ret = blkcg_policy_register(&blkcg_policy_bfq); if (ret) return ret; #endif ret = -ENOMEM; if (bfq_slab_setup()) goto err_pol_unreg; ret = elv_register(&iosched_bfq_mq); if (ret) goto err_pol_unreg; return 0; err_pol_unreg: #ifdef CONFIG_BFQ_GROUP_IOSCHED blkcg_policy_unregister(&blkcg_policy_bfq); #endif return ret; } static void __exit bfq_exit(void) { elv_unregister(&iosched_bfq_mq); #ifdef CONFIG_BFQ_GROUP_IOSCHED blkcg_policy_unregister(&blkcg_policy_bfq); #endif bfq_slab_kill(); } module_init(bfq_init); module_exit(bfq_exit); MODULE_AUTHOR("Paolo Valente"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");