Commit graph

261 commits

Author SHA1 Message Date
Alexander Graf b2677b8dd8 KVM: PPC: Remove 440 support
The 440 target hasn't been properly functioning for a few releases and
before I was the only one who fixes a very serious bug that indicates to
me that nobody used it before either.

Furthermore KVM on 440 is slow to the extent of unusable.

We don't have to carry along completely unused code. Remove 440 and give
us one less thing to worry about.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:15 +02:00
Mihai Caraman 51f047261e KVM: PPC: Allow kvmppc_get_last_inst() to fail
On book3e, guest last instruction is read on the exit path using load
external pid (lwepx) dedicated instruction. This load operation may fail
due to TLB eviction and execute-but-not-read entries.

This patch lay down the path for an alternative solution to read the guest
last instruction, by allowing kvmppc_get_lat_inst() function to fail.
Architecture specific implmentations of kvmppc_load_last_inst() may read
last guest instruction and instruct the emulation layer to re-execute the
guest in case of failure.

Make kvmppc_get_last_inst() definition common between architectures.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:14 +02:00
Alexander Graf 89b68c96a2 KVM: PPC: Book3S: Make magic page properly 4k mappable
The magic page is defined as a 4k page of per-vCPU data that is shared
between the guest and the host to accelerate accesses to privileged
registers.

However, when the host is using 64k page size granularity we weren't quite
as strict about that rule anymore. Instead, we partially treated all of the
upper 64k as magic page and mapped only the uppermost 4k with the actual
magic contents.

This works well enough for Linux which doesn't use any memory in kernel
space in the upper 64k, but Mac OS X got upset. So this patch makes magic
page actually stay in a 4k range even on 64k page size hosts.

This patch fixes magic page usage with Mac OS X (using MOL) on 64k PAGE_SIZE
hosts for me.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:11 +02:00
Paul Mackerras ae2113a4f1 KVM: PPC: Book3S: Allow only implemented hcalls to be enabled or disabled
This adds code to check that when the KVM_CAP_PPC_ENABLE_HCALL
capability is used to enable or disable in-kernel handling of an
hcall, that the hcall is actually implemented by the kernel.
If not an EINVAL error is returned.

This also checks the default-enabled list of hcalls and prints a
warning if any hcall there is not actually implemented.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:18 +02:00
Paul Mackerras 699a0ea082 KVM: PPC: Book3S: Controls for in-kernel sPAPR hypercall handling
This provides a way for userspace controls which sPAPR hcalls get
handled in the kernel.  Each hcall can be individually enabled or
disabled for in-kernel handling, except for H_RTAS.  The exception
for H_RTAS is because userspace can already control whether
individual RTAS functions are handled in-kernel or not via the
KVM_PPC_RTAS_DEFINE_TOKEN ioctl, and because the numeric value for
H_RTAS is out of the normal sequence of hcall numbers.

Hcalls are enabled or disabled using the KVM_ENABLE_CAP ioctl for the
KVM_CAP_PPC_ENABLE_HCALL capability on the file descriptor for the VM.
The args field of the struct kvm_enable_cap specifies the hcall number
in args[0] and the enable/disable flag in args[1]; 0 means disable
in-kernel handling (so that the hcall will always cause an exit to
userspace) and 1 means enable.  Enabling or disabling in-kernel
handling of an hcall is effective across the whole VM.

The ability for KVM_ENABLE_CAP to be used on a VM file descriptor
on PowerPC is new, added by this commit.  The KVM_CAP_ENABLE_CAP_VM
capability advertises that this ability exists.

When a VM is created, an initial set of hcalls are enabled for
in-kernel handling.  The set that is enabled is the set that have
an in-kernel implementation at this point.  Any new hcall
implementations from this point onwards should not be added to the
default set without a good reason.

No distinction is made between real-mode and virtual-mode hcall
implementations; the one setting controls them both.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:17 +02:00
Linus Torvalds c5aec4c76a Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Ben Herrenschmidt:
 "Here is the bulk of the powerpc changes for this merge window.  It got
  a bit delayed in part because I wasn't paying attention, and in part
  because I discovered I had a core PCI change without a PCI maintainer
  ack in it.  Bjorn eventually agreed it was ok to merge it though we'll
  probably improve it later and I didn't want to rebase to add his ack.

  There is going to be a bit more next week, essentially fixes that I
  still want to sort through and test.

  The biggest item this time is the support to build the ppc64 LE kernel
  with our new v2 ABI.  We previously supported v2 userspace but the
  kernel itself was a tougher nut to crack.  This is now sorted mostly
  thanks to Anton and Rusty.

  We also have a fairly big series from Cedric that add support for
  64-bit LE zImage boot wrapper.  This was made harder by the fact that
  traditionally our zImage wrapper was always 32-bit, but our new LE
  toolchains don't really support 32-bit anymore (it's somewhat there
  but not really "supported") so we didn't want to rely on it.  This
  meant more churn that just endian fixes.

  This brings some more LE bits as well, such as the ability to run in
  LE mode without a hypervisor (ie. under OPAL firmware) by doing the
  right OPAL call to reinitialize the CPU to take HV interrupts in the
  right mode and the usual pile of endian fixes.

  There's another series from Gavin adding EEH improvements (one day we
  *will* have a release with less than 20 EEH patches, I promise!).

  Another highlight is the support for the "Split core" functionality on
  P8 by Michael.  This allows a P8 core to be split into "sub cores" of
  4 threads which allows the subcores to run different guests under KVM
  (the HW still doesn't support a partition per thread).

  And then the usual misc bits and fixes ..."

[ Further delayed by gmail deciding that BenH is a dirty spammer.
  Google knows.  ]

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (155 commits)
  powerpc/powernv: Add missing include to LPC code
  selftests/powerpc: Test the THP bug we fixed in the previous commit
  powerpc/mm: Check paca psize is up to date for huge mappings
  powerpc/powernv: Pass buffer size to OPAL validate flash call
  powerpc/pseries: hcall functions are exported to modules, need _GLOBAL_TOC()
  powerpc: Exported functions __clear_user and copy_page use r2 so need _GLOBAL_TOC()
  powerpc/powernv: Set memory_block_size_bytes to 256MB
  powerpc: Allow ppc_md platform hook to override memory_block_size_bytes
  powerpc/powernv: Fix endian issues in memory error handling code
  powerpc/eeh: Skip eeh sysfs when eeh is disabled
  powerpc: 64bit sendfile is capped at 2GB
  powerpc/powernv: Provide debugfs access to the LPC bus via OPAL
  powerpc/serial: Use saner flags when creating legacy ports
  powerpc: Add cpu family documentation
  powerpc/xmon: Fix up xmon format strings
  powerpc/powernv: Add calls to support little endian host
  powerpc: Document sysfs DSCR interface
  powerpc: Fix regression of per-CPU DSCR setting
  powerpc: Split __SYSFS_SPRSETUP macro
  arch: powerpc/fadump: Cleaning up inconsistent NULL checks
  ...
2014-06-10 18:54:22 -07:00
Alexander Graf f2e91042a8 KVM: PPC: Add CAP to indicate hcall fixes
We worked around some nasty KVM magic page hcall breakages:

  1) NX bit not honored, so ignore NX when we detect it
  2) LE guests swizzle hypercall instruction

Without these fixes in place, there's no way it would make sense to expose kvm
hypercalls to a guest. Chances are immensely high it would trip over and break.

So add a new CAP that gives user space a hint that we have workarounds for the
bugs above in place. It can use those as hint to disable PV hypercalls when
the guest CPU is anything POWER7 or higher and the host does not have fixes
in place.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:27 +02:00
Alexander Graf f3383cf80e KVM: PPC: Disable NX for old magic page using guests
Old guests try to use the magic page, but map their trampoline code inside
of an NX region.

Since we can't fix those old kernels, try to detect whether the guest is sane
or not. If not, just disable NX functionality in KVM so that old guests at
least work at all. For newer guests, add a bit that we can set to keep NX
functionality available.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:24 +02:00
Alexander Graf 5deb8e7ad8 KVM: PPC: Make shared struct aka magic page guest endian
The shared (magic) page is a data structure that contains often used
supervisor privileged SPRs accessible via memory to the user to reduce
the number of exits we have to take to read/write them.

When we actually share this structure with the guest we have to maintain
it in guest endianness, because some of the patch tricks only work with
native endian load/store operations.

Since we only share the structure with either host or guest in little
endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.

For booke, the shared struct stays big endian. For book3s_64 hv we maintain
the struct in host native endian, since it never gets shared with the guest.

For book3s_64 pr we introduce a variable that tells us which endianness the
shared struct is in and route every access to it through helper inline
functions that evaluate this variable.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:21 +02:00
Alexander Graf 2743103f91 KVM: PPC: PR: Fill pvinfo hcall instructions in big endian
We expose a blob of hypercall instructions to user space that it gives to
the guest via device tree again. That blob should contain a stream of
instructions necessary to do a hypercall in big endian, as it just gets
passed into the guest and old guests use them straight away.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:20 +02:00
Michael Ellerman 3102f7843c powerpc/kvm/book3s_hv: Use threads_per_subcore in KVM
To support split core on POWER8 we need to modify various parts of the
KVM code to use threads_per_subcore instead of threads_per_core. On
systems that do not support split core threads_per_subcore ==
threads_per_core and these changes are a nop.

We use threads_per_subcore as the value reported by KVM_CAP_PPC_SMT.
This communicates to userspace that guests can only be created with
a value of threads_per_core that is less than or equal to the current
threads_per_subcore. This ensures that guests can only be created with a
thread configuration that we are able to run given the current split
core mode.

Although threads_per_subcore can change during the life of the system,
the commit that enables that will ensure that threads_per_subcore does
not change during the life of a KVM VM.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Alexander Graf <agraf@suse.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-05-28 13:35:37 +10:00
Scott Wood 6c85f52b10 kvm/ppc: IRQ disabling cleanup
Simplify the handling of lazy EE by going directly from fully-enabled
to hard-disabled.  This replaces the lazy_irq_pending() check
(including its misplaced kvm_guest_exit() call).

As suggested by Tiejun Chen, move the interrupt disabling into
kvmppc_prepare_to_enter() rather than have each caller do it.  Also
move the IRQ enabling on heavyweight exit into
kvmppc_prepare_to_enter().

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:55 +01:00
Cédric Le Goater 736017752d KVM: PPC: Book3S: MMIO emulation support for little endian guests
MMIO emulation reads the last instruction executed by the guest
and then emulates. If the guest is running in Little Endian order,
or more generally in a different endian order of the host, the
instruction needs to be byte-swapped before being emulated.

This patch adds a helper routine which tests the endian order of
the host and the guest in order to decide whether a byteswap is
needed or not. It is then used to byteswap the last instruction
of the guest in the endian order of the host before MMIO emulation
is performed.

Finally, kvmppc_handle_load() of kvmppc_handle_store() are modified
to reverse the endianness of the MMIO if required.

Signed-off-by: Cédric Le Goater <clg@fr.ibm.com>
[agraf: add booke handling]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:39 +01:00
Paul Mackerras efff191223 KVM: PPC: Store FP/VSX/VMX state in thread_fp/vr_state structures
This uses struct thread_fp_state and struct thread_vr_state to store
the floating-point, VMX/Altivec and VSX state, rather than flat arrays.
This makes transferring the state to/from the thread_struct simpler
and allows us to unify the get/set_one_reg implementations for the
VSX registers.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:00 +01:00
Aneesh Kumar K.V a78b55d1c0 kvm: powerpc: book3s: drop is_hv_enabled
drop is_hv_enabled, because that should not be a callback property

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 18:43:34 +02:00
Aneesh Kumar K.V cbbc58d4fd kvm: powerpc: book3s: Allow the HV and PR selection per virtual machine
This moves the kvmppc_ops callbacks to be a per VM entity. This
enables us to select HV and PR mode when creating a VM. We also
allow both kvm-hv and kvm-pr kernel module to be loaded. To
achieve this we move /dev/kvm ownership to kvm.ko module. Depending on
which KVM mode we select during VM creation we take a reference
count on respective module

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: fix coding style]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 18:42:36 +02:00
Aneesh Kumar K.V 5587027ce9 kvm: Add struct kvm arg to memslot APIs
We will use that in the later patch to find the kvm ops handler

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:49:23 +02:00
Aneesh Kumar K.V 2ba9f0d887 kvm: powerpc: book3s: Support building HV and PR KVM as module
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: squash in compile fix]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:45:35 +02:00
Aneesh Kumar K.V 699cc87641 kvm: powerpc: book3s: Add is_hv_enabled to kvmppc_ops
This help us to identify whether we are running with hypervisor mode KVM
enabled. The change is needed so that we can have both HV and PR kvm
enabled in the same kernel.

If both HV and PR KVM are included, interrupts come in to the HV version
of the kvmppc_interrupt code, which then jumps to the PR handler,
renamed to kvmppc_interrupt_pr, if the guest is a PR guest.

Allowing both PR and HV in the same kernel required some changes to
kvm_dev_ioctl_check_extension(), since the values returned now can't
be selected with #ifdefs as much as previously. We look at is_hv_enabled
to return the right value when checking for capabilities.For capabilities that
are only provided by HV KVM, we return the HV value only if
is_hv_enabled is true. For capabilities provided by PR KVM but not HV,
we return the PR value only if is_hv_enabled is false.

NOTE: in later patch we replace is_hv_enabled with a static inline
function comparing kvm_ppc_ops

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:29:09 +02:00
Aneesh Kumar K.V 3a167beac0 kvm: powerpc: Add kvmppc_ops callback
This patch add a new callback kvmppc_ops. This will help us in enabling
both HV and PR KVM together in the same kernel. The actual change to
enable them together is done in the later patch in the series.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: squash in booke changes]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:24:26 +02:00
Linus Torvalds 45d9a2220f Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs pile 1 from Al Viro:
 "Unfortunately, this merge window it'll have a be a lot of small piles -
  my fault, actually, for not keeping #for-next in anything that would
  resemble a sane shape ;-/

  This pile: assorted fixes (the first 3 are -stable fodder, IMO) and
  cleanups + %pd/%pD formats (dentry/file pathname, up to 4 last
  components) + several long-standing patches from various folks.

  There definitely will be a lot more (starting with Miklos'
  check_submount_and_drop() series)"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (26 commits)
  direct-io: Handle O_(D)SYNC AIO
  direct-io: Implement generic deferred AIO completions
  add formats for dentry/file pathnames
  kvm eventfd: switch to fdget
  powerpc kvm: use fdget
  switch fchmod() to fdget
  switch epoll_ctl() to fdget
  switch copy_module_from_fd() to fdget
  git simplify nilfs check for busy subtree
  ibmasmfs: don't bother passing superblock when not needed
  don't pass superblock to hypfs_{mkdir,create*}
  don't pass superblock to hypfs_diag_create_files
  don't pass superblock to hypfs_vm_create_files()
  oprofile: get rid of pointless forward declarations of struct super_block
  oprofilefs_create_...() do not need superblock argument
  oprofilefs_mkdir() doesn't need superblock argument
  don't bother with passing superblock to oprofile_create_stats_files()
  oprofile: don't bother with passing superblock to ->create_files()
  don't bother passing sb to oprofile_create_files()
  coh901318: don't open-code simple_read_from_buffer()
  ...
2013-09-05 08:50:26 -07:00
Al Viro 70abadedab powerpc kvm: use fdget
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-03 23:04:45 -04:00
Alexander Graf bf550fc93d Merge remote-tracking branch 'origin/next' into kvm-ppc-next
Conflicts:
	mm/Kconfig

CMA DMA split and ZSWAP introduction were conflicting, fix up manually.
2013-08-29 00:41:59 +02:00
Takuya Yoshikawa e59dbe09f8 KVM: Introduce kvm_arch_memslots_updated()
This is called right after the memslots is updated, i.e. when the result
of update_memslots() gets installed in install_new_memslots().  Since
the memslots needs to be updated twice when we delete or move a memslot,
kvm_arch_commit_memory_region() does not correspond to this exactly.

In the following patch, x86 will use this new API to check if the mmio
generation has reached its maximum value, in which case mmio sptes need
to be flushed out.

Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Acked-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2013-07-18 12:29:25 +02:00
Scott Wood 5f1c248f52 kvm/ppc: Call trace_hardirqs_on before entry
Currently this is only being done on 64-bit.  Rather than just move it
out of the 64-bit ifdef, move it to kvm_lazy_ee_enable() so that it is
consistent with lazy ee state, and so that we don't track more host
code as interrupts-enabled than necessary.

Rename kvm_lazy_ee_enable() to kvm_fix_ee_before_entry() to reflect
that this function now has a role on 32-bit as well.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-11 00:51:28 +02:00
Paul Mackerras 5975a2e095 KVM: PPC: Book3S: Add API for in-kernel XICS emulation
This adds the API for userspace to instantiate an XICS device in a VM
and connect VCPUs to it.  The API consists of a new device type for
the KVM_CREATE_DEVICE ioctl, a new capability KVM_CAP_IRQ_XICS, which
functions similarly to KVM_CAP_IRQ_MPIC, and the KVM_IRQ_LINE ioctl,
which is used to assert and deassert interrupt inputs of the XICS.

The XICS device has one attribute group, KVM_DEV_XICS_GRP_SOURCES.
Each attribute within this group corresponds to the state of one
interrupt source.  The attribute number is the same as the interrupt
source number.

This does not support irq routing or irqfd yet.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-05-02 15:28:36 +02:00
Scott Wood ed840ee9c8 kvm/ppc: Hold srcu lock when calling kvm_io_bus_read/write
These functions do an srcu_dereference without acquiring the srcu lock
themselves.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-05-02 15:28:35 +02:00
Benjamin Herrenschmidt bc5ad3f370 KVM: PPC: Book3S: Add kernel emulation for the XICS interrupt controller
This adds in-kernel emulation of the XICS (eXternal Interrupt
Controller Specification) interrupt controller specified by PAPR, for
both HV and PR KVM guests.

The XICS emulation supports up to 1048560 interrupt sources.
Interrupt source numbers below 16 are reserved; 0 is used to mean no
interrupt and 2 is used for IPIs.  Internally these are represented in
blocks of 1024, called ICS (interrupt controller source) entities, but
that is not visible to userspace.

Each vcpu gets one ICP (interrupt controller presentation) entity,
used to store the per-vcpu state such as vcpu priority, pending
interrupt state, IPI request, etc.

This does not include any API or any way to connect vcpus to their
ICP state; that will be added in later patches.

This is based on an initial implementation by Michael Ellerman
<michael@ellerman.id.au> reworked by Benjamin Herrenschmidt and
Paul Mackerras.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix typo, add dependency on !KVM_MPIC]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:30 +02:00
Michael Ellerman 8e591cb720 KVM: PPC: Book3S: Add infrastructure to implement kernel-side RTAS calls
For pseries machine emulation, in order to move the interrupt
controller code to the kernel, we need to intercept some RTAS
calls in the kernel itself.  This adds an infrastructure to allow
in-kernel handlers to be registered for RTAS services by name.
A new ioctl, KVM_PPC_RTAS_DEFINE_TOKEN, then allows userspace to
associate token values with those service names.  Then, when the
guest requests an RTAS service with one of those token values, it
will be handled by the relevant in-kernel handler rather than being
passed up to userspace as at present.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix warning]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:29 +02:00
Alexander Graf 5efdb4be59 KVM: PPC: MPIC: Add support for KVM_IRQ_LINE
Now that all pieces are in place for reusing generic irq infrastructure,
we can copy x86's implementation of KVM_IRQ_LINE irq injection and simply
reuse it for PPC, as it will work there just as well.

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:25 +02:00
Scott Wood eb1e4f43e0 kvm/ppc/mpic: add KVM_CAP_IRQ_MPIC
Enabling this capability connects the vcpu to the designated in-kernel
MPIC.  Using explicit connections between vcpus and irqchips allows
for flexibility, but the main benefit at the moment is that it
simplifies the code -- KVM doesn't need vm-global state to remember
which MPIC object is associated with this vm, and it doesn't need to
care about ordering between irqchip creation and vcpu creation.

Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub functions for kvmppc_mpic_{dis,}connect_vcpu]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:24 +02:00
Scott Wood 5df554ad5b kvm/ppc/mpic: in-kernel MPIC emulation
Hook the MPIC code up to the KVM interfaces, add locking, etc.

Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub function for kvmppc_mpic_set_epr, non-booke, 64bit]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:23 +02:00
Bharat Bhushan 092d62ee93 KVM: PPC: debug stub interface parameter defined
This patch defines the interface parameter for KVM_SET_GUEST_DEBUG
ioctl support. Follow up patches will use this for setting up
hardware breakpoints, watchpoints and software breakpoints.

Also kvm_arch_vcpu_ioctl_set_guest_debug() is brought one level below.
This is because I am not sure what is required for book3s. So this ioctl
behaviour will not change for book3s.

Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:02 +02:00
Scott Wood be28a27c99 kvm/ppc: don't call complete_mmio_load when it's a store
complete_mmio_load writes back the mmio result into the
destination register.  Doing this on a store results in
register corruption.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-17 15:21:16 +02:00
Paul Mackerras 4fe27d2add KVM: PPC: Remove unused argument to kvmppc_core_dequeue_external
Currently kvmppc_core_dequeue_external() takes a struct kvm_interrupt *
argument and does nothing with it, in any of its implementations.
This removes it in order to make things easier for forthcoming
in-kernel interrupt controller emulation code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-03-22 01:21:17 +01:00
Takuya Yoshikawa 8482644aea KVM: set_memory_region: Refactor commit_memory_region()
This patch makes the parameter old a const pointer to the old memory
slot and adds a new parameter named change to know the change being
requested: the former is for removing extra copying and the latter is
for cleaning up the code.

Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2013-03-04 20:21:08 -03:00
Takuya Yoshikawa 7b6195a91d KVM: set_memory_region: Refactor prepare_memory_region()
This patch drops the parameter old, a copy of the old memory slot, and
adds a new parameter named change to know the change being requested.

This not only cleans up the code but also removes extra copying of the
memory slot structure.

Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2013-03-04 20:21:08 -03:00
Takuya Yoshikawa 462fce4606 KVM: set_memory_region: Drop user_alloc from prepare/commit_memory_region()
X86 does not use this any more.  The remaining user, s390's !user_alloc
check, can be simply removed since KVM_SET_MEMORY_REGION ioctl is no
longer supported.

Note: fixed powerpc's indentations with spaces to suppress checkpatch
errors.

Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2013-03-04 20:21:08 -03:00
Alexander Graf 1c81063655 KVM: PPC: BookE: Implement EPR exit
The External Proxy Facility in FSL BookE chips allows the interrupt
controller to automatically acknowledge an interrupt as soon as a
core gets its pending external interrupt delivered.

Today, user space implements the interrupt controller, so we need to
check on it during such a cycle.

This patch implements logic for user space to enable EPR exiting,
disable EPR exiting and EPR exiting itself, so that user space can
acknowledge an interrupt when an external interrupt has successfully
been delivered into the guest vcpu.

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-01-10 13:42:31 +01:00
Alexander Graf 5a33169ed2 KVM: PPC: Only WARN on invalid emulation
When we hit an emulation result that we didn't expect, that is an error,
but it's nothing that warrants a BUG(), because it can be guest triggered.

So instead, let's only WARN() the user that this happened.

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-01-10 13:15:08 +01:00
Alex Williamson f82a8cfe93 KVM: struct kvm_memory_slot.user_alloc -> bool
There's no need for this to be an int, it holds a boolean.
Move to the end of the struct for alignment.

Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-12-13 23:24:38 -02:00
Paul Mackerras a2932923cc KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor.  Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT.  There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl.  The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags.  The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).

This is intended for use in implementing qemu's savevm/loadvm and for
live migration.  Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs).  When the first pass reaches the
end of the HPT, it returns from the read.  Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.

The format of the data provides a simple run-length compression of the
invalid entries.  Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries.  The valid entries, 16
bytes each, follow the header.  The invalid entries are not explicitly
represented.

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:33:57 +01:00
Alexander Graf 0e673fb679 KVM: PPC: Support eventfd
In order to support the generic eventfd infrastructure on PPC, we need
to call into the generic KVM in-kernel device mmio code.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:33:50 +01:00
Marcelo Tosatti 42897d866b KVM: x86: add kvm_arch_vcpu_postcreate callback, move TSC initialization
TSC initialization will soon make use of online_vcpus.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-11-27 23:29:14 -02:00
Scott Wood 5bd1cf1185 KVM: PPC: set IN_GUEST_MODE before checking requests
Avoid a race as described in the code comment.

Also remove a related smp_wmb() from booke's kvmppc_prepare_to_enter().
I can't see any reason for it, and the book3s_pr version doesn't have it.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:54 +02:00
Paul Mackerras a47d72f361 KVM: PPC: Book3S HV: Fix updates of vcpu->cpu
This removes the powerpc "generic" updates of vcpu->cpu in load and
put, and moves them to the various backends.

The reason is that "HV" KVM does its own sauce with that field
and the generic updates might corrupt it. The field contains the
CPU# of the -first- HW CPU of the core always for all the VCPU
threads of a core (the one that's online from a host Linux
perspective).

However, the preempt notifiers are going to be called on the
threads VCPUs when they are running (due to them sleeping on our
private waitqueue) causing unload to be called, potentially
clobbering the value.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:52 +02:00
Paul Mackerras dfe49dbd1f KVM: PPC: Book3S HV: Handle memory slot deletion and modification correctly
This adds an implementation of kvm_arch_flush_shadow_memslot for
Book3S HV, and arranges for kvmppc_core_commit_memory_region to
flush the dirty log when modifying an existing slot.  With this,
we can handle deletion and modification of memory slots.

kvm_arch_flush_shadow_memslot calls kvmppc_core_flush_memslot, which
on Book3S HV now traverses the reverse map chains to remove any HPT
(hashed page table) entries referring to pages in the memslot.  This
gets called by generic code whenever deleting a memslot or changing
the guest physical address for a memslot.

We flush the dirty log in kvmppc_core_commit_memory_region for
consistency with what x86 does.  We only need to flush when an
existing memslot is being modified, because for a new memslot the
rmap array (which stores the dirty bits) is all zero, meaning that
every page is considered clean already, and when deleting a memslot
we obviously don't care about the dirty bits any more.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:51 +02:00
Paul Mackerras a66b48c3a3 KVM: PPC: Move kvm->arch.slot_phys into memslot.arch
Now that we have an architecture-specific field in the kvm_memory_slot
structure, we can use it to store the array of page physical addresses
that we need for Book3S HV KVM on PPC970 processors.  This reduces the
size of struct kvm_arch for Book3S HV, and also reduces the size of
struct kvm_arch_memory_slot for other PPC KVM variants since the fields
in it are now only compiled in for Book3S HV.

This necessitates making the kvm_arch_create_memslot and
kvm_arch_free_memslot operations specific to each PPC KVM variant.
That in turn means that we now don't allocate the rmap arrays on
Book3S PR and Book E.

Since we now unpin pages and free the slot_phys array in
kvmppc_core_free_memslot, we no longer need to do it in
kvmppc_core_destroy_vm, since the generic code takes care to free
all the memslots when destroying a VM.

We now need the new memslot to be passed in to
kvmppc_core_prepare_memory_region, since we need to initialize its
arch.slot_phys member on Book3S HV.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:51 +02:00
Bharat Bhushan f61c94bb99 KVM: PPC: booke: Add watchdog emulation
This patch adds the watchdog emulation in KVM. The watchdog
emulation is enabled by KVM_ENABLE_CAP(KVM_CAP_PPC_BOOKE_WATCHDOG) ioctl.
The kernel timer are used for watchdog emulation and emulates
h/w watchdog state machine. On watchdog timer expiry, it exit to QEMU
if TCR.WRC is non ZERO. QEMU can reset/shutdown etc depending upon how
it is configured.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
[bharat.bhushan@freescale.com: reworked patch]
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
[agraf: adjust to new request framework]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:47 +02:00
Alexander Graf 7c973a2ebb KVM: PPC: Add return value to core_check_requests
Requests may want to tell us that we need to go back into host state,
so add a return value for the checks.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:46 +02:00
Alexander Graf 7ee788556b KVM: PPC: Add return value in prepare_to_enter
Our prepare_to_enter helper wants to be able to return in more circumstances
to the host than only when an interrupt is pending. Broaden the interface a
bit and move even more generic code to the generic helper.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:46 +02:00
Alexander Graf 206c2ed7f1 KVM: PPC: Ignore EXITING_GUEST_MODE mode
We don't need to do anything when mode is EXITING_GUEST_MODE, because
we essentially are outside of guest mode and did everything it asked
us to do by the time we check it.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:46 +02:00
Alexander Graf 3766a4c693 KVM: PPC: Move kvm_guest_enter call into generic code
We need to call kvm_guest_enter in booke and book3s, so move its
call to generic code.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:45 +02:00
Alexander Graf bd2be6836e KVM: PPC: Book3S: PR: Rework irq disabling
Today, we disable preemption while inside guest context, because we need
to expose to the world that we are not in a preemptible context. However,
during that time we already have interrupts disabled, which would indicate
that we are in a non-preemptible context.

The reason the checks for irqs_disabled() fail for us though is that we
manually control hard IRQs and ignore all the lazy EE framework. Let's
stop doing that. Instead, let's always use lazy EE to indicate when we
want to disable IRQs, but do a special final switch that gets us into
EE disabled, but soft enabled state. That way when we get back out of
guest state, we are immediately ready to process interrupts.

This simplifies the code drastically and reduces the time that we appear
as preempt disabled.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:45 +02:00
Alexander Graf 03d25c5bd5 KVM: PPC: Use same kvmppc_prepare_to_enter code for booke and book3s_pr
We need to do the same things when preparing to enter a guest for booke and
book3s_pr cores. Fold the generic code into a generic function that both call.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:42 +02:00
Alexander Graf f4800b1f4d KVM: PPC: Expose SYNC cap based on mmu notifiers
Semantically, the "SYNC" cap means that we have mmu notifiers available.
Express this in our #ifdef'ery around the feature, so that we can be sure
we don't miss out on ppc targets when they get their implementation.

Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:39 +02:00
Liu Yu-B13201 9202e07636 KVM: PPC: Add support for ePAPR idle hcall in host kernel
And add a new flag definition in kvm_ppc_pvinfo to indicate
whether the host supports the EV_IDLE hcall.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
[stuart.yoder@freescale.com: cleanup,fixes for conditions allowing idle]
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
[agraf: fix typo]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:37 +02:00
Stuart Yoder 784bafac79 KVM: PPC: add pvinfo for hcall opcodes on e500mc/e5500
Signed-off-by: Liu Yu <yu.liu@freescale.com>
[stuart: factored this out from idle hcall support in host patch]
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:37 +02:00
Stuart Yoder fdcf8bd7e7 KVM: PPC: use definitions in epapr header for hcalls
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-05 23:38:36 +02:00
Marcelo Tosatti 2df72e9bc4 KVM: split kvm_arch_flush_shadow
Introducing kvm_arch_flush_shadow_memslot, to invalidate the
translations of a single memory slot.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-09-06 16:37:25 +03:00
Takuya Yoshikawa d89cc617b9 KVM: Push rmap into kvm_arch_memory_slot
Two reasons:
 - x86 can integrate rmap and rmap_pde and remove heuristics in
   __gfn_to_rmap().
 - Some architectures do not need rmap.

Since rmap is one of the most memory consuming stuff in KVM, ppc'd
better restrict the allocation to Book3S HV.

Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-08-06 12:47:30 +03:00
Paul Mackerras 32fad281c0 KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.

There must be no vcpus running at the time of this ioctl.  To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.

If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out.  We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.

If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point.  We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.

When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool.  If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator.  Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB).  Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-30 11:43:10 +02:00
Benjamin Herrenschmidt 5b74716eba kvm/powerpc: Add new ioctl to retreive server MMU infos
This is necessary for qemu to be able to pass the right information
to the guest, such as the supported page sizes and corresponding
encodings in the SLB and hash table, which can vary depending
on the processor type, the type of KVM used (PR vs HV) and the
version of KVM

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix compilation on hv, adjust for newer ioctl numbers]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-06 16:19:12 +02:00
Benjamin Herrenschmidt f31e65e117 kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
There is nothing in the code for emulating TCE tables in the kernel
that prevents it from working on "PR" KVM... other than ifdef's and
location of the code.

This and moves the bulk of the code there to a new file called
book3s_64_vio.c.

This speeds things up a bit on my G5.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix for hv kvm, 32bit, whitespace]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-06 16:19:11 +02:00
Alexander Graf bf7ca4bdcb KVM: PPC: rename CONFIG_KVM_E500 -> CONFIG_KVM_E500V2
The CONFIG_KVM_E500 option really indicates that we're running on a V2 machine,
not on a machine of the generic E500 class. So indicate that properly and
change the config name accordingly.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:54:57 +03:00
Scott Wood 73196cd364 KVM: PPC: e500mc support
Add processor support for e500mc, using hardware virtualization support
(GS-mode).

Current issues include:
 - No support for external proxy (coreint) interrupt mode in the guest.

Includes work by Ashish Kalra <Ashish.Kalra@freescale.com>,
Varun Sethi <Varun.Sethi@freescale.com>, and
Liu Yu <yu.liu@freescale.com>.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:54:33 +03:00
Scott Wood d30f6e4800 KVM: PPC: booke: category E.HV (GS-mode) support
Chips such as e500mc that implement category E.HV in Power ISA 2.06
provide hardware virtualization features, including a new MSR mode for
guest state.  The guest OS can perform many operations without trapping
into the hypervisor, including transitions to and from guest userspace.

Since we can use SRR1[GS] to reliably tell whether an exception came from
guest state, instead of messing around with IVPR, we use DO_KVM similarly
to book3s.

Current issues include:
 - Machine checks from guest state are not routed to the host handler.
 - The guest can cause a host oops by executing an emulated instruction
   in a page that lacks read permission.  Existing e500/4xx support has
   the same problem.

Includes work by Ashish Kalra <Ashish.Kalra@freescale.com>,
Varun Sethi <Varun.Sethi@freescale.com>, and
Liu Yu <yu.liu@freescale.com>.

Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: remove pt_regs usage]
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:51:19 +03:00
Scott Wood 043cc4d724 KVM: PPC: factor out lpid allocator from book3s_64_mmu_hv
We'll use it on e500mc as well.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:51:02 +03:00
Christoffer Dall b6d33834bd KVM: Factor out kvm_vcpu_kick to arch-generic code
The kvm_vcpu_kick function performs roughly the same funcitonality on
most all architectures, so we shouldn't have separate copies.

PowerPC keeps a pointer to interchanging waitqueues on the vcpu_arch
structure and to accomodate this special need a
__KVM_HAVE_ARCH_VCPU_GET_WQ define and accompanying function
kvm_arch_vcpu_wq have been defined. For all other architectures this
is a generic inline that just returns &vcpu->wq;

Acked-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 12:47:47 +03:00
Takuya Yoshikawa db3fe4eb45 KVM: Introduce kvm_memory_slot::arch and move lpage_info into it
Some members of kvm_memory_slot are not used by every architecture.

This patch is the first step to make this difference clear by
introducing kvm_memory_slot::arch;  lpage_info is moved into it.

Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-08 14:10:22 +02:00
Alexander Graf b3c5d3c2a4 KVM: PPC: Rename MMIO register identifiers
We need the KVM_REG namespace for generic register settings now, so
let's rename the existing users to something different, enabling
us to reuse the namespace for more visible interfaces.

While at it, also move these private constants to a private header.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:41 +02:00
Paul Mackerras 31f3438eca KVM: PPC: Move kvm_vcpu_ioctl_[gs]et_one_reg down to platform-specific code
This moves the get/set_one_reg implementation down from powerpc.c into
booke.c, book3s_pr.c and book3s_hv.c.  This avoids #ifdefs in C code,
but more importantly, it fixes a bug on Book3s HV where we were
accessing beyond the end of the kvm_vcpu struct (via the to_book3s()
macro) and corrupting memory, causing random crashes and file corruption.

On Book3s HV we only accept setting the HIOR to zero, since the guest
runs in supervisor mode and its vectors are never offset from zero.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
[agraf update to apply on top of changed ONE_REG patches]
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:41 +02:00
Alexander Graf 1022fc3d3b KVM: PPC: Add support for explicit HIOR setting
Until now, we always set HIOR based on the PVR, but this is just wrong.
Instead, we should be setting HIOR explicitly, so user space can decide
what the initial HIOR value is - just like on real hardware.

We keep the old PVR based way around for backwards compatibility, but
once user space uses the SET_ONE_REG based method, we drop the PVR logic.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:41 +02:00
Alexander Graf e24ed81fed KVM: PPC: Add generic single register ioctls
Right now we transfer a static struct every time we want to get or set
registers. Unfortunately, over time we realize that there are more of
these than we thought of before and the extensibility and flexibility of
transferring a full struct every time is limited.

So this is a new approach to the problem. With these new ioctls, we can
get and set a single register that is identified by an ID. This allows for
very precise and limited transmittal of data. When we later realize that
it's a better idea to shove over multiple registers at once, we can reuse
most of the infrastructure and simply implement a GET_MANY_REGS / SET_MANY_REGS
interface.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:40 +02:00
Matt Evans b5434032fc KVM: PPC: Add KVM_CAP_NR_VCPUS and KVM_CAP_MAX_VCPUS
PPC KVM lacks these two capabilities, and as such a userland system must assume
a max of 4 VCPUs (following api.txt).  With these, a userland can determine
a more realistic limit.

Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:38 +02:00
Matt Evans 03cdab5340 KVM: PPC: Fix vcpu_create dereference before validity check.
Fix usage of vcpu struct before check that it's actually valid.

Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:38 +02:00
Paul Mackerras 342d3db763 KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7.  Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page.  Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.

Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970.  We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out.  If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:38 +02:00
Paul Mackerras 4e72dbe135 KVM: PPC: Make wakeups work again for Book3S HV guests
When commit f43fdc15fa ("KVM: PPC: booke: Improve timer register
emulation") factored out some code in arch/powerpc/kvm/powerpc.c
into a new helper function, kvm_vcpu_kick(), an error crept in
which causes Book3s HV guest vcpus to stall.  This fixes it.
On POWER7 machines, guest vcpus are grouped together into virtual
CPU cores that share a single waitqueue, so it's important to use
vcpu->arch.wqp rather than &vcpu->wq.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:34 +02:00
Alexander Graf ae21216bec KVM: PPC: align vcpu_kick with x86
Our vcpu kick implementation differs a bit from x86 which resulted in us not
disabling preemption during the kick. Get it a bit closer to what x86 does.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:30 +02:00
Scott Wood dfd4d47e9a KVM: PPC: booke: Improve timer register emulation
Decrementers are now properly driven by TCR/TSR, and the guest
has full read/write access to these registers.

The decrementer keeps ticking (and setting the TSR bit) regardless of
whether the interrupts are enabled with TCR.

The decrementer stops at zero, rather than going negative.

Decrementers (and FITs, once implemented) are delivered as
level-triggered interrupts -- dequeued when the TSR bit is cleared, not
on delivery.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
[scottwood@freescale.com: significant changes]
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:27 +02:00
Scott Wood b59049720d KVM: PPC: Paravirtualize SPRG4-7, ESR, PIR, MASn
This allows additional registers to be accessed by the guest
in PR-mode KVM without trapping.

SPRG4-7 are readable from userspace.  On booke, KVM will sync
these registers when it enters the guest, so that accesses from
guest userspace will work.  The guest kernel, OTOH, must consistently
use either the real registers or the shared area between exits.  This
also applies to the already-paravirted SPRG3.

On non-booke, it's not clear to what extent SPRG4-7 are supported
(they're not architected for book3s, but exist on at least some classic
chips).  They are copied in the get/set regs ioctls, but I do not see any
non-booke emulation.  I also do not see any syncing with real registers
(in PR-mode) including the user-readable SPRG3.  This patch should not
make that situation any worse.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:26 +02:00
Scott Wood 25051b5a5a KVM: PPC: Move prepare_to_enter call site into subarch code
This function should be called with interrupts disabled, to avoid
a race where an exception is delivered after we check, but the
resched kick is received before we disable interrupts (and thus doesn't
actually trigger the exit code that would recheck exceptions).

booke already does this properly in the lightweight exit case, but
not on initial entry.

For now, move the call of prepare_to_enter into subarch-specific code so
that booke can do the right thing here.  Ideally book3s would do the same
thing, but I'm having a hard time seeing where it does any interrupt
disabling of this sort (plus it has several additional call sites), so
I'm deferring the book3s fix to someone more familiar with that code.
book3s behavior should be unchanged by this patch.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:26 +02:00
Scott Wood 7e28e60ef9 KVM: PPC: Rename deliver_interrupts to prepare_to_enter
This function also updates paravirt int_pending, so rename it
to be more obvious that this is a collection of checks run prior
to (re)entering a guest.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:25 +02:00
Scott Wood dc83b8bc02 KVM: PPC: e500: MMU API
This implements a shared-memory API for giving host userspace access to
the guest's TLB.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:24 +02:00
Carsten Otte 5b1c1493af KVM: s390: ucontrol: export SIE control block to user
This patch exports the s390 SIE hardware control block to userspace
via the mapping of the vcpu file descriptor. In order to do so,
a new arch callback named kvm_arch_vcpu_fault  is introduced for all
architectures. It allows to map architecture specific pages.

Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:19 +02:00
Carsten Otte e08b963716 KVM: s390: add parameter for KVM_CREATE_VM
This patch introduces a new config option for user controlled kernel
virtual machines. It introduces a parameter to KVM_CREATE_VM that
allows to set bits that alter the capabilities of the newly created
virtual machine.
The parameter is passed to kvm_arch_init_vm for all architectures.
The only valid modifier bit for now is KVM_VM_S390_UCONTROL.
This requires CAP_SYS_ADMIN privileges and creates a user controlled
virtual machine on s390 architectures.

Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:18 +02:00
Alexander Graf bb75c627fb Revert "KVM: PPC: Add support for explicit HIOR setting"
This reverts commit a15bd354f0.

It exceeded the padding on the SREGS struct, rendering the ABI
backwards-incompatible.

Conflicts:

	arch/powerpc/kvm/powerpc.c
	include/linux/kvm.h

Signed-off-by: Avi Kivity <avi@redhat.com>
2011-11-17 16:30:25 +02:00
Paul Gortmaker ead53f22dc powerpc: remove non-required uses of include <linux/module.h>
None of the files touched here are modules, and they are not
exporting any symbols either -- so there is no need to be including
the module.h.  Builds of all the files remains successful.

Even kernel/module.c does not need to include it, since it includes
linux/moduleloader.h instead.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 19:30:44 -04:00
Paul Mackerras 19ccb76a19 KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel.  This is inefficient.

This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode.  When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle.  Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction.  When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.

This has some other ramifications.  First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle.  This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running.  In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.

This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.

Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.

Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.

Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-09-25 19:52:30 +03:00
Alexander Graf af8f38b349 KVM: PPC: Add sanity checking to vcpu_run
There are multiple features in PowerPC KVM that can now be enabled
depending on the user's wishes. Some of the combinations don't make
sense or don't work though.

So this patch adds a way to check if the executing environment would
actually be able to run the guest properly. It also adds sanity
checks if PVR is set (should always be true given the current code
flow), if PAPR is only used with book3s_64 where it works and that
HV KVM is only used in PAPR mode.

Signed-off-by: Alexander Graf <agraf@suse.de>
2011-09-25 19:52:27 +03:00
Alexander Graf 930b412a00 KVM: PPC: Enable the PAPR CAP for Book3S
Now that Book3S PV mode can also run PAPR guests, we can add a PAPR cap and
enable it for all Book3S targets. Enabling that CAP switches KVM into PAPR
mode.

Signed-off-by: Alexander Graf <agraf@suse.de>
2011-09-25 19:52:26 +03:00
Alexander Graf a15bd354f0 KVM: PPC: Add support for explicit HIOR setting
Until now, we always set HIOR based on the PVR, but this is just wrong.
Instead, we should be setting HIOR explicitly, so user space can decide
what the initial HIOR value is - just like on real hardware.

We keep the old PVR based way around for backwards compatibility, but
once user space uses the SREGS based method, we drop the PVR logic.

Signed-off-by: Alexander Graf <agraf@suse.de>
2011-09-25 19:52:23 +03:00
Paul Mackerras 9e368f2915 KVM: PPC: book3s_hv: Add support for PPC970-family processors
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode.  Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.

There are several differences between the PPC970 and POWER7 in how
guests are managed.  These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits.  Notably, on PPC970:

* The LPCR, LPID or RMOR registers don't exist, and the functions of
  those registers are provided by bits in HID4 and one bit in HID0.

* External interrupts can be directed to the hypervisor, but unlike
  POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
  SRR0/1 not HSRR0/1.

* There is no virtual RMA (VRMA) mode; the guest must use an RMO
  (real mode offset) area.

* The TLB entries are not tagged with the LPID, so it is necessary to
  flush the whole TLB on partition switch.  Furthermore, when switching
  partitions we have to ensure that no other CPU is executing the tlbie
  or tlbsync instructions in either the old or the new partition,
  otherwise undefined behaviour can occur.

* The PMU has 8 counters (PMC registers) rather than 6.

* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.

* The SLB has 64 entries rather than 32.

* There is no mediated external interrupt facility, so if we switch to
  a guest that has a virtual external interrupt pending but the guest
  has MSR[EE] = 0, we have to arrange to have an interrupt pending for
  it so that we can get control back once it re-enables interrupts.  We
  do that by sending ourselves an IPI with smp_send_reschedule after
  hard-disabling interrupts.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:59 +03:00
Paul Mackerras aa04b4cc5b KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility.  These processors require a physically
contiguous, aligned area of memory for each guest.  When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access.  The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.

Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator.  The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.

KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs.  The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.

This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA.  It
also returns the size of the RMA in the argument structure.

Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace.  To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory.  Subsequently we will get rid of this
array and use memory associated with each memslot instead.

This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region.  Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB.  However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.

Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest.  This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
Paul Mackerras 371fefd6f2 KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7.  The host still has to run single-threaded.

This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability.  The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.

To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode.  KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline).  To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c.  In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it.  Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.

When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host.  This number is exported
to userspace via the KVM_CAP_PPC_SMT capability.  If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.

We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host.  We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked.  This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.

When a vcore starts to run, it executes in the context of one of the
vcpu threads.  The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).

It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running.  In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest.  It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.

Note that there is no fixed relationship between the hardware thread
number and the vcpu number.  Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
David Gibson 54738c0971 KVM: PPC: Accelerate H_PUT_TCE by implementing it in real mode
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode.  H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.

Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables.  The
ioctl returns a file descriptor which can be used to mmap the newly
created table.  The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.

There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time.  Specifically, allowing this will avoid awkwardness
when we need to reset the table.  More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:56 +03:00
Paul Mackerras a8606e20e4 KVM: PPC: Handle some PAPR hcalls in the kernel
This adds the infrastructure for handling PAPR hcalls in the kernel,
either early in the guest exit path while we are still in real mode,
or later once the MMU has been turned back on and we are in the full
kernel context.  The advantage of handling hcalls in real mode if
possible is that we avoid two partition switches -- and this will
become more important when we support SMT4 guests, since a partition
switch means we have to pull all of the threads in the core out of
the guest.  The disadvantage is that we can only access the kernel
linear mapping, not anything vmalloced or ioremapped, since the MMU
is off.

This also adds code to handle the following hcalls in real mode:

H_ENTER       Add an HPTE to the hashed page table
H_REMOVE      Remove an HPTE from the hashed page table
H_READ        Read HPTEs from the hashed page table
H_PROTECT     Change the protection bits in an HPTE
H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table
H_SET_DABR    Set the data address breakpoint register

Plus code to handle the following hcalls in the kernel:

H_CEDE        Idle the vcpu until an interrupt or H_PROD hcall arrives
H_PROD        Wake up a ceded vcpu
H_REGISTER_VPA Register a virtual processor area (VPA)

The code that runs in real mode has to be in the base kernel, not in
the module, if KVM is compiled as a module.  The real-mode code can
only access the kernel linear mapping, not vmalloc or ioremap space.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:55 +03:00
Paul Mackerras de56a948b9 KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode.  Using hypervisor mode means
that the guest can use the processor's supervisor mode.  That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host.  This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.

This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses.  That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification.  In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.

Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.

This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.

With the guest running in supervisor mode, most exceptions go straight
to the guest.  We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest.  Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.

We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.

In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount.  Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.

The POWER7 processor has a restriction that all threads in a core have
to be in the same partition.  MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest.  At present we require the host and guest to run
in single-thread mode because of this hardware restriction.

This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA).  We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management.  This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.

This also adds a few new exports needed by the book3s_hv code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:54 +03:00
Paul Mackerras df6909e5d5 KVM: PPC: Move guest enter/exit down into subarch-specific code
Instead of doing the kvm_guest_enter/exit() and local_irq_dis/enable()
calls in powerpc.c, this moves them down into the subarch-specific
book3s_pr.c and booke.c.  This eliminates an extra local_irq_enable()
call in book3s_pr.c, and will be needed for when we do SMT4 guest
support in the book3s hypervisor mode code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:51 +03:00
Paul Mackerras f9e0554dec KVM: PPC: Pass init/destroy vm and prepare/commit memory region ops down
This arranges for the top-level arch/powerpc/kvm/powerpc.c file to
pass down some of the calls it gets to the lower-level subarchitecture
specific code.  The lower-level implementations (in booke.c and book3s.c)
are no-ops.  The coming book3s_hv.c will need this.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:50 +03:00
Scott Wood a4cd8b23ac KVM: PPC: e500: enable magic page
This is a shared page used for paravirtualization.  It is always present
in the guest kernel's effective address space at the address indicated
by the hypercall that enables it.

The physical address specified by the hypercall is not used, as
e500 does not have real mode.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:37 +03:00
Scott Wood 5ce941ee42 KVM: PPC: booke: add sregs support
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-05-22 08:47:53 -04:00
Scott Wood eab176722f KVM: PPC: booke: save/restore VRSAVE (a.k.a. USPRG0)
Linux doesn't use USPRG0 (now renamed VRSAVE in the architecture, even
when Altivec isn't involved), but a guest might.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-05-22 08:47:50 -04:00
Bharat Bhushan 09000adb86 KVM: PPC: Fix issue clearing exit timing counters
Following dump is observed on host when clearing the exit timing counters

[root@p1021mds kvm]# echo -n 'c' > vm1200_vcpu0_timing
INFO: task echo:1276 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
echo          D 0ff5bf94     0  1276   1190 0x00000000
Call Trace:
[c2157e40] [c0007908] __switch_to+0x9c/0xc4
[c2157e50] [c040293c] schedule+0x1b4/0x3bc
[c2157e90] [c04032dc] __mutex_lock_slowpath+0x74/0xc0
[c2157ec0] [c00369e4] kvmppc_init_timing_stats+0x20/0xb8
[c2157ed0] [c0036b00] kvmppc_exit_timing_write+0x84/0x98
[c2157ef0] [c00b9f90] vfs_write+0xc0/0x16c
[c2157f10] [c00ba284] sys_write+0x4c/0x90
[c2157f40] [c000e320] ret_from_syscall+0x0/0x3c

        The vcpu->mutex is used by kvm_ioctl_* (KVM_RUN etc) and same was
used when clearing the stats (in kvmppc_init_timing_stats()). What happens
is that when the guest is idle then it held the vcpu->mutx. While the
exiting timing process waits for guest to release the vcpu->mutex and
a hang state is reached.

        Now using seprate lock for exit timing stats.

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-05-11 07:57:04 -04:00
Jan Kiszka d89f5eff70 KVM: Clean up vm creation and release
IA64 support forces us to abstract the allocation of the kvm structure.
But instead of mixing this up with arch-specific initialization and
doing the same on destruction, split both steps. This allows to move
generic destruction calls into generic code.

It also fixes error clean-up on failures of kvm_create_vm for IA64.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-01-12 11:29:09 +02:00
Vasiliy Kulikov d8cdddcd64 KVM: PPC: fix information leak to userland
Structure kvm_ppc_pvinfo is copied to userland with flags and
pad fields unitialized.  It leads to leaking of contents of
kernel stack memory.

Signed-off-by: Vasiliy Kulikov <segooon@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-11-05 14:42:26 -02:00
Alexander Graf 7b4203e8cb KVM: PPC: Expose level based interrupt cap
Now that we have all the level interrupt magic in place, let's
expose the capability to user space, so it can make use of it!

Signed-off-by: Alexander Graf <agraf@suse.de>
2010-10-24 10:52:19 +02:00
Alexander Graf df1bfa25d8 KVM: PPC: Put segment registers in shared page
Now that the actual mtsr doesn't do anything anymore, we can move the sr
contents over to the shared page, so a guest can directly read and write
its sr contents from guest context.

Signed-off-by: Alexander Graf <agraf@suse.de>
2010-10-24 10:52:11 +02:00
Alexander Graf 7508e16c9f KVM: PPC: Add feature bitmap for magic page
We will soon add SR PV support to the shared page, so we need some
infrastructure that allows the guest to query for features KVM exports.

This patch adds a second return value to the magic mapping that
indicated to the guest which features are available.

Signed-off-by: Alexander Graf <agraf@suse.de>
2010-10-24 10:52:09 +02:00
Alexander Graf 15711e9c92 KVM: PPC: Add get_pvinfo interface to query hypercall instructions
We need to tell the guest the opcodes that make up a hypercall through
interfaces that are controlled by userspace. So we need to add a call
for userspace to allow it to query those opcodes so it can pass them
on.

This is required because the hypercall opcodes can change based on
the hypervisor conditions. If we're running in hardware accelerated
hypervisor mode, a hypercall looks different from when we're running
without hardware acceleration.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-10-24 10:50:57 +02:00
Alexander Graf 5fc87407b5 KVM: PPC: Expose magic page support to guest
Now that we have the shared page in place and the MMU code knows about
the magic page, we can expose that capability to the guest!

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-10-24 10:50:49 +02:00
Alexander Graf 2a342ed577 KVM: PPC: Implement hypervisor interface
To communicate with KVM directly we need to plumb some sort of interface
between the guest and KVM. Usually those interfaces use hypercalls.

This hypercall implementation is described in the last patch of the series
in a special documentation file. Please read that for further information.

This patch implements stubs to handle KVM PPC hypercalls on the host and
guest side alike.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-10-24 10:50:45 +02:00
Alexander Graf 666e7252a1 KVM: PPC: Convert MSR to shared page
One of the most obvious registers to share with the guest directly is the
MSR. The MSR contains the "interrupts enabled" flag which the guest has to
toggle in critical sections.

So in order to bring the overhead of interrupt en- and disabling down, let's
put msr into the shared page. Keep in mind that even though you can fully read
its contents, writing to it doesn't always update all state. There are a few
safe fields that don't require hypervisor interaction. See the documentation
for a list of MSR bits that are safe to be set from inside the guest.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-10-24 10:50:43 +02:00
Avi Kivity a1f4d39500 KVM: Remove memory alias support
As advertised in feature-removal-schedule.txt.  Equivalent support is provided
by overlapping memory regions.

Signed-off-by: Avi Kivity <avi@redhat.com>
2010-08-01 10:47:00 +03:00
Denis Kirjanov 69b61833f7 KVM: PPC: fix build warning in kvm_arch_vcpu_ioctl_run
Fix compile warning:
  CC [M]  arch/powerpc/kvm/powerpc.o
  arch/powerpc/kvm/powerpc.c: In function 'kvm_arch_vcpu_ioctl_run':
  arch/powerpc/kvm/powerpc.c:290: warning: 'gpr' may be used uninitialized in this function
  arch/powerpc/kvm/powerpc.c:290: note: 'gpr' was declared here

Signed-off-by: Denis Kirjanov <dkirjanov@kernel.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-08-01 10:46:36 +03:00
Avi Kivity 9373662463 KVM: Consolidate arch specific vcpu ioctl locking
Now that all arch specific ioctls have centralized locking, it is easy to
move it to the central dispatcher.

Signed-off-by: Avi Kivity <avi@redhat.com>
2010-08-01 10:35:48 +03:00
Avi Kivity 19483d1440 KVM: PPC: Centralize locking of arch specific vcpu ioctls
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-08-01 10:35:48 +03:00
Avi Kivity 2122ff5eab KVM: move vcpu locking to dispatcher for generic vcpu ioctls
All vcpu ioctls need to be locked, so instead of locking each one specifically
we lock at the generic dispatcher.

This patch only updates generic ioctls and leaves arch specific ioctls alone.

Signed-off-by: Avi Kivity <avi@redhat.com>
2010-08-01 10:35:47 +03:00
Alexander Graf c7f38f46f2 KVM: PPC: Improve indirect svcpu accessors
We already have some inline fuctions we use to access vcpu or svcpu structs,
depending on whether we're on booke or book3s. Since we just put a few more
registers into the svcpu, we also need to make sure the respective callbacks
are available and get used.

So this patch moves direct use of the now in the svcpu struct fields to
inline function calls. While at it, it also moves the definition of those
inline function calls to respective header files for booke and book3s,
greatly improving readability.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-05-17 12:18:26 +03:00
Alexander Graf 287d5611fa KVM: PPC: Only use QPRs when available
BookE KVM doesn't know about QPRs, so let's not try to access then.

This fixes a build error on BookE KVM.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-05-17 12:17:24 +03:00
Alexander Graf ad0a048b09 KVM: PPC: Add OSI hypercall interface
MOL uses its own hypercall interface to call back into userspace when
the guest wants to do something.

So let's implement that as an exit reason, specify it with a CAP and
only really use it when userspace wants us to.

The only user of it so far is MOL.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-05-17 12:17:10 +03:00
Alexander Graf 71fbfd5f38 KVM: Add support for enabling capabilities per-vcpu
Some times we don't want all capabilities to be available to all
our vcpus. One example for that is the OSI interface, implemented
in the next patch.

In order to have a generic mechanism in how to enable capabilities
individually, this patch introduces a new ioctl that can be used
for this purpose. That way features we don't want in all guests or
userspace configurations can just not be enabled and we're good.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-05-17 12:17:09 +03:00
Alexander Graf 18978768d8 KVM: PPC: Allow userspace to unset the IRQ line
Userspace can tell us that it wants to trigger an interrupt. But
so far it can't tell us that it wants to stop triggering one.

So let's interpret the parameter to the ioctl that we have anyways
to tell us if we want to raise or lower the interrupt line.

Signed-off-by: Alexander Graf <agraf@suse.de>

v2 -> v3:

 - Add CAP for unset irq
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-05-17 12:16:51 +03:00
Wei Yongjun 06056bfb94 KVM: PPC: Do not create debugfs if fail to create vcpu
If fail to create the vcpu, we should not create the debugfs
for it.

Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com>
Acked-by: Alexander Graf <agraf@suse.de>
Cc: stable@kernel.org
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-05-17 12:15:21 +03:00
Alexander Graf a595405df9 KVM: PPC: Destory timer on vcpu destruction
When we destory a vcpu, we should also make sure to kill all pending
timers that could still be up. When not doing this, hrtimers might
dereference null pointers trying to call our code.

This patch fixes spontanious kernel panics seen after closing VMs.

Signed-off-by: Alexander Graf <alex@csgraf.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-04-25 12:39:25 +03:00
Alexander Graf c10207fe86 KVM: PPC: Add capability for paired singles
We need to tell userspace that we can emulate paired single instructions.
So let's add a capability export.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-04-25 12:37:47 +03:00
Alexander Graf 3587d5348c KVM: PPC: Teach MMIO Signedness
The guest I was trying to get to run uses the LHA and LHAU instructions.
Those instructions basically do a load, but also sign extend the result.

Since we need to fill our registers by hand when doing MMIO, we also need
to sign extend manually.

This patch implements sign extended MMIO and the LHA(U) instructions.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-04-25 12:34:44 +03:00
Alexander Graf b104d06632 KVM: PPC: Enable MMIO to do 64 bits, fprs and qprs
Right now MMIO access can only happen for GPRs and is at most 32 bit wide.
That's actually enough for almost all types of hardware out there.

Unfortunately, the guest I was using used FPU writes to MMIO regions, so
it ended up writing 64 bit MMIOs using FPRs and QPRs.

So let's add code to handle those odd cases too.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-04-25 12:34:41 +03:00
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Marcelo Tosatti 6474920477 KVM: fix cleanup_srcu_struct on vm destruction
cleanup_srcu_struct on VM destruction remains broken:

BUG: unable to handle kernel paging request at ffffffffffffffff
IP: [<ffffffff802533d2>] srcu_read_lock+0x16/0x21
RIP: 0010:[<ffffffff802533d2>]  [<ffffffff802533d2>] srcu_read_lock+0x16/0x21
Call Trace:
 [<ffffffffa05354c4>] kvm_arch_vcpu_uninit+0x1b/0x48 [kvm]
 [<ffffffffa05339c6>] kvm_vcpu_uninit+0x9/0x15 [kvm]
 [<ffffffffa0569f7d>] vmx_free_vcpu+0x7f/0x8f [kvm_intel]
 [<ffffffffa05357b5>] kvm_arch_destroy_vm+0x78/0x111 [kvm]
 [<ffffffffa053315b>] kvm_put_kvm+0xd4/0xfe [kvm]

Move it to kvm_arch_destroy_vm.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
2010-03-01 12:36:01 -03:00
Alexander Graf 8e5b26b55a KVM: PPC: Use accessor functions for GPR access
All code in PPC KVM currently accesses gprs in the vcpu struct directly.

While there's nothing wrong with that wrt the current way gprs are stored
and loaded, it doesn't suffice for the PACA acceleration that will follow
in this patchset.

So let's just create little wrapper inline functions that we call whenever
a GPR needs to be read from or written to. The compiled code shouldn't really
change at all for now.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-03-01 12:35:47 -03:00
Marcelo Tosatti f7784b8ec9 KVM: split kvm_arch_set_memory_region into prepare and commit
Required for SRCU convertion later.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-03-01 12:35:44 -03:00
Benjamin Herrenschmidt bcd6acd51f Merge commit 'origin/master' into next
Conflicts:
	include/linux/kvm.h
2009-12-09 17:14:38 +11:00
Alexander Graf e15a113700 powerpc/kvm: Sync guest visible MMU state
Currently userspace has no chance to find out which virtual address space we're
in and resolve addresses. While that is a big problem for migration, it's also
unpleasent when debugging, as gdb and the monitor don't work on virtual
addresses.

This patch exports enough of the MMU segment state to userspace to make
debugging work and thus also includes the groundwork for migration.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-12-08 16:02:50 +11:00
Alexander Graf 10474ae894 KVM: Activate Virtualization On Demand
X86 CPUs need to have some magic happening to enable the virtualization
extensions on them. This magic can result in unpleasant results for
users, like blocking other VMMs from working (vmx) or using invalid TLB
entries (svm).

Currently KVM activates virtualization when the respective kernel module
is loaded. This blocks us from autoloading KVM modules without breaking
other VMMs.

To circumvent this problem at least a bit, this patch introduces on
demand activation of virtualization. This means, that instead
virtualization is enabled on creation of the first virtual machine
and disabled on destruction of the last one.

So using this, KVM can be easily autoloaded, while keeping other
hypervisors usable.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-12-03 09:32:10 +02:00
Avi Kivity 367e1319b2 KVM: Return -ENOTTY on unrecognized ioctls
Not the incorrect -EINVAL.

Signed-off-by: Avi Kivity <avi@redhat.com>
2009-12-03 09:32:08 +02:00
Alexander Graf 544c6761bb Use hrtimers for the decrementer
Following S390's good example we should use hrtimers for the decrementer too!
This patch converts the timer from the old mechanism to hrtimers.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-11-05 16:51:05 +11:00
Alexander Graf 4e755758cb Move dirty logging code to sub-arch
PowerPC code handles dirty logging in the generic parts atm. While this
is great for "return -ENOTSUPP", we need to be rather target specific
when actually implementing it.

So let's split it to implementation specific code, so we can implement
it for book3s.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-11-05 16:49:51 +11:00
Gleb Natapov a1b37100d9 KVM: Reduce runnability interface with arch support code
Remove kvm_cpu_has_interrupt() and kvm_arch_interrupt_allowed() from
interface between general code and arch code. kvm_arch_vcpu_runnable()
checks for interrupts instead.

Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:33:13 +03:00
Marcelo Tosatti 46f43c6ee0 KVM: powerpc: convert marker probes to event trace
[avi: make it build]
[avi: fold trace-arch.h into trace.h]

CC: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:33:03 +03:00
Gleb Natapov 988a2cae6a KVM: Use macro to iterate over vcpus.
[christian: remove unused variables on s390]

Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:32:52 +03:00
Gleb Natapov 78646121e9 KVM: Fix interrupt unhalting a vcpu when it shouldn't
kvm_vcpu_block() unhalts vpu on an interrupt/timer without checking
if interrupt window is actually opened.

Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-06-10 11:48:33 +03:00
Hollis Blanchard f5d0906b5b KVM: ppc: remove debug support broken by KVM debug rewrite
After the rewrite of KVM's debug support, this code doesn't even build any
more.

Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-03-24 11:03:01 +02:00
Hollis Blanchard ecc0981ff0 KVM: ppc: cosmetic changes to mmu hook names
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-03-24 11:02:55 +02:00
Jan Kiszka d0bfb940ec KVM: New guest debug interface
This rips out the support for KVM_DEBUG_GUEST and introduces a new IOCTL
instead: KVM_SET_GUEST_DEBUG. The IOCTL payload consists of a generic
part, controlling the "main switch" and the single-step feature. The
arch specific part adds an x86 interface for intercepting both types of
debug exceptions separately and re-injecting them when the host was not
interested. Moveover, the foundation for guest debugging via debug
registers is layed.

To signal breakpoint events properly back to userland, an arch-specific
data block is now returned along KVM_EXIT_DEBUG. For x86, the arch block
contains the PC, the debug exception, and relevant debug registers to
tell debug events properly apart.

The availability of this new interface is signaled by
KVM_CAP_SET_GUEST_DEBUG. Empty stubs for not yet supported archs are
provided.

Note that both SVM and VTX are supported, but only the latter was tested
yet. Based on the experience with all those VTX corner case, I would be
fairly surprised if SVM will work out of the box.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-03-24 11:02:49 +02:00
Sheng Yang ad8ba2cd44 KVM: Add kvm_arch_sync_events to sync with asynchronize events
kvm_arch_sync_events is introduced to quiet down all other events may happen
contemporary with VM destroy process, like IRQ handler and work struct for
assigned device.

For kvm_arch_sync_events is called at the very beginning of kvm_destroy_vm(), so
the state of KVM here is legal and can provide a environment to quiet down other
events.

Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-02-15 02:47:36 +02:00
Avi Kivity ca9edaee1a KVM: Consolidate userspace memory capability reporting into common code
Signed-off-by: Avi Kivity <avi@redhat.com>
2008-12-31 16:55:46 +02:00
Hollis Blanchard 73e75b416f KVM: ppc: Implement in-kernel exit timing statistics
Existing KVM statistics are either just counters (kvm_stat) reported for
KVM generally or trace based aproaches like kvm_trace.
For KVM on powerpc we had the need to track the timings of the different exit
types. While this could be achieved parsing data created with a kvm_trace
extension this adds too much overhead (at least on embedded PowerPC) slowing
down the workloads we wanted to measure.

Therefore this patch adds a in-kernel exit timing statistic to the powerpc kvm
code. These statistic is available per vm&vcpu under the kvm debugfs directory.
As this statistic is low, but still some overhead it can be enabled via a
.config entry and should be off by default.

Since this patch touched all powerpc kvm_stat code anyway this code is now
merged and simplified together with the exit timing statistic code (still
working with exit timing disabled in .config).

Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2008-12-31 16:55:41 +02:00
Hollis Blanchard 5cf8ca2214 KVM: ppc: adjust vcpu types to support 64-bit cores
However, some of these fields could be split into separate per-core structures
in the future.

Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2008-12-31 16:52:22 +02:00
Hollis Blanchard db93f5745d KVM: ppc: create struct kvm_vcpu_44x and introduce container_of() accessor
This patch doesn't yet move all 44x-specific data into the new structure, but
is the first step down that path. In the future we may also want to create a
struct kvm_vcpu_booke.

Based on patch from Liu Yu <yu.liu@freescale.com>.

Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2008-12-31 16:52:22 +02:00